
S
c

S
a

b

c

a

A
A

K
T
L
C
P
P

1

(
a
c
L
i
m
e
S
s
T
c
[
o
s

d
e

(

0
d

Journal of Chromatography A, 1216 (2009) 3458–3466

Contents lists available at ScienceDirect

Journal of Chromatography A

journa l homepage: www.e lsev ier .com/ locate /chroma

mart Templates for peak pattern matching with
omprehensive two-dimensional liquid chromatography�

tephen E. Reichenbacha,∗, Peter W. Carrb, Dwight R. Stollb, Qingping Taoc

University of Nebraska-Lincoln, Computer Science and Engineering Department, Lincoln, NE 68588-0115, USA
University of Minnesota, Department of Chemistry, Minneapolis, MN 55455-0431, USA
GC Image, LLC, P.O. Box 57403, Lincoln, NE 68505-7403, USA

r t i c l e i n f o

rticle history:
vailable online 21 September 2008

eywords:
wo-dimensional chromatography

a b s t r a c t

Comprehensive two-dimensional liquid chromatography (LC × LC) generates information-rich but com-
plex peak patterns that require automated processing for rapid chemical identification and classification.
This paper describes a powerful approach and specific methods for peak pattern matching to identify
and classify constituent peaks in data from LC × LC and other multidimensional chemical separations. The
iquid chromatography
hemical identification and classification
attern matching
attern recognition

approach records a prototypical pattern of peaks with retention times and associated metadata, such as
chemical identities and classes, in a template. Then, the template pattern is matched to the detected peaks
in subsequent data and the metadata are copied from the template to identify and classify the matched
peaks. Smart Templates employ rule-based constraints (e.g., multispectral matching) to increase matching
accuracy. Experimental results demonstrate Smart Templates, with the combination of retention-time
pattern matching and multispectral constraints, are accurate and robust with respect to changes in peak
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. Introduction

Comprehensive two-dimensional liquid chromatography
LC × LC) provides an order-of-magnitude increase in peak sep-
ration capacity over one-dimensional high-performance liquid
hromatography (HPLC) [1]. With its greater separation power,
C × LC reduces co-elutions, which reveals otherwise unseen chem-
cal complexity and allows improved quantitation, and exposes

ultidimensional structure–retention relationships, which can be
xploited for improved chemical identification and classification.
ince early work on LC × LC [2,3], research and development have
ignificantly improved and refined LC × LC technologies [4–6].
he future for LC × LC is especially promising for important but
hallenging biochemical applications [7], including proteomics
8,9] and metabolomics [10,11], which typically contain thousands
f constituents with widely varying concentrations within the

ame sample.

Although LC × LC holds great promise, the lack of software for
ata processing and automated analysis is a major obstacle to its
ffective widespread application. In a recent survey of fast LC × LC,
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Q. Tao).
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021-9673/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2008.09.058
le chromatographic conditions.
© 2008 Elsevier B.V. All rights reserved.

toll et al. concluded that “the paucity of efficient, convenient and
ufficiently powerful data analysis tools” is “the greatest impedi-
ent to wide application of 2DLC.” [5, p. 39] Guiochon et al. write:

More sophisticated problems need to be solved. They deal with
ow to help analysts in making sense of these large data arrays, in
sing these painfully acquired data to solve important analytical
roblems, in how actually to handle these data and turn them into
elevant numbers.”[6, p. 159]

The need for more rapid and effective analytical software is
specially critical for biological separations:

“The need for computational methods is evident in order
to find peaks that correlate with phenotypes and, equally
importantly, in order to assess their statistical significance.”
[12, p. 2]
“The lack of effective generic procedures for routinely detect-
ing differences in global protein patterns across many different
samples hinders the discovery of new biomarkers.” [12, p. 984]
“Improvements/development of bioinformatics packages are
urgently needed for the conduction of all steps of proteomic stud-
ies.” [14, p. 17]

“[T]he primary bottleneck in high throughput proteomic produc-
tion ‘pipelines’ is in many cases no longer the rate at which the
instrument can generate data, but rather it is in quality analy-
sis and interpretation of the results to generate confident protein
assignments.” [15, p. 497]

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:reich@cse.unl.edu
mailto:qtao@gcimage.com
dx.doi.org/10.1016/j.chroma.2008.09.058
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gradient elution by the dual gradient pumping system (Pumps B
and C). The very rapid second separation uses a very short nar-
row column with high temperature (> 100 ◦C) and high flow rate
(3 cc/min) to achieve very high linear velocity, allowing these sep-
S.E. Reichenbach et al. / J. Chro

Because of the size and complexity of LC × LC data, the lack of
oftware is even more acute than for some other analytical tech-
ologies and is one of the most significant impediments to the
doption of LC × LC. This problem is evident in many recent pub-
ications of researchers pioneering LC × LC. As Dixon et al. note in
eviewing LC × LC for biomedical and pharmaceutical analysis, data
rocessing and analysis for biological separations is already difficult
ut will be even more so now that “n-dimensional data acquisition

s a reality” [16, p. 526].
LC × LC offers increased information capacity for complex chem-

cal separations, but with its greatly increased performance, LC × LC
enerates data in significantly larger quantity and with signifi-
antly greater complexity than one-dimensional HPLC. Compared
o data from one-dimensional HPLC, LC × LC data has many times

ore data points, an order-of-magnitude greater peak capacity, and
dded data dimensionality. Analysis of LC × LC data is challenging
nd requires computer automation and assistance. LC × LC trans-
orms chemical samples into raw data; information technologies
re required to transform LC × LC data into useful information.

