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Abstract 

Image restoration of forward-looking infrared (FLIR) imagery has the potential to significantly improve the quality of 
images used by an automatic target recognizer (ATR) or human observer. This study investigates the feasibility of real-time 
image restoration algorithms and the problem of measuring image quality as it relates to target acquisition performance. This 
paper describes a technique for deriving small kernel filters that efficiently restore and reconstruct. Subject to implementa- 
tion constraints associated with efficient application, the filters optimize image fidelity to an 'ideal' close-range image. The 
paper describes simulation experiments employing an end-to-end imaging system model, experiments with actual images 
using a model-based characterization of an actual imaging system, and simulation experiments that illustrate the utility of the 
system model and filtering in FLIR imaging system design. © 1997 Published by Elsevier Science B.V. 

I. Introduction 

Performance prediction is an important task in the 
design of forward-looking infrared (FLIR) imagers 
[1]. In FLIR systems, performance usually refers to 
target acquisition, including detection, classification, 
recognition, and identification either by a human 
observer or automatic target recognizer (ATR). The 
distance at which a human observer or ATR can 
reliably identify an object in the image is a funda- 
mental measure of performance. Digital image pro- 
cessing offers the potential to improve the effective 
range in such systems by improving the quality of 
the digital image presented to the observer or ATR. 
This paper presents an efficient digital filter for 
enhancing image quality to improve range perfor- 
mance and investigates FLIR system design tradeoffs 
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that affect image quality and range performance. 
Image acquisition inevitably introduces degrada- 

tions [2]. The goal of digital image restoration is to 
recover the 'true' image by removing these degrada- 
tions [3]. It is widely recognized that FLIR images 
(and other remotely sensed images) are blurred by 
the atmosphere, optics, and detectors. Early methods 
for digital image restoration were designed to correct 
such blurring. Researchers and practitioners soon 
realized that attempts to invert the blurting process 
must account for image noise, including shot noise, 
detector noise, and circuit noise [3]. More recent 
research has demonstrated that sampling and recon- 
struction also have great significance for image qual- 
ity in digital systems and should be addressed by 
restoration methods [4,5]. 

Sampling, the process of obtaining irradiance 
measures at spatially discrete points, is fundamental 
to range performance. The number of samples on 
target (i.e., the target size measured in pixels) is one 

n ~ t s ~ .  
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of the most critical issues in recognition. For a 
specific imaging system configuration, the number of 
samples on target in each dimension is inversely 
proportional to range (i.e., if the range is doubled, 
the number of pixels on target in each dimension is 
halved). For a given field-of-view (FOV), sampling 
density is necessarily limited by available technology 
and cost. Systems with insufficient sampling density 
introduce aliasing artifacts. For a fixed sampling 
density, the only way to reduce aliasing is with 
pre-sample blurring (e.g., using the optics). Of 
course, pre-sample blurring typically also degrades 
the image by attenuating components within the 
Nyquist limit. 

Although the tradeoff between pre-sample blur- 
ring and aliasing is a fundamental issue that has a 
large effect on the overall performance of digital 
imaging systems, it is generally ignored in the litera- 
tare [2]. In 1976, Ratches identified the failure to 
account for aliasing and sampling effects as a critical 
shortcoming in performance models of thermal imag- 
ing systems [6]. A decade later, McCracken and 
Wajsfelner identified the same problem [7]. Re- 
cently, Kennedy reiterated the need to account for 
sampling and aliasing in performance models  of 
second-generation thermal imaging systems [8]. 

This paper describes the derivation of an efficient 
filter that not only restores (i.e., corrects for systemic 
degradations), but also interpolates between pixel 
values to improve reconstruction and thereby in- 
crease apparent sharpness and clarity. The approach 
is based on a comprehensive imaging system model 
that accounts for the statistics of the scene, the 
image-acquisition blurring, sampling, noise, and 
post-filter reconstruction [4,5]. The derivation is con- 
ditioned on explicit constraints on spatial support 
and filter density, insuring efficient implementation 
by convolution [9]. Subject to these constraints, the 
resulting filter optimizes the fidelity of the output 

image to an 'ideal' close-range image. The paper 
investigates system design tradeoffs that affect filter 
effectiveness and overall system performance. 

