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a  b  s  t  r  a  c  t

Comprehensive  two-dimensional  gas  chromatography  (GC×GC)  is  a powerful  technology  for  separating
complex  samples.  The  typical  goal  of  GC×GC  peak  detection  is  to  aggregate  data  points  of analyte  peaks
based  on  their  retention  times  and  intensities.  Two  techniques  commonly  used  for  two-dimensional  peak
detection are  the  two-step  algorithm  and  the  watershed  algorithm.  A  recent  study  [4] compared  the
performance  of  the  two-step  and  watershed  algorithms  for GC×GC  data  with  retention-time  shifts  in  the
second-column  separations.  In  that  analysis,  the  peak  retention-time  shifts  were  corrected  while  applying
the two-step  algorithm  but  the  watershed  algorithm  was  applied  without  shift  correction.  The results
omprehensive two-dimensional gas
hromatography (GC×GC)
hemometrics
eak detection
atershed algorithm

wo-step peak detection

indicated  that  the  watershed  algorithm  has  a higher  probability  of  erroneously  splitting  a  single  two-
dimensional  peak  than  the  two-step  approach.  This  paper  reconsiders  the  analysis  by  comparing  peak-
detection  performance  for  resolved  peaks  after  correcting  retention-time  shifts  for  both  the two-step  and
watershed  algorithms.  Simulations  with  wide-ranging  conditions  indicate  that  when  shift  correction  is
employed  with  both  algorithms,  the  watershed  algorithm  detects  resolved  peaks  with  greater  accuracy

d.
than  the  two-step  metho

. Introduction

Comprehensive two-dimensional gas chromatography
GC×GC) is a powerful technology for separating and analyz-
ng compounds in complex samples. GC×GC data is processed
o detect peaks and identify the associated compounds present
n a sample. Typically, the goal of peak detection is to separately
ggregate the data points belonging to each analyte peak. GC×GC
eak detection popularly is performed by one of two approaches:
he two-step algorithm [1] and the watershed algorithm [2,3]. In
he two-step algorithm, traditional one-dimensional (1D) peak
etection is employed on each secondary chromatogram, then
etected 1D peaks are merged to form two-dimensional (2D)
eaks. The watershed algorithm performs peak detection by oper-
ting on 2D neighborhoods, i.e.,  in both retention-time dimensions
imultaneously.
A recent study by Vivó-Truyols and Janssen [4] analyzed the
ffects of second-column retention-time shifts on the performance
f 2D peak-detection techniques. Retention-time shift in consecu-

∗ Corresponding author. Tel.: +1 402 472 5007; fax: +1 402 472 7767.
E-mail addresses: ilatha@cse.unl.edu (I. Latha), reich@unl.edu (S.E. Reichenbach),

tao@gcimage.com (Q. Tao).
URLs: http://cse.unl.edu/ reich (S.E. Reichenbach), http://www.gcimage.com

Q. Tao).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.07.052
© 2011 Elsevier B.V. All rights reserved.

tive secondary chromatograms in GC×GC may occur due to factors
such as rapid temperature or pressure changes [5].  Rapid chromato-
graphic changes can induce shifts that complicate data processing
because all chromatographic peaks of a compound are expected
to have the same retention-time. If the chromatography is rapidly
varying (and cannot be improved to yield data without rapid peak
shifts), then data processing and peak detection should account for
retention-time shifts. Skov et al. [6] examined the nature and theory
of retention-time shifts in GC×GC and described a method for shift
correction based on cross-correlation for individual mass channels
in adjacent secondary chromatograms. In the two-step algorithm,
1D peak merging typically accounts for retention-time shifts. For
the watershed algorithm, retention-time shifts can be determined
(e.g., with cross-correlation [6])  and then corrected either by align-
ing the data before peak detection or equivalently by adjusting the
2D neighborhoods of the watershed algorithm to account for shifts.