This paper addresses the problem of automatically identifying
nd classifying the peaks of interest in chromatograms of simi-
ar mixtures with possibly variable chromatographic conditions. A
opular method for peak identification in one-dimensional chro-
atography is to define retention-time windows for the peaks

f target compounds. Under repeatable, reproducible, and tightly
ontrolled chromatographic conditions, the peaks for target com-
ounds will fall reliably within fixed retention-time windows.
owever, narrow windows may be required for peaks with nearby
eighboring peaks (to avoid false identifications) and, with narrow
indows, even slightly different chromatographic conditions may

ause a peak to drift outside its window. Here, “drift” is used to char-
cterize a local variation which may be related to more complex
ystemic variations as might be caused by stationary phase aging
ue to instability or build-up of contaminants, instrument aging,

ack of sufficient temperature control, and variations in pumping
ystem performance. The problems related to retention-time drift
n peak identification for LC × LC are more complex than for one-
imensional HPLC.

This paper describes a powerful approach and specific meth-
ds for peak pattern matching to identify and classify constituent
eaks in data from LC × LC and other multidimensional chemical
eparations. The approach records a prototypical pattern of peaks
ith retention times and associated metadata, such as chemical

dentities and classes, in a template. Then, the template pattern
s matched to the detected peaks in subsequent chromatograms
nd the metadata are copied from the template to identify and
lassify the matched peaks. Smart Templates employ rule-based
onstraints (e.g., multispectral matching) to increase matching
ccuracy. For example, the Smart Template may record the expected
pectrum of a target compound and then require that a matched
hromatographic peak have a sufficiently similar spectrum. The
onstraints in Smart Templates may be written by hand, based
n expert knowledge, or constructed automatically. Experimental
esults demonstrate that the method is accurate and robust with
espect to changes in peak patterns due to variations in chromato-
raphic conditions.

Section 2 outlines the chromatographic acquisition of the exper-
mental data on which the methods are demonstrated. Section

develops an algorithm for two-dimensional gradient back-
round detection, modeling, and removal. Background removal

s a much more serious issue for LC × LC than comprehensive
wo-dimensional gas chromatography (GC × GC) due to the large
ignals generated by changes in eluent composition during gra-
ient elution. The algorithm modifies a method developed for
C × GC to account for the dynamic response in the second-column

F
(

r. A 1216 (2009) 3458–3466 3459

radient separation of LC × LC, thereby allowing accurate peak
etection and quantification. Section 4 presents simple methods
or two-dimensional peak detection and multispectral matching
or chemical identification. Section 5 details the use of templates
nd template matching for recognizing patterns of peaks in LC × LC
ata. Section 6 describes how Smart Templates with rule-based
onstraints can significantly improve template matching accuracy
nd describes how constraint rules can be constructed automati-
ally. Section 7 contains concluding remarks about the applicability
f the approach to other types of detectors and other types of mul-
idimensional chemical separations.

. Data acquisition

The example data analyzed in this paper were acquired at the
niversity of Minnesota in a series of 64 injections of: (a) water

four injections near the end of the series); (b) a standards mixture
ith potassium nitrate, tryptophan, hydroxytryptophan, indole-

-acetic acid, indole-3-propionic acid, indole-3-acetonitrile, and
yrosine (6 injections interspersed in the series); (c) a control urine
ample (14 injections interspersed in the series); and (d) experi-
ental urine samples (40 injections, four of which failed). For the

rine analyses, a 460 �L aliquot of each urine sample was trans-
erred to a HPLC vial. To each vial, 40 �L of 70% perchloric acid
as added to precipitate proteins and this solution was allowed

o stand for 10 min, followed by filtration with a small 0.2 �m PTFE
yringe filter. The filtrate was collected in a new HPLC vial to which
5 �L of 10 M potassium hydroxide was added. This solution was
entrifuged for 5 min to pellet the solid potassium perchlorate. For
he experimental samples, the resulting solution was either diluted
:10, 1:4, or 1:16 using 20 mM sodium phosphate, 0.1 mM EDTA, pH
. Then, the samples were injected without further treatment.