2. Digital imaging system model and notation 

Restoration requires modeling the system. This 
section presents an end-to-end model of the digital 
imaging process, illustrated in Fig. 1. The model 
accounts for the transformation from continuous to 
discrete data during image acquisition and from dis- 
crete to continuous data during image reconstruction. 
This continuous-discrete-continuous (CDC) model 
is a more accurate model for digital imaging systems 
than are more conventional discrete-discrete or con- 
tinuous-continuous models and is the basis for the 
development of significantly more effective filters. 

The end-to-end digital imaging process consists of 
three phases: 

• image acquisition, in which the digital image 
acquisition device (e.g., a FLIR camera) converts the 
continuous radiance field s associated with a scene 
into a digital image p that is both sampled and 
quantized; 

• digital processing, in which a digital filter is 
applied to the digital image p to produce an im- 
proved digital image q; and 

• post-filter reconstruction, where further analog 
and/or  digital processing yields a spatially continu- 
ous representation r. 

The filter f described in this paper is implemented 
by discrete convolution, so both the input and output 
of the filter ( p  and q respectively) are digital im- 
ages. The filter restores the image by correcting for 
systemic degradations and also interpolates between 
pixel values to improve reconstruction. In a typical 
system, the visual effect is increased sharpness and 
clarity. So, for example, for a filter defined on a 

C o n t i n u o u s  D i s c r e t e  D i s c r e t e  
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Fig. 1. Mathematical model of the digital imaging process. 
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lattice with four times the sampling density, a 64 × 64 
input image would yield a 256 × 256 output image 
with increased element density. 

Depending on the application, post-filter recon- 
struction may be implemented either (1) with an 
analog/optical device such as a display monitor for 
human viewing and interpretation; (2) with post-filter 
digital processing (e.g., bilinear interpolation) for 
geometric correction, translation, scaling, rotation, 
remapping, or other geometric operations requiring 
resampling; or (3) not at all. Physical display devices 
inherently reconstruct; some ATRs implement digital 
reconstruction (e.g., resizing the image for a bank of 
matched filters) and some do not. 

The digital image p is 

p[n]=f?  h ( n - x ) s ( x ) d x + e [ n ]  (1) 

where the continuous scene radiance field s is con- 
volved with the pre-sampling acquisition point spread 
function (PSF) h (e.g., characterizing blurring from 
the optics and the spatial integration of the photode- 
tector) and degraded by noise e (e.g., shot noise, 
circuit noise, and quantization error). In reality, noise 
is caused by spatially continuous processes, but one 
can define a discrete noise process that has statisti- 
cally identical effects on the digital image. This and 
subsequent equations are written in one dimension 
for notational convenience, but generalize directly to 
multiple dimensions. Pixels are indexed with integer 
coordinates [n] and the continuous spatial coordi- 
nates (x) are normalized to the sampling interval 
(i.e., the intersample distance is 1). Function values 
are expressed on a gray-level equivalent scale. 

In the spatial-frequency domain, 

p ( o )  = E ?,(v - k) - k) + (2)  

where spatial frequencies v are normalized to the 
sampling frequency, /3 is the Fourier transform or 
spatial-frequency spectrum of the image, h is the 
acquisition transfer function, g is the spatial- 
frequency spectrum of the scene, and E is the spa- 
tial-frequency spectrum of the noise. Sampling causes 
the folding of the components of the spatial-frequency 
spectrum. The resulting image transform /3 is peri- 
odic with period equal to the normalized sampling 
frequency, 1.0 in each dimension. (In the digital 

image, the noise is discrete, so its spectrum E is also 
periodic.) 

