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bstract. We develop a method for automatic colorization of im-
ges (or two-dimensional fields) in order to visualize pixel values
nd their local differences. In many applications, local differences in
ixel values are as important as their values. For example, in topog-
aphy, both elevation and slope often must be considered. Gradient-
ased value mapping (GBVM) is a technique for colorizing pixels
ased on value (e.g., intensity or elevation) and gradient (e.g., local
ifferences or slope). The method maps pixel values to a color scale
either gray-scale or pseudocolor) in a manner that emphasizes gra-
ients in the image while maintaining ordinal relationships of values.
BVM is especially useful for high-precision data, in which the num-
er of possible values is large. Colorization with GBVM is demon-
trated with data from comprehensive two-dimensional gas chroma-
ography (GCxGC), using both gray-scale and pseudocolor to
isualize both small and large peaks, and with data from the Global
and One-Kilometer Base Elevation (GLOBE) Project, using gray-
cale to visualize features that are not visible in images produced
ith popular value-mapping algorithms. © 2007 SPIE and

S&T. �DOI: 10.1117/1.2778426�

Introduction
his paper develops a method for automatic colorization of

mages �or two-dimensional fields presented as images�, in
rder to visualize pixel values and their local differences. In
any applications, such as topography, local differences in

alues are as important as their values. In such applications,
t may be important to visually differentiate regions on the
asis of both aspects—for example, in topography, to locate
teep slopes in low-lying areas. Colorization commonly is
sed to visualize values of two-dimensional fields, but
opular value-mapping methods for colorization �such as
inear mapping, surveyed in Ref. 1� and histogram
qualization2 do not account for local differences and there-
ore may not effectively visualize those differences. This
aper develops gradient-based value mapping �GBVM� for
olorization based on both pixel values and local differ-
nces for improved visualization.

Two-dimensional arrays of scalar values �such as inten-
ity or elevation� commonly are displayed as images using

aper 06193R received Nov. 7, 2006; revised manuscript received Feb. 8,
007; accepted for publication Mar. 8, 2007; published online Sep. 20,
007. This paper is a revision of a paper presented at the SPIE Conference
n Visual Information Processing XV, May 2006, Orlando, Florida. The
aper presented there appears �unrefereed� in SPIE Proceedings Vol. 6246.
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a gray-scale or pseudocolor scale. Colorization maps each
value of the two-dimensional array to a color specified by
red, green, and blue �RGB� components or, alternatively,
hue, saturation, and brightness �HSB� components. Let the
value of the two-dimensional array p at row m, 0�m
�M, and column n, 0�n�N, be denoted by p�m ,n� and
let the color mapping function c for the value be defined as

c�p�m,n�� � �r�p�m,n��,g�p�m,n��,b�p�m,n��� , �1�

where r, g, and b are the RGB color components, each in
the range �0,1�, and M �N is the image size.

For a gray-scale, the RGB color components are equal
for any value l:

cg�l� � �g�l�,g�l�,g�l�� . �2�

To maintain an ordinal scale, the gray-scale color compo-
nents are monotonically increasing with value:

if li � lj, then g�li� � g�lj� . �3�

A discrete gray-scale may be monotonically nondecreasing
�rather than strictly increasing�. A gray-scale image pre-
sents the smallest values as black pixels, the largest values
as white pixels, and intermediate values in shades of gray
with brightness increasing with value. So-called black-and-
white photography, television, and motion pictures �which
have grays as well as black and white� are familiar ex-
amples of gray-scale images. A gray-scale color-bar and
example gray-scale image are shown on the top half of Fig.
1. A gray-scale provides a straightforward ordering of val-
ues from small to large. Unfortunately, humans may be able
to distinguish fewer than 100 distinct gradations on a gray-
scale, so gray-scale images cannot communicate many dif-
ferences among values.

Pseudocolor scales can be used to visualize many more
differences among values because the human visual system
can discriminate more than one million colors. A pseudo-
color scale allows independent functions for the three color
components and the functions for color components need
not be monotonically nondecreasing with value. With
pseudocolor, the ordinal scale is not as straightforward as

with gray-scale, but a good pseudocolor scale can commu-
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icate a clear ordering of values. For example, topographic
aps commonly use pseudocolor for elevation with a scale

rom small to large that progresses through dark blue, light
lue, green, yellow, and red, with intermediate colors. This
amiliar pseudocolor scale, sometimes called “cold-to-hot,”
lso commonly is used for displaying geographic tempera-
ures. A cold-to-hot color bar and example pseudocolor im-
ge are shown on the bottom half of Fig. 1. Pseudocolor
mages can present many distinguishable colors, but there
s a tradeoff between having a pseudocolor scale with an
rdinal progression that is simple to understand and the
umber of gradations that can be discerned: an easily un-
erstood scale visually differentiates a smaller number of
radations and a scale that visually differentiates a larger
umber of gradations makes the value ordering more diffi-
ult to understand.