In the dual gradient-elution system developed by Stoll et al.,
ictured in Fig. 1, the first column is comprised of a conventional
radient-elution HPLC system and reversed-phase LC column [17].
he effluent from the first column is captured alternately in Loop 1
r Loop 2 (denoted L1 and L2 in Fig. 1) of the 10-port valve shown
n the center of the figure. The stored effluent is injected into Col-
mn 2, the second dimension of the separation, and subjected to
ig. 1. Instrumentation for comprehensive two-dimensional liquid chromatography
LC × LC) [17].
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the seven chemical peaks (discussed later) and the significant vari-
ations in the background values (discussed here). The background
values, which can be seen directly wherever there is no chemical
peak, vary greatly across the second column separations (bottom to
ig. 2. (a) An image of LC × LC data for the standards mixture. Before background
isualizations were rendered with GC Image®software for comprehensive two-dim
enter of the image are near zero. The detected peaks are much clearer and the pea

rations to complete within 21 s. This is extraordinarily fast for
iquid chromatography and the resulting peaks are very narrow
< 0.5 s half-height width). The two independent pumps and valve
llow switching between the two systems to minimize the effect of
radient dwell volumes. Otherwise, the chromatography would be
lowed substantially and the retention-time reproducibility in the
econd dimension would be greatly compromised.

Although gradient elution in the second dimension is not as
imple as isocratic elution, it is essential for three reasons. First,
radient elution gives higher peak capacity than isocratic elution.
econd, a strong final eluent insures that everything elutes before
he next separation starts. Third, gradient elution allows the diluted
ample from the first dimension to be focused at the top of the sec-
nd column, thereby improving the second dimension peak width
hen the first dimension system is delivering the analytes in strong

luent.
In these runs, the gradient in the first column runs from 0 to

3 min, returns to the initial composition at 23.01 min, and is held
here until the end of the cycle (29.75 min). The first-column dead-
ime is 1.0 min. The gradient in the second column runs from 0 to
8 s, returns to the initial composition at 18.6 s, and is held there
ntil the the end of the cycle (21 s). The second-column dead-time

s 1.3 s.
The data was collected with a PhotoDiode Array Detector (DAD)

ver the wavelength range 200–700 nm sampled in 4 nm intervals
t 40 Hz for 29.75 min and written to a file by Agilent ChemStation
oftware. The data for each run contained 71,400 data points, each
ith 126 spectral intensities, for a total of nearly 9 million inten-

ities per run. As described in the following sections, the data was
ead from the ChemStation UV file, restructured as a series of 85
econdary chromatograms, each 21 s long, and processed for back-
round removal, peak detection, and peak identification with GC
mage®LC × LC Software.

. Preprocessing
Fig. 2 a shows a pseudocolor image of one of six LC × LC chro-
atograms acquired for the standards mixture. The value of each

ixel of the image is the total intensity count (TIC) of the ultra-
iolet (UV) spectral absorbance at the indicated first and second

F
f
v

ction, the dynamic range of the background obscures peaks. (This and other data
al chromatography [18].) (b) After correction, the background values in the broad

nterest are outlined in black with black labels.

imension retention times (respectively, the abscissa from left-to-
ight in minutes and the ordinate from bottom-to-top in seconds).
The UV TIC is computed as the sum of the responses, measured
n milli-absorbance units (mAU), in all spectral channels, just as
he total ion count is summed intensities for mass spectrometry.)
he pixels are automatically pseudocolorized with Gradient-Based
alue Mapping (GBVM) [19], which effectively uses the color scale

o emphasize local differences in the data, even for variable data
ith a large dynamic range. (A small region containing the gra-
ient front in the lower-right of the image are excluded from the
BVM computation.) The color map and the value map function
re shown in Fig. 3. For this data, the colorization shows each of
ig. 3. Color map and Gradient-Based Value Mapping (GBVM) function [19]. The
unction maps intensity values along the horizontal axis to a pseudocolor on the
ertical axis.
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Fig. 4. (a) Background values before (solid line) and after (dashed line) correction along a single row in the first dimension. A row with no analyte peaks was selected so that
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he values reflect only the baseline and noise. After correction, the values fluctuate i
fter (dashed line) correction along a single column in the second dimension. This
nly the baseline and noise. After correction, the values in the region of analysis are

op) and to a lesser extent across the first column separations (left to
ight). Note the increase in the middle of the second-column chro-
atograms between 7.5 and 13 s – from bottom-to-top, the color

hanges from blue to green – nearly obscures the peaks. The back-
round values must be removed for accurate peak detection and
uantification.

Background correction is performed with a new algorithm based
n a method developed by Reichenbach et al. [20] for GC × GC. The
C × GC background correction method builds statistical models
f the background values (by tracking neighborhoods around the
mallest values as a function of time) and the noise (by parame-
erizing a Gaussian distribution for those neighborhoods) and then
ubtracts the background model from the data. That approach was
odified in two important respects for LC × LC. First, because vari-

tions in the gradient separation background may be positive or
egative, the LC × LC background correction algorithm must track
he “middle” values (rather than the smallest values) by disregard-
ng periods in which there are rapid changes or extreme values.
econd, the background values vary greatly along the secondary
eparations, so the LC × LC background correction algorithm must
odel the background in both dimensions. With these impor-

ant modifications, the LC × LC background correction algorithm is
pplied in each of the spectral channels.