In their analysis, Vivó-Truyols and Janssen [4] compared the
effects of retention-time shifts on both the two-step and water-
shed peak-detection algorithms. For the two-step approach, 1D
peak merging accounted for retention-time shifts, whereas no shift
corrections were made with the watershed algorithm. Their results
indicated that watershed algorithm failed at a higher rate due

to uncorrected second-dimension retention-time shifts. However,
their comparison of peak-detection performance was  confounded
by accounting for retention-time shift in the two-step algorithm but
not accounting for retention-time shift in the watershed algorithm.

dx.doi.org/10.1016/j.chroma.2011.07.052
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:ilatha@cse.unl.edu
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This paper re-evaluates the performance of the two-step and
atershed algorithms for retention-time shifts in the second-

olumn separations when both employ shift correction. Simulated
ata is used to rigorously evaluate the peak-detection algo-
ithms under controlled conditions with different levels of noise,
etention-time shifts, and peak widths. The retention-time shifts
n each simulated peak are corrected prior to both peak-detection
lgorithms for an unbiased comparison. These experiments demon-
trate that when retention-time shift is corrected for both
lgorithms, the watershed algorithm detects peaks more accu-
ately, over a wide range of conditions.

. Peak detection in comprehensive two-dimensional
hromatography

.1. Two-step peak detection algorithm

The two-step algorithm builds on peak-detection methods used
n traditional gas chromatography. In the first step, 1D peaks in
ach secondary chromatogram are detected by a 1D peak-detection
lgorithm. In the second step, a peak merging algorithm determines
hich of the detected 1D peaks should be merged to form 2D peaks

7].
The two-step algorithm typically uses two criteria to determine

hich 1D peaks should be merged: the overlap and unimodality
riteria. The overlap criterion compares two adjacent 1D peaks in
onsecutive second-dimension chromatograms and determines if
he peaks can be merged based on their retention-time overlap.
ivó-Truyols and Janssen [4] check the difference in second-
imension retention-time of two candidate 1D peaks and merge
hem if the difference is smaller than a predetermined threshold
8]. Setting that threshold allows the overlap criterion to account
or retention-time shifts between secondary chromatograms. The
nimodality criterion ensures that 2D peaks have only one local
aximum. Initially, a single 1D peak in a secondary chromatogram

s made part of a 2D peak. Then, 1D peaks in adjacent second-
imension chromatograms are added to the 2D peak if they satisfy
he overlap and unimodality criteria [7].

.2. Watershed algorithm

The watershed algorithm, originally used in image segmenta-
ion [9],  was adapted for 2D chromatographic peak detection by
eichenbach et al. [2,3]. Conceptually, the algorithm initiates detec-
ion at the apex of a peak and iteratively adds all smaller neighbors
ntil no more smaller points border the peak [10]. The watershed
lgorithm can be implemented with a priority queue to sort all data
oints. The largest data point is extracted and labeled first. This is
ollowed by the next largest point in the queue. Each point drawn
ut of the queue is compared with its neighbors. If the neighbors are
f equal or larger value, the extracted point is given the same label
s its largest neighbor. However, if the data point is larger than its
eighbors, it is given a new label to indicate that it is part of another
eak. This procedure is repeated until the queue is empty.

Retention-time shifts can be corrected either prior to peak
etection or in the watershed algorithm itself. For example, before
eak detection, cross-correlation can be used to determine the
lignment for shifted second-dimension chromatograms [6].  Cross-
orrelation measures the similarity between 1D chromatograms for
ossible shifts (within a specified range) and indicates the required
hift correction. Then, prior to peak detection, shift correction can

e applied to the data to align the secondary chromatograms. Alter-
atively, shifts can be corrected as a part of the watershed algorithm
y using the shift correction (e.g., as identified by cross-correlation)
o adjust the 2D neighborhood for a point. Fig. 1(a) shows the stan-
Fig. 1. Retention-time shift correction of −1 applied to a 2D neighborhood (indi-
cated by dark gray background) in the watershed algorithm: (a) unshifted and (b)
shifted.

dard 3 × 3 neighborhood (dark background) around a data point
with value 1306 (gray background) at the center of a peak that has
a skew of −1. In Fig. 1(b), the retention-time skew is corrected by
shifting the 2D neighborhood by −1.