The design of the color mapping functions involves both
ts domain and range. First, because a digital display has a
nite range of colors, the color mapping function must be
estricted to a finite domain of values, lmin� l� lmax. Then,
alues outside the domain are mapped to extrema colors.
or example, a gray-scale maps values less than lmin to
lack �zero� and values greater than lmax to white �one�:

�l� = �0, if l � lmin,

1, if l � lmax.
�4�

f the domain of values is known in advance �as may be the
ase for elevations in a particular region� or the values are
pread across the full domain of the data type in which they
re stored �as is the case for many images stored in 8-bit
nsigned integers�, then lmin and lmax can be set to the
mallest and largest expected values �e.g., 0 and 255, re-
pectively, for 8-bit unsigned integers�. However, if the do-
ain of values is not known and the domain of the data

ype is large �e.g., double-precision floating point num-
ers�, then an inappropriate color mapping domain �i.e., a

ig. 1 A gray-scale color-bar and gray-scale image of GCxGC data
top� and a cold-to-hot pseudocolor color bar and pseudocolor im-
ge of GCxGC data �bottom� �color online only�. �To enhance visu-
lization, the data were preprocessed for display with the nonlinear
radient-based value mapping described in this paper.�
ismatch between the values and the domain of the color

ournal of Electronic Imaging 033004-
mapping function� can result in all values mapping to a
small range of colors or even to a single color.

The second consideration is the allocation of the range
of the color mapping function. Without prior knowledge of
the distribution of values within the domain, the color map-
ping design may allocate discernible gradations �i.e., the
range of the mapping function� uniformly across the map-
ping domain. For example, a linear gray-scale uniformly
allocates the range across the domain:

g�l� =
l − lmin

lmax − lmin
, if lmin � l � lmax. �5�

A linear mapping maintains interval scales and, if lmin=0,
also maintains ratio scales. For pseudocolor, such “uni-
form” allocation of gradations in a way that communicates
interval and ratio relationships is less straightforward.

Most familiar examples of colorized two-dimensional
fields, such as elevation and temperature, are based on
value only. In such images, regions of rapid local change
�e.g., a steep slope for elevation or a cold or warm front for
temperature� should be shown with clear color transition�s�.
However, this is true only if the color mapping domain
includes the data values and the color mapping range ad-
equately distinguishes local differences in values.

Ideally, a color mapping function should �1� show the
full domain of values and �2� use its range to effectively
distinguish differences between values in the domain. How-
ever, compromises are required to effectively display data
with a large domain �i.e., high-precision data� within the
limited range of human discernment. Such compromises
can be implemented in value mapping functions that are
applied before colorization:

c�f�p�m,n���, 0 � f�l� � 1. �6�

Value mapping separates compromises related to the data
values from the design of the color mapping function. Two
approaches are popular: �1� linear value mapping over a
subdomain, referred to as a linear contrast stretch,1 and �2�
nonlinear value mapping. Histogram equalization is a well-
known nonlinear mapping that allocates the color range
across the full value domain according to the probability
distribution function of the values.2 Nonlinear mappings do
not maintain interval and ratio scales, but can “can result in
a remarkable increase in visual clarity.”3 Value mapping for
colorization should take into account aspects of the data
that are important for visualization; accounting only for the
distribution of values may not be sufficient if local differ-
ences are also important for visualization.

GBVM is motivated by the importance to many appli-
cations of visualizing local differences in images, even for
high-precision data with a large domain.4 The method
achieves two design goals for colorization:

• the value mapping domain is the full domain of data
values and

• the value mapping function is monotonically nonde-
creasing �to preserve ordinal scale� with the color

range allocation based on local differences between

Jul–Sep 2007/Vol. 16(3)2
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data values.

ection 2 details computation of the GBVM function for a
iven image or ensemble.