The LC × LC background correction algorithm successfully cor-
ects the background values in the regions of the chromatogram in
hich chemical analysis is performed. Fig. 4 a graphs the values

oth before and after correction along the first dimension at a sin-
le row of data values (at 7.725 s of the second-column separations,
eft-to-right in Fig. 2a). This row of data values was selected because
o peak in any second-column separation is resolved at that time,
o the values reflect only the baseline and noise. Before correc-
ion, the values decrease slightly from about −0.8 to −0.9 mAU
average-per-channel over all wavelengths) through the first half
f the separation and then increase slightly to about −0.8 mAU
t the end. (The spike at the initial sample falls outside the chro-
atographic range for chemical analysis and so is irrelevant.) After

orrection, the background values fall in a small range around zero

approximately −0.03 to 0.03 mAU), as desired. The local fluctu-
tions related to noise remain, but the corrected baseline is very
lose to zero.

Fig. 4 b graphs the background values along the second dimen-
ion (at 10.850 min of the first-column separation, bottom-to-top

s
c
a
p

all range centered very close to zero. (b) Background values before (solid line) and
dary chromatogram with analyte no peaks was selected so that the values reflect
close to zero.

n Fig. 2a). Before correction, the background values fluctuate sig-
ificantly, especially at the beginning and end of each secondary
eparation (the bottom and top in Fig. 2a). Some of the variations,
uch as those across the broad middle of the secondary separations
re consistent across the image (left-to-right). Others, such as those
t the top of the image are variable. In some regions outside the
hromatographic range where chemical analysis is performed, the
alues change rapidly and inconsistently (e.g., the blotchy region
t the top of the image) and are not fit by the smooth background
odel used by the algorithm. However, across the broad middle

f the second column separations, the region in which chemical
nalysis is performed, the LC × LC background correction algorithm
attens the background values to near zero, as desired.

The resulting image of the data after background correction
s shown in Fig. 2 b. The background values across the center of
he chromatogram are near zero and the chemical peaks (whose
etection is described next) are clearer against the more uniform
ackground. It is worth noting again that the colorization empha-
izes the small variations in the background much more than would
inear value mapping.

. Peak detection and spectral identification

The chromatographic peaks are detected in two dimensions
sing the drain algorithm [21], a modified and inverted version
f the watershed algorithm [22], on the LC × LC TIC. Multivariate
hemometric methods for peak detection that aim to unmix or
econvolve co-eluted peaks based on differences in multispectral
ignatures (e.g., [23]) could detect more peaks, but those meth-
ds often are not robust enough for automation. Multivariate peak
etection algorithms are an area of active research to address issues
uch as delineating regions for analysis (because many methods
re not computational efficient enough to apply to all the data) and
onlinearity (e.g., peak shape changes related to column loading).
ere, the drain algorithm works well enough for demonstrating

he utility and power of Smart Templates for peak identification
nd classification.
The drain algorithm detects peaks from the top, down to the
urrounding valleys, in two dimensions. With thresholds on the
hromatographic footprint (i.e., the temporal area, which is the 2D
nalog of peak width) and apex value (the largest TIC among data
oints in the peak), the algorithm detects peaks for each of the
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ig. 5. A three-dimensional perspective view of the center of the LC × LC image,
ith peaks for the five indoles in the standards mixture rising above the noise after

ackground correction.

ompounds in the standards mixture. In Fig. 2 b, the footprints of
he detected peaks are outlined, with the peaks of interest outlined
n black. Other detected peaks, caused by artifacts and which are not
n the region of analytical interest, are outlined in gray. The region

ith the five indoles in the mixture, which appear in the center of
he image, is shown in three-dimensional perspective view in Fig. 5.
he linear vertical scale shows the extent to which the pseudocolor
alue mapping emphasizes the small variations in the background
while also clearly showing the peaks).

The spectra of the indole peaks in the image were compared
o a database with the UV absorbance spectra of 26 indoles
24] using seven metrics (listed with the rate of correct iden-
ification for the five peaks in each of six images): Euclidean
istance (70%), correlation (63%), first-derivative correlation (73%),
bsolute value difference(63%), first-derivative absolute value dif-
erence(67%), least squares (67%), and first-derivative least squares

73%). The database spectra were acquired with a different system
t a different time and so tested the impact of reproducibility on
ultispectral identification. Each of the spectral matching metrics

erformed similarly well (63–73%).

t
m
m
m

ig. 6. (a) The template from the first of six chromatograms of the standards mixture (wit
he third of those chromatograms (with detected peaks outlined in gray). The alignment o

atching of the template peaks to the detected peaks. The matched peaks are shown wit
r. A 1216 (2009) 3458–3466

For this sample mixture, chemical identification of the peaks by
pectral matching is feasible: there are few peaks and the com-
ounds in the mixture are known, so incorrect matches can be
ealt with by a process of elimination from the list. In this exam-
le, ambiguous identifications for some peaks were established in
his way. The rates of correct matches for each constituent com-
ound across all metrics (seven metrics in each of six images)
ere: indole-3-acetonitrile (100%), indole-3-propionic acid (95%),
ydroxytryptophan (67%), tryptophan (45%), and indole-3-acetic
cid (33%).