Filtering produces the filtered digital image q 
from the input digital image p. If the digital filter 
has the same density as the input image, then the 
filtered image will have the same pixel density as the 
unprocessed digital image. However, the digital filter 
need not have the same density as the input image. 
This allows for reconstructing images with greater 
density than the input image during restoration. For 
example, consider the one-dimensional image 

p - - [ . . .  11 1 5 5 5 . . . ]  

zero filled to twice the density 

p = [ . . .  1 0 1 0 1 0 5 0 5 0 5  . . . ]  

then convolved with a filter with twice the density of 
the original image 

f =  ¼[. . .  0 0 0 1 2 2 2 1 0 0 0  . . . ] .  

The result is a filtered image that has twice the 
density of the input image 

q = [ . . .  1 1 1 1 2 3 4 5 5 5 5  . . . ]  

For simplicity, we will consider only filters with 
element density that is an integer multiple of the 
density of the image p. 

If we define the restoration and reconstruction 
filter f on a lattice that has R elements per pixel 
(indicating the coordinates of filter elements with 
integer indices divided by filter density), then the 
filtered image q is 

q = ~., f -n '  p[n']. (3) 
Flt~ --o~ 

One can view this operation as convolution of the 
filter with an image that has zero values at points 
between pixels. As a practical matter, only a finite 
image p is available for processing and the spatial 
support of the digital filter f must be limited. To 
address these issues and to facilitate the use of the 
discrete Fourier transform (DFr), it is common to 
assume the scene and hence the image are periodic 
with period equal to the image size (i.e., the field of 
view) and to constrain the filter support to the size of 
the image (or smaller). This means the filtering 
operation is one of circular convolution which can be 
implemented using the DFF. 
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The frequency-domain equation for filtering (cor- 
responding to Eq. (3)) is 

~( o) = f (  v) /3( v). (4) 

With the filter density limited to R elements per 
pixel, the filter transfer function f is periodic with 
period R times the sampling frequency. (Just as 
spatial convolution can be envisioned with zero val- 
ues filled between image pixels, so can frequency 
domain multiplication be envisioned with the peri- 
odic replication of the image transform/3 to produce 
an array of the same length as the filter transform v~) 
With the filter density a multiple of the sampling 
density, the pixel density of the filtered image q is 
the same as that of the filter, and its transform ~ is 
also periodic with period R times the sampling 
frequency. With a periodic image and discrete filter, 
the transforms in Eq. (4) are discrete as well as 
periodic, and can be computed with the DFT. 

Reconstruction produces a continuous image from 
a digital image. Even if the filter f interpolates to 
perform some reconstruction, subsequent compo- 
nents of the system such as a display device may 
implement post-filter reconstruction. For example, a 
display monitor produces a spot for each pixel value, 
effectively blurring the discrete pixel values to form 
a continuous image. The display spot is designed to 
produce uniformity in homogeneous regions without 
excessive blurring of sharp transitions [2]. Convolu- 
tion with a Gaussian spot is commonly used to 
model the display operation of video monitors. Tra- 
ditional digital resampling operations also implicitly 
convolve the digital image with a continuous recon- 
struction function even though the result is computed 
only at the resampled points. Nearest-neighbor, bilin- 
ear, and cubic convolution [10] are common digital 
reconstruction methods that use continuous recon- 
struction PSFs. 

After convolution with the reconstruction PSF d, 
the continuous output image r is 

/ 1 ~  - - o o  

The corresponding frequency-domain equation for 
reconstruction is 

P(v) = d ( v ) ~ ( v )  (6) 

where ~ is the reconstruction transfer function. 