3. Simulation experiments

3.1. Overview of simulation

In the experiments described here, simulated 2D chromato-
graphic peaks are used to rigorously compare both peak-detection
algorithms under controlled conditions for different levels of noise,
retention-time shifts, and peak widths. A single, resolved peak is
simulated by interval sampling a 2D Gaussian function with para-
metric retention-time peak widths. Fig. 2(a) displays an example
2D peak as a series of 1D peaks. Each 1D second-column peak mod-
els a 1D chromatogram at a characteristic retention-time for the
first chromatographic column.

To experimentally evaluate the effects of retention-time shifts in
the secondary chromatograms, a skew is introduced in the 2D peak
that shifts each 1D chromatogram as shown in Fig. 2(b). The skew
reduces the overlap of peak regions belonging to two consecutive
1D peaks in the 2D chromatogram. This simulates second-column
retention-time shifts in comprehensive 2D chromatography, for
instance, retention-time shifts due to an extreme thermal gradi-
ent that induces rapid chromatographic changes. The expression
for parametric skew is:

�(i) = (i − �x)s (1)

where �(i) is the shift introduced in each secondary chromatogram,
i is the position of each data point along the x-dimension (the first-
column separation), �x is the peak apex in the x-dimension, and s
is the skew parameter that controls the shift.

The peak model is a Gaussian function (normalized to have unit
integrated volume) subject to second-dimension skew:

f [i, j] = 1
2��x�y

∫ i+(1/2)

i−(1/2)

∫ j+(1/2)

j−(1/2)

× e−(((x−�x)2/2�2
x )+((y−�y+�(i))2/2�2

y )) dx dy (2)

where f[i, j] is the measured signal intensity of the chromatographic
peak at position [i, j], i and j are the retention-time indices of the
data array along the x and y dimensions respectively, �x and �y

represent the peak’s retention-time apex in the x and y dimensions
respectively, �(i) is the shift in each secondary chromatogram, and
�x and �y parameterize the width of the peak along the x and y
dimensions respectively. The units for skew and peak widths are
the data array index intervals (i.e., the data sampling intervals of
retention times).

The array size that is required to contain the simulated peak is

determined by the peak-width standard deviations, �x and �y, and
the skew parameter, s:

M = �9�x + 2� (3)
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Fig. 2. Simulation of the input signal: (a) slices of a sampled 2D peak displaying each secondary 1D peak, (b) shifted slices incorporating a skew in the 2D peak, (c) slices of
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tandard deviation in the x-dimension is �x , and the peak-width standard deviation
oise  and (d) 2D peak with skew and noise, after skew correction.

 = �9�y + s (M − 1) + 2� (4)

here M is the number of columns in the array or the array size
long the x-dimension and N is the number of rows in the array or
he array size along the y-dimension. The size of the array along
he y-dimension is a function of s, M,  and �y, to accommodate the
etention-time shifts in the secondary chromatograms. The peak
s centered in the array by setting (�x, �y) to (M/2, N/2). For com-
utational convenience, the array is padded with zeros along its
oundary.

Normally distributed random noise with parametric standard
eviation is added to generate 2D data as shown in Fig. 2(c):

[i, j] = f [i, j] + �nGi,j (5)

here g[i, j] is the intensity of the noisy chromatographic data at

osition [i, j], f[i, j] is the shifted peak given by Eq. (2),  �n is the
arametric standard deviation of noise, and Gi,j is a random number
rom a normal distribution. The unit for noise is the total response
i.e., volume) of the two-dimensional Gaussian peak.
noise after skew correction. The standard deviation of noise is �n ,  the peak-width
 y-dimension is �y: (a) 2D peak, (b) 2D peak with skew, (c) 2D peak with skew and

3.2. Peak detection

Peak detection is performed on the noisy 2D chromatographic
peak given by Eq. (5).  In the analysis, cross-correlation and shift
correction are performed prior to peak detection by both methods.
Cross-correlation identifies the shift correction required to align the
1D columns by comparing the 1D chromatograms for each relative
retention-time shift within the prescribed range. The shift correc-
tion is determined by the maximum cross-correlation between 1D
chromatograms. A sampled 2D peak after shift correction is shown
in Fig. 2(d).