In a complex mixture with many unknown compounds, UV
etectors typically are not selective and sensitive enough for auto-
atically identifying compounds with high confidence. Moreover,

he multispectral matching typically requires human interaction
o correct and validate the identifications, which is tedious and
ime-consuming for many chromatograms with many peaks. Smart
emplates, described next, combine multispectral matching with
hromatographic pattern recognition for more robust chemical
dentification, requiring far less human interaction to validate
esults and allowing full automation in some applications.

. Templates and template matching

Template matching is based on the observation that the peaks
n the two-dimensional retention-time plane form a pattern (or
emplate) that can be recognized from one chromatogram to the
ext. Of course, this approach works only if the chemical com-
ositions of the mixtures are similar so that the chromatograms
xhibit many similar peaks. First, one or more chromatograms
re carefully analyzed to identify peaks of interest and the pat-
ern of those peaks, with their analyses, is recorded in a template.
he analytical metadata (i.e., information about the peaks of inter-
st, not including the intensity data itself) may include chemical
dentifications for some peaks, groupings of peaks (e.g., all peaks
f a chemically related class), or even just the presence of a
o identify condition-related biomarkers). Next, given a new chro-
atogram, the unknown peaks can be identified by template
atching. In template matching, the peaks in the template are
atched to (paired with) detected peaks in the new chromatogram.

h expected peak locations indicated with black open circles and labels) overlaid on
f the expected peak pattern to the detected peaks is close, but not perfect. (b) The

h filled circles with a connecting line to the corresponding template peak.
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Table 1
Transformations for matching standards mixture templates and peak patterns

Template sequence # Target sequence # Translation (1) Translation (2) Scaling (1) Scaling (2)

1 2 0.0000 −0.0711 1.0000 1.0119
2 20 −0.2493 −0.1014 0.9924 0.9788

20 38 −0.1069 0.0278 0.9990 1.0032
38 63 −0.2007 0.1883 0.9851 1.0286
6
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two in the full sequence, the first row in Table 1) and standards runs
5 and 6 (runs 63 and 64 in the full sequence, the fifth row in Table 1),
the matching transformation is very close to the identity transfor-
mation of translation (0,0) and scaling (1,1). Second, through the

Fig. 7. Template matching for a control urine sample chromatogram. Arrow 1: peak
3 64 0.0000
1 64 −0.5480

ranslation units are the inter-sample times (21 s in the first dimension and 0.025 s

hen, the analytical metadata (including peak identifications) are
opied from peaks in the template into corresponding peaks in the
ew dataset.

This section begins with a simple example of a standards mix-
ure with few peaks in order to illustrate templates and how
emplate matching works and then proceeds to consider a more
omplex analysis. An example template and template matching
re shown in Fig. 6. Fig. 6 a shows the template peak pattern
nd metadata, with open black circles and labels, recorded from
he first of the six chromatograms of the standards mixture (the
hromatogram in Fig. 2b), overlaid on an image of the third chro-
atogram of the standards mixture, with the detected peaks

utlined in gray. As can be seen, the alignment of the template
rom the first standards chromatogram to the peaks of the third
tandards chromatogram is not perfect, but the template pattern
atches the pattern of detected peaks well enough (i.e., within

mall retention-time windows) that correspondences can be estab-
ished. Fig. 6 b shows the matches established for the example,

ith a filled black circle for each matched peak and a connecting
ine to the template peak with which it is matched. Then, the ana-
ytical metadata (here, the chemical identities of each peak) are
opied from the template into the new dataset, thereby automati-
ally identifying the peaks in the new chromatogram. In this way,
eaks in the new chromatogram are identified by the metadata of
heir matching template peaks.

An important issue for template matching is retention-time
drift”. Over the course of a long sequence of chromatographic runs,
he pattern of the peaks may change, reflecting changes in the chro-

atographic conditions, such changes in the retentive properties of
column(s). Ni et al. [25] showed that GC × GC peak pattern vari-

tions over widely differing chromatographic conditions, such as
emperature programming and pressure, can be modeled well by
ffine transformations. (Affine transformations are linear, geomet-
ic transformations, e.g., a sequence involving rotation, scaling, and
ranslation/shifting.) Applying a geometric transformation (e.g.,
hifting/translating and scaling) to the template can bring its peak
attern into better alignment with the peaks of the new data so that
eaks are matched more accurately. The template matching algo-
ithm searches its transformation space for the model parameters
hat provide the best match—defined as allowing the most matches
etween template peaks and chromatographic peaks (within the
llowed retention-time windows) [26]. The template matching
lgorithm used here [27] has a transformation model with trans-
ation and scaling in each of the two dimensions (parameterized
y minimum and maximum translation and minimum and max-
mum scaling in each dimension) and a retention-time window
parameterized by width and height) within which the transformed
emplate peaks may be matched to detected peaks after the tem-
late transformation. The approach allows for other transformation

odels, but this model has been validated for wide-ranging chro-
atographic variations [25] and has worked well in practice (e.g.,

n the examples shown here).
In the example of Fig. 6 b, the matching algorithm finds a

ransformation with translation (−0.25 min, −0.17 s) and scal-

e
d
b
A
p
r

−0.0458 1.0000 1.0042
−0.0036 0.9771 1.0273

second dimension). Scaling has no units of measure.

ng (0.99, 0.99). With that transformation of the template, every
atched chromatographic peak is within the specified retention-

ime window of the corresponding template peak. Other template
omponents such as text labels, graphical objects such as polygons
o delimit peak sets, and chemical symbols are geometrically trans-
ormed with the transformation established for the peak pattern.