Section 3 demonstrates the method with data from com-
rehensive two-dimensional gas chromatography
GCxGC�. GCxGC is a powerful new technology for
hemical separations that provides an order-of-magnitude
ncrease in separation capacity over traditional gas chroma-
ography and is capable of resolving thousands of chemical
ompounds.5 GCxGC data can be displayed as an image,6

s in Fig. 1, which pictures a GCxGC analysis of diesel fuel
sing gray-scale �top� and pseudocolor �bottom�. �Only a
egion of the data is shown.� Each resolved chemical sub-
tance in a GCxGC analysis produces a small blob or clus-
er of pixels, with values that are larger than the back-
round values, which appear as spots. The dynamic range
f GCxGC data is very large, with values of large peaks
housands of times larger than values of small peaks. De-
ending on the application, both small and large peaks may
e important, so colorization should visualize differences
i.e., peaks� across the domain of data values. Colorization
an be set interactively, but the quantity and variability of
CxGC data motivate methods for automated colorization.
lthough GBVM was developed for visualizing GCxGC
ata, it also can be used for other applications, including
opography, meteorology, and medical imaging. Section 3
lso shows images of data from the Global Land One-
ilometer Base Elevation �GLOBE� Project,7 for which
BVM reveals topographic features not visible in images
roduced with popular value-mapping algorithms.

Method

his section describes how GBVM is formulated, based on
ixel values and gradients. The gradient at a point in a
wo-dimensional field is a vector that indicates the direction
f the greatest rate of change and the magnitude of the rate
f change in that direction. The gradient field provides both
he direction and magnitude of the steepest slope at each
oint. At points from which there are large local differences
n data values �i.e., steep slope�, the gradient magnitude is
arge. At points from which the local differences in data
alues are small �i.e., relatively flat�, the gradient magni-
ude is small. In image processing, the gradient magnitude
s the basis for some edge detection methods because local
ifferences in data values indicate edges.

The gradient of a continuous two-dimensional field
�x ,y� is defined as the vector of the directional rates of
hange parallel to the axes:

s � �dx,dy� , �7�

here dx��s /�x and dy ��s /�y. The rate of change in any
irection can be computed as the linear combination of the
irectional rates of change. The gradient angle

� s = tan−1�dy/dx� �8�
s the direction of the largest-magnitude rate of change:

ournal of Electronic Imaging 033004-
�� s = �dx
2 + dy

2. �9�

For discrete data p�m ,n�, the directional derivatives are re-
placed by the discrete differences along columns and rows,
e.g.,

dx � �p�m + 1,n� − p�m − 1,n��/2,

dy � �p�m,n + 1� − p�m,n − 1��/2, �10�

in computing the discrete gradient ��.
The GBVM function is computed in four steps:
Step 1. The first step in computing the GBVM function

is to compute the discrete gradient magnitude at each pixel
of the image. Figure 2 shows the gradient magnitude at
each pixel of the GCxGC image in Fig. 1, with pixels or-
dered sequentially by image position �i.e., mN+n�. For the
image in Fig. 1, M =400 and N=3,000, for a total of
1,200,000 pixels.

Step 2. The second step is to sort the pixels by their data
values:

0 � orderp�m,n� � MN , �11�

such that the pixels are uniquely and correctly ordered:

∀�m,n� � �m�,n��, orderp�m,n� � orderp�m�,n��

∀p�m,n� � p�m�,n��, orderp�m,n� � orderp�m�,n�� ,

and the data value and associated gradient of each pixel can
be retrieved from the sorted array:

valuep�orderp�m,n�� � p�m,n� �12�

gradientp�orderp�m,n�� � �p�m,n� . �13�

This is the most computationally intensive step, but even
for images as large as this example, with 1,200,000 pixels,

®

Fig. 2 Gradient magnitude at each pixel of the image in Fig. 1,
ordered by pixel index.
a desktop PC �e.g., with AMD Athlon 64� can sort the

Jul–Sep 2007/Vol. 16(3)3
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ata values in about one second. Figure 3 shows the gradi-
nt magnitude at each pixel of the GCxGC image in Fig. 1,
ith pixels ordered by value from smallest to largest. As
ould be expected for this image, pixels with larger pixel
alues, which form peaks, tend to have larger gradient mag-
itudes.