The simulation involves only one peak, so the peak-detection
algorithms are configured to use two labels indicating if a data point
is or is not in the analyte peak:

l[i, j] =
{

1 if in peak,

0 otherwise
(6)

where, l[i, j] is the label assigned for the data point at [i, j].
3.2.1. Two-step algorithm
The two-step algorithm, as outlined by Peters et al. [7],  is per-

formed on the shift-corrected 2D peak, e.g., as shown in Fig. 2(d).
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ig. 3. Two-step peak detection applied to each 1D slice of the 2D signal followed b
etection algorithm. (b) Peak detection by two-step algorithm.

n the first step, 1D peak detection is performed on each sec-
ndary chromatogram. With reference to [7],  Thr0 = 0 and Thr1 = 0
o that every 1D peak is detected minima to minima. Next, the
argest peak apex in the 2D chromatogram is identified. In the other
econdary chromatograms (which have been shift-corrected), the
verlap criterion selects the peak that overlaps (in the second-
olumn retention time) the apex of the largest 2D peak. In any
econdary chromatogram that a minimum point between two 1D
eaks coincides (in the second-column retention time) with the
pex of the largest 2D peak, the 1D peak with its apex closer to the
argest 2D peak apex is selected and if the two  1D peaks are at the
ame distance from the largest peak apex, the peak with the largest
pex is selected. With reference to [7],  ThrOV=0, so at least one data
oint must overlap. (These parametric settings for the two-step
lgorithm are the least restrictive and so maximize performance in

he simulation experiments.) The unimodality criterion compares
he 1D peak apex of consecutive 1D peaks to ensure the presence
f a single peak maximum in the 2D peak. An example of a 2D peak
etected by the two-step algorithm is shown in Fig. 3. The filled cir-
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ig. 4. The watershed algorithm applied to 2D data for peak detection. The detected peak
atershed algorithm.
k merging. The detected peak is marked by filled circles. (a) Input to two-step peak

cles indicate the data points of the peak detected by the two-step
method (i.e., labeled ‘1’) and the open circles are data points that
are not part of the detected peak (i.e., labeled ‘0’). The detected peak
satisfies both the overlap and unimodality criteria.

3.2.2. Watershed algorithm
The watershed algorithm also is performed on the same shift-

corrected 2D peak, e.g.,  as shown in Fig. 2(d). The algorithm starts
at the peak apex. The largest data point in the peak is identified
and labeled. Then, in order by intensity, each successive point in
the 2D matrix is given the label of its largest neighbor. Fig. 4 shows
the peak detected by the watershed algorithm for the example 2D
peak, with data points in the detected peak marked by filled circles
and data points not in the detected peak marked with open circles.
3.3. Experimental setup

Four parameters are varied in the simulation experiments: (a)
noise standard deviation, �n, from 0.0001 to 0.01; (b) peak-width
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 is marked by filled circles. (a) Input to watershed algorithm. (b) Peak detection by
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Table 1
Results for the watershed (WS) and two-step (2-step) peak-detection algorithms for peaks with various x-dimension peak-width standard deviation, �x; y-dimension peak-
width  standard deviation, �y; and noise standard deviation, �n . In each case, the expected mean is 1.000. For each algorithm, each test with different parameter values was
repeated  1000 times with random noise.