3. Sys tem performance  

This section addresses the problem of defining a 
measure of system performance. Ideally, filters would 
be evaluated by determining the performance of the 
human or ATR given images passed through the 
filter. Unfortunately, the relationship between image 
imperfections and target recognition success is com- 
plex and not well understood [1]. Although many 
models of the process have been developed, most are 
specialized and are only partially validated by realis- 
tic field tests [11-14]. Although current prediction 
methods are bound to evolve and improve, a defini- 
tive theoretical method for evaluating filter perfor- 
mance does not seem possible at this time. More- 
over, because there is no comprehensive or standard 
suite of ATRs or of test images for empirically 
assessing the effectiveness of filters in improving 
performance, a definitive empirical method also is 
not possible. 

An alternative measure for filter effectiveness is 
how well it recovers the 'ideal' image - the scene 
radiance field. The perfect filter would not only 
restore sample values (i.e., remove degradations); it 
would also reconstruct the spatially continuous 'ideal' 
image of the scene from the spatially discrete pixel 
values. Such a perfect filter would provide an ideal 
projection of the scene to the human observer or 
ATR. To evaluate a filter, one ideally would com- 
pare the filter output to the scene radiance field. 
Unfortunately, such ideal images without degrada- 
tion and with unlimited resolution cannot be ac- 
quired, represented, or manipulated in a digital com- 
puter and so this direct comparison is not possible. 
However, as described below, we can use nearly 
ideal images that, for our purposes, effectively are 
free of degradations and effectively have unlimited 
resolution. 

Range is a principal determinant of performance 
- objects are more readily detected, recognized, and 
identified at close range. (We are primarily con- 
cerned here with static performance. Performance in 
the field is also affected by time, field-of-view, and 
other factors.) With most target acquisition systems, 
an image of an object taken at close range allows the 
best possible performance. Close-range images also 
are nearly 'ideal' images because the degradations 
such as blurring and noise are minor relative to the 
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level of detail and strength of signal in the image and 
because the sampling density (relative to the target) 
is great. Therefore, in experiments with both simu- 
lated and actual images, we use close-range images 
as the ideal images of the scenes. In order to be 
effectively ideal, the ratio between the sample den- 
sity of the close-range image and the sample density 
of the test image should be great enough so that the 
close-range images are effectively continuous with 
respect to the imaging process. Also, the blurring in 
the close-range image should be small relative to the 
details in the scene and the signal-to-noise ratio 
(SNR) in the close-range image should be large. 

With reference to the imaging model presented in 
Section 2, system performance will be measured by 
how closely the output image r matches the ideal (or 
close-range) image s. Linfoot [15] used the expected 
mean-square error of an imaging system (with 
stochastic scene and noise) 

S2 = E x)  - r( x)12 d x  

=E(f_Llg(v ) - P(v)I2 dr) (7) 

to define image fidelity as 

S 2 
F = I - -  (8) ~2 

where ~2 is the expected (ensemble average) vari- 
ance of the scene radiance field 

(9) 

For notational simplicity, equations in this paper 
assume the scene radiance field is a zero-mean pro- 
cess; in practice, the mean can be accounted for 
during filtering. Fidelity is bounded by 1, with F = 1 
if and only if the output image is identical to the 
scene radiance field. Mean-square-error metrics such 
as fidelity are intuitive and facilitate mathematical 
analyses, but do not correspond directly to human 
assessments of image quality and are not related 
directly to performance by human observers or all 
ATRs. However, a more definitive objective measure 
of image quality has proven elusive. 

Linfoot [15] defined two related measures of im- 
age quality: relative structural content 

r = 2 ( 1 0 )  

and correlation quality 

Q =  its ,r//tTs 2 ( I I )  

where ~r 2 is the expected variance of the output 
image and %.r is the expected covariance of the 
scene radiance field and image. Fidelity, relative 
structural content, and correlation quality are related 
by the equation 

Q = ½ ( F + T ) .  (12) 

This is a corollary of the equation 

S 2 = o.s2 _ 2~,r + ~2. (13) 

The correlation coefficient is a related measure of 
the similarity between the scene and image: 

%r Q 
C = = (14)  

The correlation coefficient is invariant with respect 
to changes in offset and gain (additive and multi- 
plicative scalar constants) and is used in template 
matching, one of the most fundamental object detec- 
tion algorithms [16]. 