Retention-time drift can be seen in the sequence of six chro-
atograms for the standards mixture, which were acquired within
longer sequence of 64 chromatograms. As shown in Table 1, the
rst of the standards runs was the first of the 64 runs, the second
as the 2nd, the third was the 20th, and so on. (The first standards

un was not the target of matching.) Table 1 presents the transfor-
ations for the matching of the peaks in the second standards run
ith the template from the first, for the matching of the peaks in

he third standards run with the template from the second, and so
n.

The table shows several notable trends. First, for the runs adja-
ent in the full sequence, standards runs one and two (runs one and
rror, peak not detected cannot be matched. Arrow 2: peak error, merged peak not
etected cannot be matched. Arrow 3: peak error, merged peak not detected cannot
e matched. Arrow 4: peak error, merged peak not detected cannot be matched.
rrow 5: match error, peak too distant not matched. Arrow 6: match error, merged
eak causes incorrect peak match. Arrow 7: match error, merged peak causes incor-
ect peak match.
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equence, there is a monotonic non-increasing trend in the first-
imension translation and scaling (but not in the second dimension
ransformations). That trend makes the template smaller and shifts
t to the left as the sequence progresses. This drift can be seen in
ig. 6: the peaks in the third standards chromatogram are left of
he locations recorded in the template for the first standards run.
he cumulative effect of this retention-time drift is illustrated in
he last row of Table 1, which shows the transformation for match-
ng the peaks of the sixth standards chromatogram (the last of the
4 runs) with the template from the first standards chromatogram
the first of the 64 runs).

Template matching can deal with retention-time drift in several
ays. One way is to update the template throughout the sequence of

uns as each new sequence is acquired. This approach yields excel-
ent results, as suggested by Table 1, in which the transformation
etween any adjacent pair is relatively small. A consensus template
an be built from the average of several recent datasets and updated
o provide a “moving average” template. If there is substantial drift
nd no intermediate results with which to update the template,
t may be necessary to increase the limits on the transformation
pace. Affine transformations have been shown to be adequate
or modeling chromatographic drift over a large range of chro-

atographic conditions [25], but large nonlinear retention-time
eformations may require more complex template transformations
or peak matching.

Of course, the pattern matching problem in Fig. 6 is simple: there
re not many peaks, every peak in the template is detected in the
hromatogram, and there are few other peaks in the chromatogram
hich might interfere with pattern recognition. In general, tem-
late matching works better and is more robust with more peaks
ecause the matching is based on more data and is less suscep-
ible to a few missing peaks or extra peaks. Of course, matching
lso is better if there is good separation of peaks—ideally, only one
eak in each retention-time window. As peaks become less well-
eparated, template matching is more challenging, but as long as
he pattern is maintained (i.e., peaks are detected in the same posi-
ions relative to each other, subject to the transformation) template

atching is robust. Even overlapping peaks are not a problem as
ong as the pattern of detected peaks is maintained. However, tem-
late matching, like any identification method based on retention
ime, is subject to errors if new (unexpected) peaks that change the
attern are detected within the retention-time windows of peaks in
he pattern, especially if the target peaks are not present. For these

ore difficult problems, template matching on only the chromato-
raphic pattern (i.e., peak retention times) may not be sufficient to
orrectly identify all peaks of interest. The last example of this sec-
ion presents data for which there are template matching errors,
etting the stage for Smart Templates that augment templates with
ultispectral constraints (as described in the next section).
A more challenging problem is presented in Fig. 7, which shows

LC × LC chromatogram of human urine, one of 14 control samples
nterspersed in the sequence of 64 samples. (A different color map
s used to illustrate this example.) By visual examination of the
hromatographic peaks detected in the control sample data, a set of
6 peaks was selected. Then, the template from each chromatogram
as composed of the peaks from that set which were detected in the

hromatogram. For example, peak detection for the chromatogram
f the first control sample yielded 64 of the 66 peaks in the peak
et, so the template generated from it contained those 64 peaks. As
as done for the standards samples, the template from each control
ample was matched to the peaks detected in the chromatogram
f the next control sample. For example, when the template from
he first control sample was matched to the chromatogram from
he second control sample, 62 of the 64 peaks in the template were

atched correctly.
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The results for template matching with the control samples are
ummarized in Table 2. (The example in Fig. 7 is in the third row.)

few explanations are required. First, if a peak was split during
etection (i.e., incorrectly detected as two or more peaks) and if the
emplate matched one of the parts of the split peak, the match was
onsidered correct (with the logic that the match was to the correct
eak). The example of Fig. 7 was selected because it shows both
ypes of Peak Errors and both types of Match Errors. Two types of
roblems were recorded as Peak Errors: (1) if no peak was detected,
hen the template could not match that peak, and (2) if two peaks
ere merged in detection, then the template matching could not
atch both peaks. The first type of peak error is noted by Arrow 1

n Fig. 7 and the second type of peak error is indicated by Arrows 2,
, and 4. Two types of errors were recorded as Match Errors: (1) if
he peak was detected, but template matching did not match, and
2) if a peak was not detected (e.g., merged with another peak), but
he template matched an incorrect peak. The first type of match
rror is indicated by Arrow 5 and the second type of match error is
ndicated by Arrows 6 and 7.