Step 3. The third step is to progressively compute the
umulative gradient magnitudes �cgm� for the array of pix-
ls sorted by data value:

gmp�i� � �
j=0

i

	gradientp�j�	, 0 � i � MN , �14�

nd then scale by the reciprocal of the total gradient mag-
itude to compute the relative cumulative gradient magni-
ude �rcgm�:

cgmp�i� � cgmp�i�/cgmp�MN − 1�, 0 � i � MN . �15�

igure 4 shows the relative cumulative gradient magnitude
or sorted pixels from the image in Fig. 1. The cumulative
radient magnitude function captures how much slope is
resent in the data, ordered by pixel values. Indexing into
he relative cumulative gradient magnitude function of the
orted array provides the fraction of the total gradient mag-
itude that is present at pixels having values less than or
qual to the value of the indexed pixel. So, using the rela-
ive cumulative gradient magnitude function, it is possible
o allocate a corresponding fraction of the color scale for all
ixels with values less than or equal to the pixel indicated
y the specified fraction of the total gradient magnitude.
or example, in Fig. 3, the relative cumulative gradient
agnitude function is 0.5 at pixel i=1,185,573 �of

,200,000 pixels� in the array of pixels sorted by value.
hat pixel has the value 17.10, i.e., valuep�1185573�
17.10. Therefore, half of the total gradient magnitude in

he image of Fig. 1 is at pixels that have a value less than or
qual to 17.10. So, using half of the color scale for pixels
ith values less than 17.10 establishes a relationship be-

ig. 3 Gradient magnitude at each pixel of the image in Fig. 1,
rdered by pixel value.
ween the cumulative gradient magnitude and the color

ournal of Electronic Imaging 033004-
scale while maintaining ordinal value relationships on the
color scale.

Step 4. The fourth and final step in computing the
GBVM function is to compute the relationship between
pixel value and the relative cumulative gradient magnitude.
This is done by inverting the value-from-order relationship,
defined in Eq. �12�, at control-point intervals �to yield an
order-from-value relationship� and then fitting the GBVM
function to the relative cumulative gradient magnitude at
those control points �e.g., by linear interpolation�. Then the
input for the value mapping function is the pixel value and
the output for the value mapping function is the relative
cumulative gradient magnitude corresponding to that pixel
value. For the example image in Fig. 1, Table 1 illustrates
the relationship between the relative cumulative gradient
magnitude and pixel values at intervals of one-tenth of the
relative cumulative gradient magnitude and then the inverse
mapping from the GBVM input �pixel value regularized
relative to the minimum and maximum data values in the
image, min�p� and max�p��:

inputp�l� � �l − min�p��/�max�p� − min�p�� , �16�

to the GBVM output �the relative cumulative gradient mag-
nitude of the inverse of the value-from-order relationship�:

outputp�l� � rcgmp�valuep
−1�l�� . �17�

Figure 5 shows the GBVM function for the GCxGC image
in Fig. 1 linearly interpolated between 40 control points. As
seen in Fig. 1, 70% of the color scale is allocated to the
smallest 5% of the pixel values because, as shown in Table
1, pixels with those values account for 70% of the total
gradient magnitudes in the image. Images produced with
GBVM colorization are presented in Section 3.

As described here, GBVM allocates the color map at
whichever values the gradient magnitudes occur and in pro-
portion to the total gradient magnitudes at those values, so
it is robust with respect to the size of the data domain and

Fig. 4 Relative cumulative gradient magnitude at each pixel of the
image in Fig. 1, ordered by pixel value.
is effective for high-precision data. This is especially im-

Jul–Sep 2007/Vol. 16(3)4
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ortant for applications in which the data domain is large
nd the subdomain of the data for each image may be time-
arying or unknown.

Results
CxGC separates chemical species with two capillary col-
mns interfaced by two-stage thermal desorption.8 Chemi-
als in a sample are separated in time in each of the two
olumns. Then the detector �a flame-ionization detector
FID� in the example of Fig. 1� samples the output, produc-
ng scalar values proportional to the amounts of the con-
tituent chemicals that are eluted at the sample time.

able 1 The relationship between relative cumulative gradient mag-
itude and pixel value for the image in Fig. 1 is inverted at knot

ntervals to determine the mapping output �relative cumulative gra-
ient� as a function of the mapping input �regularized pixel value�.