4. Digital  filter des ign 

This section presents the derivation of an effi- 
cient, high-density digital filter for improved imag- 
ing system performance. The filter improves upon 
more traditional filters because it is based on the 
comprehensive, end-to-end model described in Sec- 
tion 2. The filter improves image quality in two 
ways: 

(1) by restoration, addressing acquisition artifacts 
including presample blur, aliasing, and noise, and 

(2) by partial reconstruction, increasing apparent 
sharpness and clarity by digital interpolation. 

The filter is efficient because spatial support and 
density are constrained during the design process. 
Subject to these constraints, the derivation yields the 
filter that optimizes fidelity for the end-to-end sys- 
tem model. 

The two major considerations in the design of the 
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digital filter f are effectiveness and efficiency. As 
one would expect, there is a tradeoff between effec- 
tiveness and efficiency: achieving efficiency may 
involve some loss of effectiveness. A common ap- 
proach to balancing these two competing demands is 
to design a filter for optimal effectiveness and then 
modify it ad hoc to satisfy efficiency constraints 
(e.g., by truncating or windowing the spatial filter). 
However, that approach sacrifices the rationale used 
in defining the filter. Here, we impose explicit sup- 
port and density constraints in the derivation of the 
filter. 

If the digital restoration filter is defined with 
greater density than the digital image (i.e., the dis- 
tance between filter elements is less than the pixel 
interval), then the filtering operation interpolates as 
well as restores the image. For a digital image with 
N pixels, a filter with density R elements per pixel 
(in each dimension) produces a filtered image with 
RN pixels (in each dimension). If the subsequent 
reconstruction function d is defined relative to the 
filter density, then as the filter density R increases, 
the relative effect of subsequent reconstruction with 
d is diminished. In the limit, the filter f is continu- 
ous and the post-filter reconstruction function d is 
the impulse or delta function (and has no effect). 
Although increasing the filter density improves sys- 
tem performance by improving reconstruction, the 
cost is increased computation. 

The computation required to apply a filter is a 
function of the size of its spatial support and its 
density. (The spatial support defines the number and 
location of the filter elements.) The more elements in 
the filter support, the more computation is required 
for spatial convolution. The computational complex- 
ity for convolution is O(KN) where K is the num- 
ber of elements in the filter and N is the number of 
image pixels. (In this analysis, N is the total number 
of pixels in the image regardless of the image dimen- 
sionality.) Similarly, the spatial density of the filter 
determines the computational complexity of Fourier 
domain processing. The computational complexity 
for the Fourier transform is O(RN log(RN)) where 
R is the density of the filter. 

If the filter f is constrained to a kernel of a few 
elements, it can be applied very efficiently by convo- 
lution. Small kernel filters are also well suited for 
parallel, focal-plane implementation [9]. 

The design optimization criterion is to minimize 
mean-square error (or equivalently to maximize fi- 
delity) of the system. The derivation assumes that 
noise is signal independent and that sidebands of the 
scene spectrum that alias to the same frequency are 
uncorrelated. Then, the terms of the expression for 
expected mean-square error in Eq. (13) can be ex- 
pressed as 

f = _ (16) 

where the the asterisk superscript denotes complex 
conjugation and 

4 ( v )  = E{l ( o)l:}, (18) 

4.p(V) =E{~(v ) f ' ( v ) }  = ~s(v)h ' (v) ,  (19) 

 p(v) = 2} 
oo 

= Z 
k ~ -¢¢ 

(20) 

As stated, in actual practice using finite images on a 
digital computer, we assume scene periodicity so the 
continuous integrals in F_zts. (15)-(17) are replaced 
with summations. Because all spatial functions are 
real, the frequency-domain transforms are Hermitian 
and the power spectra q~s, (~p' and q3 e are real, 
non-negative, and even. The image and noise spectra 
are periodic with the sampling frequency. 