The success rate for template matching was high—97% overall.
n that sense, Fig. 7 is somewhat misleading because, among the 13

atched chromatograms, it accounted for 4 of the 19 peak errors
nd 3 of the 6 matching errors. Overall, 778 of the 803 peaks in the
3 templates were matched correctly in the next chromatogram. Of
he 25 matching failures, 19 were peak errors, for which matching
annot succeed. There were only six match errors, an error rate of
ess than 1%.

The template matching parameters can be changed to eliminate
ome matching errors. For example, the matching error indicated
y Arrow 5 can be eliminated by increasing the retention-time win-
ow within which peaks may be matched. Similarly, the matching
rrors indicated by Arrows 6 and 7 can be eliminated by reducing
he retention-time window within which peaks may be matched.
owever, the tension between these two actions is problematic:
hich windows should be made smaller and which windows

hould be made bigger? The answer depends on the detected peaks,
hich are not known when the template is created. A better solu-

ion is to use additional logic in the templates, i.e., Smart Templates,
s described next.

. Smart Templates

Smart Templates use peak-specific constraints, such as mul-
ispectral matching, to reduce or eliminate template pattern-

atching errors. The constraints are expressed in the Computer
anguage for Identifying Chemicals (CLIC) [28], augmented with
he seven multispectral matching metrics introduced in Section 4.
CLIC is described more fully in Ref. [28].) Each peak in a Smart
emplate can have a constraint rule, involving the spectrum of the
eak (either at the apex or integrated over all data points in the
eak), statistics about the peak (e.g., its fractional response as a
art of the whole sample), and/or its retention time, combined
ith arithmetic, relational, and logical operators. For example, if

he chemical identity of a peak is known and its expected spec-
rum is cataloged in a library, then matching for that peak can be
estricted to peaks with sufficiently high multispectral match fac-
or (or sufficiently low multispectral difference). In the example of
his section, the rules constrain the Euclidean distance between the
xpected spectra in the Smart Template and the observed spectra
n the data.
The constraints can provide greater selectivity during template
atching, allowing two types of improvements. First, peaks which

re within the retention-time window but which are not cor-
ect matches can be rejected. This improvement can eliminate the
atching errors indicated by Arrows 6 and 7 in Fig. 7 because the
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Table 2
Results for template matching with the control urine samples

Template
sequence #

Target
sequence #

Template
size

Number
correct

Success
rate (%)

Peak detection
errors

Peak detection
error rate (%)

Match
errors

Match error
rate (%)

Smart match
errors

Smart match
error rate (%)

3 7 64 62 97 2 3.1 0 0.0 0 0.0
7 11 62 60 97 2 3.2 0 0.0 0 0.0
11 15 61 54 89 4 6.6 3 4.9 0 0.0
15 19 58 57 98 1 1.7 0 0.0 0 0.0
19 21 58 57 98 0 0.0 1 1.7 0 0.0
21 25 62 62 100 0 0.0 0 0.0 0 0.0
25 29 64 62 97 1 1.6 1 1.6 0 0.0
29 33 64 61 95 3 4.7 0 0.0 0 0.0
33 37 62 62 100 0 0.0 0 0.0 0 0.0
37 39 63 62 98 1 1.6 0 0.0 0 0.0
39 43 62 60 97 2 3.2 0 0.0 0 0.0
4 1
4 3

T 2
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3 47 62 61 98 1
7 63 61 58 95 2

otal 803 778 97 19

pectra of those peaks do not match the template spectra. Second,
ursuant to the first improvement, the size of the retention-time
atching window may be increased to allow more distant matches
ithout increasing the number of incorrect matches allowed by the

arger window if the constraint in the Smart Template rejects those
ncorrect matches. This improvement can eliminate the matching
rror indicated by Arrow 7 in Fig. 7.

Some care is required in writing constraints for Smart Tem-
lates. For example, consider a constraint which requires that the
uclidean distance between the expected UV absorbance spectrum
ecorded in a template and the spectrum of a matched peak in the
hromatogram be less than a specific value, expressed in CLIC as:

uclidean Distance(“ < ms>”) < 0.22 (1)
here “ < ms>” refers to the expected multispectrum of the tem-
late peak (a mass spectrum or in this case a UV absorbance
pectrum, which is recorded from the chromatogram(s) from which
he template is created) and the spectrum of the peak considered for

atching is implicit in the expression. (Both spectra are range nor-

ig. 8. Smart Template matching for the fourth control sample with the template
rom the third control sample (same pair as Fig. 7).
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.6 0 0.0 0 0.0

.3 1 1.6 0 0.0

.4 6 0.7 0 0.0

alized before computing the Euclidean distance.) With this rule,
n the example of Fig. 7, the matching errors indicated for Arrows 6
nd 7 are eliminated (as is a similar error in the matching of the tem-
late for the thirteenth control sample to the chromatogram of the
4th). Those chromatographic peaks could be matched to the peak
attern based on the retention-time pattern, but their spectra are
ot similar enough to the target spectra recorded in the template.