CGM
Sorted
Index

Pixel
Value

GBVM
Input

GBVM
Output

.0 0 −0.71 0.000 0.0

.1 999735 0.75 0.001 0.1

.2 1115950 2.78 0.004 0.2

.3 1156059 5.84 0.008 0.3

.4 1174393 10.69 0.013 0.4

.5 1185573 17.10 0.021 0.5

.6 1193229 26.48 0.032 0.6

.7 1197366 42.84 0.051 0.7

.8 1199227 89.93 0.107 0.8

.9 1199751 229.98 0.272 0.9

.0 1200000 846.33 1.000 1.0

ig. 5 Gradient-based value-mapping function for the GCxGC im-

ge in Fig. 1.

ournal of Electronic Imaging 033004-
GCxGC data can be displayed as a digital image, with pix-
els arranged so that the abscissa �x-axis, left to right� is the
elapsed time for the first-column separation and the ordi-
nate �y-axis, bottom to top� is the elapsed time for the
second-column separation.

In the data of Fig. 1, each modulation for the second-
column separation is performed in two seconds and the data
is sampled at 200 Hz for a y-axis dimension of 400 pixels.
The chromatographic run time �i.e., the time required to
acquire the data with the chromatograph� is 100 min, with
30 modulations per minute, for an x-axis dimension of
3000 pixels, of which a little less than 30 min is shown in
Fig. 1. The data values �after baseline correction9� are
floating-point numbers ranging from −0.71 to 846.33. Fig-
ure 1 is shown with gray-scale and “cold-to-hot” pseudo-
color with the smaller values of the background colorized
dark blue and the larger values of the blob peaks colorized
with light blue, green, yellow, and red, indicating increas-
ing values.

As described in Section 1, a fundamental issue for col-
orization is the mapping domain. The domain can be de-
fined simply by the minimum and maximum values in the
data, lmin=min�p� and lmax=max�p�, −0.71 and 846.33, re-
spectively, for the example data. However, as shown in the
top row of Fig. 6, simple linear value mapping over this
domain shows only a few of the largest peaks clearly,
shows faint spots for medium-sized peaks, and does not

Fig. 6 Images with gray-scale �left� and pseudocolor �right� for vari-
ous value-mapping functions �color online only�. From top to bottom:
�a� linear over all values; �b� linear with cutoff of 0.1% tails; �c� linear
with cutoff of 1.0% tails; �d� histogram equalization; �e�
gradient-based.
show small peaks at all.

Jul–Sep 2007/Vol. 16(3)5
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This problem can be understood by examining the dis-
ribution of data values—the histogram, as it is called in
igital image processing. Figure 7 shows the histogram of
he GCxGC data shown in Fig. 1. The x-axis shows the
egularized pixel values on a log scale. On a linear scale,
he histogram would show only a large peak near 0, be-
ause almost 97% of the pixels have a value in the smallest
% of the domain. So, using linear value mapping for col-
rization of this example utilizes only 1% of the color scale
or 97% of the pixels.

One approach for dealing with long-tailed distributions,
uch as in Fig. 7, is to reduce the domain. For example,
utting off 0.1% tails at each end of the value distribution
educes the domain to �−0.11,65.50�, nearly 13-fold
maller; cutting off 0.5% tails reduces the domain to
−0.08,28.12�, more than 30-fold smaller; and cutting off
.0% tails reduces the domain to �−0.07,19.27�, about 44-
old smaller. Of course, one problem with this approach is
ow to select the size of the cutoff, but the method does
ield better results. The second row of Fig. 6 shows results
or 0.1% cutoff and the third row shows results for 1.0%
utoff. At 0.1% cutoff, some of the smaller peaks are vis-
ble, but many are not. At 1.0% cutoff, most of the smaller
eaks are visible, but too many peaks are shown at the
xtreme color, causing the large and medium-sized peaks
rrayed horizontally along the bottom of the image to blend
ogether. The cutoffs at the high and low ends could be set
ndependently, but setting the cutoffs is difficult to auto-
ate. Even if the color range is set to appropriately exclude

he tails of the distributions, this approach does not account
or local differences in value in the middle of the distribu-
ion, so local variations still may not be visible.