Skew Peak Noise Array size Signal WS 2-Step Signif.

s �x �y �n Mean S.D. Mean S.D. Error Failed Mean S.D. Error Failed (1 − p)

−1 1.00 1 0.0001 11×21 1.0000 0.0013 0.9997 0.0010 −0.0003 0 0.9995 0.0009 −0.0005 0 1.0000
−1  1.00 1 0.0005 11×21 0.9999 0.0061 0.9984 0.0045 −0.0015 0 0.9974 0.0040 −0.0024 0 1.0000
−1  1.00 1 0.0010 11×21 1.0006 0.0124 0.9974 0.0082 −0.0032 0 0.9949 0.0073 −0.0057 0 1.0000
−1  1.00 1 0.0050 11×21 1.0021 0.0597 0.9846 0.0368 −0.0174 0 0.9761 0.0328 −0.0260 0 1.0000
−1  1.00 1 0.0100 11×21 1.0063 0.1227 0.9649 0.0706 −0.0415 0 0.9451 0.0598 −0.0612 0 1.0000

−1  0.25 1 0.0001 5×15 1.0000 0.0006 0.9999 0.0006 −0.0001 0 0.9999 0.0005 −0.0001 0 0.0000
−1  0.50 1 0.0001 7×17 1.0000 0.0008 0.9998 0.0007 −0.0001 0 0.9997 0.0007 −0.0003 0 0.9986
−1  1.00 1 0.0001 11×21 1.0000 0.0013 0.9997 0.0010 −0.0003 0 0.9995 0.0009 −0.0005 0 1.0000
−1  2.00 1 0.0001 20×30 1.0000 0.0020 0.9994 0.0012 −0.0006 0 0.9989 0.0011 −0.0011 0 1.0000

−1  1.00 1 0.0001 11×21 1.0000 0.0013 0.9997 0.0010 −0.0003 0 0.9995 0.0009 −0.0005 0 1.0000
−1  1.00 2 0.0001 11×30 1.0000 0.0015 0.9996 0.0012 −0.0003 0 0.9987 0.0013 −0.0013 0 1.0000
−1  1.00 4 0.0001 11×48 1.0000 0.0019 0.9990 0.0015 −0.0010 0 0.9904 0.0045 −0.0096 0 1.0000
−1  1.00 8 0.0001 11×84 1.0000 0.0028 0.9951 0.0028 −0.0048 39 0.9093 0.0182 −0.0906 341 1.0000
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Fig. 6. Comparison of the peak volume mean and standard deviation for the input
tandard deviation along the x-dimension, �x, from 0.25 to 2; (c)
eak-width standard deviation along the y-dimension, �y, from 1 to
; and (d) skew, s, from −8 to −1. (The differing ranges for the peak
idths in the two dimensions reflect the typical practice that peaks

re more highly sampled in the second-column separation than the
rst.) For each value assigned to �n, �x, �y, and s, the experiment is
onducted T = 1000 times to observe the performance of the peak-
etection algorithms for different input signals. The simulated 2D
eak volume mean and standard deviation are calculated as:

ignalMean, �s = 1
T

∑
t

∑
i,j

gt[i, j] (7)

ignalStandardDeviation, �s =
√

1
T

∑
t

∑
i,j

gt[i, j]2 − �2
s (8)
here T is the number of test cases executed for each algorithm
nd gt[i, j] is the data point at [i, j] in test case t.

Mean of Data
Mean Watershed

0.000 0.002 0.004 0.006 0.00 8 0.0 10 0.012

                                        Noise Standard Deviation (σ   )n
 s = -1, σx = 1, σy = 1

0.940

0.950

0.960

0.970

0.980

0.990

1.000

1.010

1.020

Vo
lu

m
e

Mean Two-Step

ig. 5. Comparison of the peak volume means and standard deviations for the input
ignal, watershed, and two-step method as a function of the noise standard devia-
ion, �n . Performance of peak detection algorithms as a function of noise.

signal, watershed, and two-step method as a function of first-column peak width,
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For the two-step and watershed algorithms, the detected peak
olume mean and standard deviation are computed as:

ean, � = 1
T

∑
t

∑
i,j

(gt[i, j] lt[i, j]) (9)

tandardDeviation, � =
√

1
T

∑
t

∑
i,j

(gt[i, j] lt[i, j])2 − �2 (10)

here lt[i, j] is the label assigned for the data point gt[i, j].