Note that such constraints might be so restrictive that other, cor-
ect matches are disallowed. For this chromatogram, Constraint (1)
oes not prevent correct matches of those three peaks in any of the
3 matchings. However, if used for all peaks in all matchings, that
onstraint will prevent correct matches in one or more matchings
or the four top-rightmost peaks and one of the bottom-rightmost
eaks, all of which are faint and so have lower signal-to-noise ratios.
or those peaks, a different constraint threshold value is required.
o, different values in the constraint (i.e., the threshold for multi-
pectral difference) should be used for different peaks.

Automated constraint-building uses evaluations of the multi-
pectral variability within the set of peaks for the same compound
n one or more chromatograms and the multispectral differences

ith the set of peaks for other compounds. So, for example, if the
pectral difference measured by Euclidean distance for peaks of the
ame compound is at most 0.1 and the spectral difference for peaks
f other compounds is always greater than 0.3, then the automat-
cally generated spectral rule requires a spectral difference of no

ore than the mid-point between the distances, 0.2 for this exam-
le. If only one chromatogram is used to construct the constraint,
he maximum distance between peaks of the same compound is
. The algorithm also is configurable to set a minimum and maxi-
um distance used in the rule, so if the computed value is outside

he user-defined range, it is thresholded. In cases that the spectral
istance between two peaks for the same compound in two differ-
nt chromatograms is larger than the spectral distance with a peak
f another compound, the automated template building algorithm
onstructs the rule to always match correct compounds (even if
ome incorrect matches are allowed). So, for example, if the spectral
istances for peaks of the same compound are as large as 0.1, then
he value for the constraint would not be less than 0.1, even if the
pectral distance for peaks of some other compounds is less than
.1. (However, again this value is subject to a user-defined minimum
nd maximum value.) With this approach, all template peaks can
e assigned constraints on Euclidean distance (or one of the other

ultispectral metrics) automatically.
These multispectral constraints eliminate all matching errors

o incorrect peaks with the data presented in Fig. 7 and with
he other control sample chromatograms. As outlined above, the

atching errors for peaks outside the retention-time matching
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ig. 9. Smart Template matching for the template from the first control sample to
he peaks of the 14th control sample. All matching errors are eliminated.

indow can be eliminated by increasing the size of the window
or the secondary separation. With the multispectral constraints on
he template peaks, increasing the window size does not cause any
ncorrect matches. So, with Smart Templates, constructed automat-
cally, the matching error rate for the chromatograms of the control
amples is reduced to zero, as shown in the last two columns of
able 2.

Fig. 8 shows the results of Smart Template matching for the
xample chromatogram of Fig. 7, with all matching errors (but not
eak errors) eliminated. Fig. 9 shows Smart Template matching of
he template from the first of the control sample to the chromato-
raphic peaks of the fourteenth control sample. As can be seen, the
etention drift and template transformation for this example are
reater. For template matching without constraints, 56 of 64 peaks
ere matched, with four peak errors and four matching errors. A

mart Template with constraints eliminates all matching errors.

. Conclusion

With improved chromatographic performance, LC × LC is
merging as a powerful technology for complex separations, e.g.,
iochemical assays for proteomics and metabolomics [1]. Recent
urveys of LC × LC research and development cite the lack of effi-
ient and effective software as a significant impediment to fully
ealizing the benefits of these technological improvements [5,6].
C × LC transforms chemical samples into raw data; but advances
n information technologies are required to transform complex
C × LC data into useful information.

This paper addresses the important problem of automatically
dentifying and classifying peaks, even with variable chromato-
raphic conditions. Smart Templates record a peak pattern in a

emplate with analytical metadata and constraints on peak identifi-
ation. The template pattern is matched to find the similar pattern
f peaks in target chromatograms, subject to the constraints and
ser-defined parameters. Then, the analytical metadata is copied
nto the new data, thereby identifying and classifying peaks. With

[

[

[

r. A 1216 (2009) 3458–3466

transformation model flexible enough to account for chromato-
raphic variations and selectively discriminating constraints, the
pproach is highly robust. In experiments analyzing 13 urine sam-
les with 803 target analyte peaks, template matching on retention
ime only resulted six identification errors (0.7% error rate) and
mart Templates resulted in zero identification errors (0.0% error
ate).

This powerful approach is demonstrated for a series of LC × LC
eparations of human urine with a UV detector, but the method is
pplicable to other multidimensional chemical separations such as
C × GC, HPLC with capillary electrophoresis (LC–CE), etc., and to
ther detectors, including mass spectrometers (which provide bet-
er sensitivity and selectivity for even more reliable peak matching).
mart Templates can be used to quickly and accurately match large
umbers of peaks in complex patterns and so provide a powerful
ool for LC × LC analyses.
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