Histogram equalization is an automated nonlinear value-
apping method designed to use the color scale uniformly
ith respect to the distribution of pixels values, i.e., each

raction of the color scale is used for a corresponding frac-
ion of the pixels. The value mapping function is the cumu-
ative distribution function, e.g., as shown in Fig. 7. The
ourth row of Fig. 6 �the next to the last row� shows the

ig. 7 The histogram of the GCxGC image in Fig. 1 with log-scale
-axis.
mages with histogram equalization. The smallest peaks at

ournal of Electronic Imaging 033004-
the top of the image are shown clearly, much more clearly
even than for linear mapping with 1.0% cutoff of the tails,
and these images make visible some structure in the back-
ground �regions without peaks�. However, larger and
medium-sized peaks along the bottom and even in the
middle of the image run together and cannot be distin-
guished. This is because much of the color scale is used for
the many pixels in the background �even though there are
insignificant differences among these pixels�, leaving less
of the color scale for pixels in peaks. Histogram equaliza-
tion does not account for local differences in value and so
wastes color resolution in the background where little color
resolution is warranted. Colorization methods based strictly
on the value distribution do not account for local differ-
ences when allocating the color range and so such differ-
ences may not be visible.

Colorization with GBVM is demonstrated in the bottom
row of Fig. 6. The smallest peaks near the upper right cor-
ner are more visible than in the images for linear mapping
and nearly as visible as in the images for histogram equal-
ization. The largest peaks, along the bottom of the image,
are differentiated better than for linear mapping and histo-
gram equalization. In particular, the prominent peaks for
the five normal alkanes, C12 to C16, can be identified more
easily. GBVM is able to show both small peaks and large

Fig. 8 Images of elevation data from Australia for various value-
mapping functions. The box in �a� outlines the region displayed in
�b�–�f�.
peaks across the large, dynamic domain of the data because

Jul–Sep 2007/Vol. 16(3)6
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he color range is allocated according to the cumulative
radient magnitude. So, the color mapping shows both the
ew large peaks with large gradients and the many small
eaks with smaller gradients.

GBVM was developed for GCxGC data, but can be used
or other data and is especially useful for high-precision
ata. Figure 8 shows images with data from the GLOBE
roject for Australia.7 The image is 4033�4888, two-byte
igned integers, ranging from −500 �outside the mask� to
431. Figure 8�a� shows an image with a linear gray-scale
olor map over the full domain of the data. A box in Fig.
�a� highlights a region in South Australia north of the
pencer Gulf, which is shown in more detail in the other

mages. Figure 8�b� shows the region with full-domain lin-
ar gray-scale mapping. Figures 8�c�–8�f� show, respec-
ively, images with linear value mapping with tail cutoffs at
.1%, linear value mapping with tail cutoffs at 1.0%, his-
ogram equalization, and GBVM. The image produced with
BVM shows several features not visible in the images
roduced by the other methods, including Lake Frome in
he upper right of the image and coastal flats along Spencer
ulf in the lower left of the image.

Conclusion
radient-based value mapping �GBVM� for colorization

ccounts for local value differences in allocating the color
cale. The results presented here show images of diesel fuel
nalyzed by GCxGC-FID and elevation data for Australia.
or both types of data, GBVM reveals features that are not
isible in images produced by popular value-mapping algo-
ithms. GBVM also works well for other types of data in
hich local differences across the range of values should be
isualized and is especially useful for high-precision data.

For some applications, it is important to note that any
onlinear value-mapping algorithm, such as GBVM, may
ot preserve interval and ratio relationships in the color
cale. GBVM does maintain ordinal relationships, but in-
ervals and ratios in the colorized images are determined by
he gradient magnitudes.

Nonlinear mapping functions can be combined. For ex-
mple, if more emphasis of smaller peaks is desired, the
ata can be preprocessed with a nonlinear logarithmic value
apping prior to GBVM. Preprocessing with logarithmic
apping would reduce the relative scale of large peaks to

mall peaks.
For applications that require comparisons between im-

ges, it is important to note that GBVM is an adaptive
ethod that is based on an analysis of the data. If colori-

ig. 9 Three-dimensional perspective view of a GCxGC image col-
rized by gradient-based value mapping �color online only�.
ation should be standardized across a set of images, then

ournal of Electronic Imaging 033004-
GBVM should be based on a relative cumulative gradient
magnitude function computed from a representative set of
images from the ensemble. Then, the same value-mapping
function should be used for all images compared.

GBVM also can be used to colorize three-dimensional
perspective views of two-dimensional fields. Figure 9 pre-
sents a perspective view of the example GCxGC between
C13 and C16. The elevation of the surface, relative to the
base plane, is determined by the data value. This view
clearly illustrates the large scale of GCxGC data and the
effectiveness of gradient-based value mapping for visualiz-
ing large, medium-sized, and small peaks.
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