With no restrictions on the density or spatial size 
of the filter, the mean-square error is minimized 
when the filter transfer function is [4] 

^ ^ 

}w(V) ~)p ( O ) [ d (  U)]  2 "  ( 2 1 )  

We refer to this filter as the CDC Wiener filter 
because it is based on the continuous-discrete-con- 
tinuous (CDC) model. This filter is not practical, 
however, because its support is the size of the image 
and it has unconstrained density (i.e., it is continu- 
ous). To produce a practical filter, we impose con- 
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straints on the density and spatial size prior to the 
derivation. 

If the filter is limited to R elements/pixel, the 
optimal filter is [5] 

f,(o) 
- a(v) (22) 

where 
o~ 

E (23)  
k= -00 

o~ 

a(v)  = Y'. ~ p ( v -  k R ) l d ( v -  kR)l 2. (24) 
k= -oo 

This filter transfer function is periodic with period R 
cycles/pixel. We refer to this filter as the uncon- 
strained Wiener filter because it is spatially uncon- 
strained. 

We also restrict the spatial support of the filter to 
a small set of locations C on the lattice defined by 
the limiting density of the filter. (The number of 
locations in the constraint set is K.) The elements 
not in the support set C cannot be used in the filter; 
i.e., the filter is zero at these locations: 

= 0  if ~ C .  (25) 

The integer R in the denominator of the location 
allows the filter to have greater density than the 
image - R elements per pixel in each dimension. 

With density and support restricted, the optimal 
constrained filter is defined by 

2~ a [ ~ - ~ l f c [  d ]  = b [ R  ] (26) 
[n'/R]~ C 

for each n E C  where a and b are the inverse 
transforms of a and b respectively. The number of 
unknowns in Eq. (26) is equal to the number of 
locations in the support set of the filter. If the 
constraint set C has K elements, there are K equa- 
tions in K unknowns. 

After applying this filter, the digital image will 
have increased density, but further reconstruction is 
required to produce continuous output. However, 
because the constrained filter will have accomplished 
the most significant reconstruction, the relative ef- 
fects of any subsequent reconstruction should be 
largely diminished. For object recognition, the filter 

and reconstruction operations might be applied only 
to areas of interest and not to the whole image to 
further reduce computation. 

Eq. (13) with the expressions in Eqs. (15)-(17) 
can be used to compute the expected mean-square 
error from • s, qO e, h, ,~ and d for various systems. 
The expected mean-square error for a system with 
the unrestricted filter fw in Eq. (21) reduces to 

^ (~s ,p [ U ] 
SEw = L O~[o ] ~p[ v-------] do. (27) 

Therefore, the fidelity (Eq. (8)) for this filter is 

1 # p(v)l 2 

No filter can restore with higher fidelity (smaller 
mean square error) than F w in Eq. (28). However, 
for typical imaging systems, the optimal filter PSF 
has a few centrally located elements that account for 
most of the filter response and the most significant 
response is at lower frequencies, so it is reasonable 
to expect that small kernel filters with limited den- 
sity can perform nearly as well. For any filter f ,  the 
expected mean square error is 

S 2 2  S 2 + f _ - ~ p (  u ) ld (  V ) 1 2 [ f ( V ) - - f w ( U ) l  2 d u .  

(29) 

As can be seen in Eq. (29) S 2 >_ S2w and F w is the 
upper bound on fidelity. 

Other image quality metrics, including expected 
relative structural content, correlation quality, and 
correlation coefficient, can be computed in a similar 
fashion. In Section 6, we use these measures to 
evaluate various FLIR imaging system designs. 

5. Modeling FLIR systems 

In this section, we develop a simple linear, shift- 
invariant model for FLIR imaging systems based on 
the continuous/discrete/continuous model in Fig. 1. 
Despite the fact that this model does not account for 
all aspects of the imaging process, including shift- 
variant and non-linear characteristics of FLIR sys- 
tems, it does provide the basis for deriving effective 
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filters and for experiments that yield substantial in- 
sight into overall system performance. 