. Results

Table 1 compares results of both peak-detection algorithms
or various parameter values, with 1000 test cases for each set of
arameter values. In all cases shown in Table 1, the skew was −1,
ut, with skew correction, results for other levels of skew are not
aterially different. (Complete experimental test results for the

imulations are reported as Supplementary Data.)
Table 1 lists the volume means and standard deviations for

he signal and both peak-detection algorithms with different noise
evels and peak widths. Table 1 also shows the mean errors for
oth peak-detection algorithms, i.e.,  the difference between the
ean volume computed for the signal and the mean volume of the

etected peak, and the number of failed test cases for the watershed
nd two-step algorithms. If the detected peak does not include all
ata points within one standard deviation from the peak apex in
oth dimensions, then the detection for the test case is counted as

 failure and is not included in computing the peak volume mean
nd standard deviation. Table 1 displays only one such case. In that
ase, the two-step algorithm has a larger number of failures than
he watershed algorithm. The errors for the two peak-detection

ethods are compared in the following paragraphs and the accom-
anying figures.

Table 1 also reports tests of statistical significance. The peak vol-
mes for the two peak-detection methods in each test case were

ompared using independent-samples t-tests. As seen in Table 1,
hich reports one minus the p-values computed from the Student’s

-distribution rounded to the nearest one-thousandth, the differ-
nce in detected peak volume by the two methods is statistically

ig. 9. The watershed algorithm labels data points (shown in dark gray) in intensity-orde
rom  left to right.
rgoes 1D peak detection. Points included in the main peak are shown in dark gray
wn in sequence from left to right.

significant in most cases. In only one case, in which the first-
dimension peak-width is narrow (�x = 0.25) and there is little noise
(�x = 0.0001), is the difference not significant. These tests suggest
that the better results of the watershed algorithm are significant
and almost certainly would be observed in repeated experiments.

Table 1 and Fig. 5 show the means and standard deviations of
the peak volume for the input signal, watershed, and two-step
algorithm for various noise levels (and unit peak-width standard
deviations). As indicated by the difference between the mean signal
and the means of the peak-detection methods (shown with points
in Fig. 5), the watershed algorithm performs peak detection with
greater accuracy and the difference in performance increases with
increasing noise. Both methods underestimate peak volume and
the underestimation increases with increasing noise. The under-
estimation is due to over-segmentation (discussed after these
results), where a single chromatographic peak is detected as mul-
tiple peaks. As indicated by the standard deviations (shown with
error bars in Fig. 5), the two-step algorithm has greater precision;
however, it is notable that peak volumes for both methods have
smaller standard deviations than the signal. The reduced standard
deviations are related to the underestimation, e.g.,  always detecting
the peak volume to be zero would have zero standard deviation.

Table 1 and Fig. 6 compare the means and standard deviations
of the detected peak volume for various x-dimension peak widths
(with constant noise and unit peak-width standard deviation �y).
Both algorithms perform peak detection with similar accuracy and
precision for narrow peaks, but as the peak width increases, the
watershed algorithm has better accuracy.

Similar but more dramatic results are seen in Table 1 and
Fig. 7 when the peak width along the y-dimension increases (with
constant noise and unit peak-width standard deviation �x). The
watershed algorithm has much better accuracy and precision than
the two-step algorithm for the widest peaks. Also, for the widest
peaks, the two-step algorithm had many more failed detections
(341/1000) compared to the watershed algorithm (39/1000).

In the simulation, as the peak width along either or both dimen-

sions increases, the signal-to-noise ratio (SNR), i.e.,  the ratio of the
mean to the standard deviation of the signal, decreases due to the
larger number of data points, fixed noise level, and constant volume
under the peak. Decreased SNR increases over-segmentation (i.e.,

r in the 2D chromatogram. The order that points are detected is shown in sequence
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eak splits) with both peak-detection algorithms. In the two-step
lgorithm, each point is compared only to its two neighbors in the
D chromatogram for the presence in a peak. If noise changes either
eighbor sufficiently, the peak is over-segmented. In the experi-
ents, the watershed algorithm performs better than the two-step

pproach because it considers the 2D neighborhood of each data
oint to identify the data points in a 2D peak, thereby, reducing the
ffect of noise.

Figs. 8 and 9 illustrate peak detection for the two-step and the
atershed algorithms, respectively, with a simulated peak after

kew correction. The effect of noise on the signal can be observed at
he circled data points, which have slightly larger values than their
eighbors in the secondary chromatogram.

Fig. 8 illustrates the two-step peak-detection process in three 1D
hromatograms. Initially, the largest data point in each secondary
hromatogram is labeled. This is followed by labeling adjacent
oints in the 1D chromatograms and then merging the 1D peaks
s described in Section 2.1.  The circled data points are larger than
heir neighbors in the secondary chromatogram, hence they are
ot included in the 1D peaks. So, the chromatogram is split into
ultiple peaks even though there is only one peak in the 2D chro-
atogram.
Fig. 9 illustrates the watershed detection process on the 2D

atrix. In each step, data points are evaluated in intensity-order
o determine the peak label. Initially, the largest point is labeled.
hen, the next largest data point in the 2D matrix is labeled and
he process continues until all points in the matrix are labeled. For
he circled data points, there is a neighbor in the peak with a larger
alue. The circled points adopt the label of their largest neighbor
nd thus all data points are labeled correctly as a single peak.

The simulation experiments demonstrate that with shift cor-
ection applied for both peak-detection algorithms, the watershed
lgorithm achieves more accurate peak detection than the two-
tep approach for varying noise levels, peak widths, and shifts. And,
s both noise and peak widths increase, the two-step algorithm
as more failed detections than the watershed algorithm. Varying
he second-column retention-time shift did not materially impact
hese results because shift correction is performed for both algo-
ithms. Detailed simulation results, including experimental results
or larger retention-time shifts, are provided as Supplementary
ata.

. Conclusion

A study by Vivó-Truyols and Janssen [4] discussed the proba-
ility of failure of the watershed algorithm for GC×GC data with
arying second-dimension retention-time shifts. Their analysis
ompared the two-step and watershed peak-detection algorithms
ithout accounting for the retention-time shifts in the watershed

lgorithm, whereas the shift was accounted for in the two-step
lgorithm. This caused the watershed algorithm to have a larger
robability of failure than the two-step approach. This paper ana-

yzes the performance of the two algorithms when correction for
etention-time shifts is performed for both algorithms.
A series of simulation experiments evaluated both peak-
etection techniques for varying levels of noise, peak widths, and
etention-time shifts. The watershed algorithm performed bet-
er than the two-step approach when skew correction is applied

[
[
[
[
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for both the methods. Neither the two-step algorithm nor the
watershed algorithm ensures successful peak detection under all
conditions. As the peak width and noise increase, both techniques
detect peaks less accurately, even with shift correction.

The performance of both the two-step and watershed algo-
rithms could be improved by noise suppression, e.g.,  smoothing
before peak detection. Various noise suppression techniques can
be used with both peak-detection techniques. Noise suppression
was  not used in these experiments because the method(s) for doing
so would be a confounding variable in comparing the performance
of the peak detection methods. And, although noise suppression
can attenuate the effect of noise, the progressive effect of increas-
ing noise on the performance of peak-detection algorithms cannot
be eliminated. Similarly, the issue of coelutions, although impor-
tant for peak detection, was  not considered herein, as neither
the two-step nor watershed algorithm incorporates a solution for
coelution. Other techniques have been developed for unmixing
coeluted peaks, e.g., [11–21].
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