In previous sections of this paper, we used one-di- 
mensional notation for simplicity. Here, we examine 
a two-dimensional system, so we introduce some 
additional notation. As before, all the system coordi- 
nates are normalized to the sampling interval A in 
the image plane in each dimension. For simplicity, 
we assume the horizontal and vertical sampling in- 
tervals are equal and the numbers of pixels in each 
dimension are equal. Then, object-plane coordinates 

(x,, y,) are mapped to normalized image-plane 
coordinates (x, y) as 

Di xo DiYo 

x=D,d’ ‘= D,A 
(30) 

where Di is the focal length and D,, is the distance 
to the object. 

We model the autocorrelation of the scene as 

Qs( X, y) = exp( - \Ixz+/Z). (31) 

where the parameter 7i is the mean spatial detail of 
the object or scene (in normalized dimension units). 
This function is the non-separable autocorrelation of 
a circularly symmetric Markov process and is widely 
used for modeling scene autocorrelation [ 17,181. The 
corresponding power spectrum is 

4( u, u> = 
2TTX2 

(1 + 4T2&2) 
312 (32) 

where (u, u> is the continuous normalized spatial 

frequency and w = m is the radial frequency 
magnitude. 

We model three components that contribute to the 
image acquisition PSF and transfer function: the 
optics, the detector, and the scanning mechanism. 
The model for the blur-degraded optical transfer 
function (OTF) is 

fi,( U, u) = rl( w/2w,) cos-‘( w/f&)) - $ 
( 

X dl-oi)exp( - 3( 6J/Q2) 

(33) 

where the OTF cutoff o0 for a circular exit pupil is 

defined by the focal length Di, aperture diameter A, 

mean wavelength A, and the sampling interval A as 

AA 

w” = G 

with 

n(w)= 

i 

1 W<f 

0 wrf 

and optical defocus blur is modeled as a Gaussian 
spot with width wb (in the frequency domain). Mul- 
tiplicative scale factors are collected in defining sig- 
nal-to-noise ratio, given below. Other, more complex 
models for optical defocus can be found in [19,20]. 

We use a simple square pulse to model the detec- 
tor PSF (to account for spatial integration by the 
detector). The size of the detector relative to the 
sampling array is given by the samples-per-dwell P. 

The transfer function of the detector is 

i;,( u, U) = sinc( Pu)sinc( Pu) (34) 

where 

[ 

sin( 7ru) 

sinc( u) = u#O TU 

11 u=o 
Properly, the function in Eq. (34) should have a 
multiplicative scale factor of P2, but we collect all 
scale factors in defining signal-to-noise ratio (given 
below). 

In a scanned system, the linear motion of the 
scanner causes a uniform-pulse PSF in the scan 
direction. With 100% duty-cycle, the scanner trans- 
fer function, in terms of normalized frequencies, is 

ii,( u, u) = sinc( u) (35) 

Systems with two-dimensional detector arrays may 
still have a one-dimensional blur associated with 
readout (e.g., as in [21]). 

The composite acquisition transfer function of a 
scanning system is 

i;(u, u) =&(u, u)&(u, u)ii,(u, u). (36) 

In a staring system, there is no scanning motion and 
so 2, is not included. 

We use a simple additive white noise model for 
system noise (i.e., the noise power spectrum (oe is 
constant across all spatial frequencies in the digital 
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image). A number of factors affect the signal-to-noise 
ratio (SNR), including the strength of the scene 
radiance field, atmospheric attenuation, sampling 
density, detector size and responsivity variations, and 
various sources of system noise [22-24]. SNR is 
defined as the ratio of the root-mean-square (RMS) 
scene signal ~ to the RMS noise 

SNR = ~ / ~ .  (37) 

The SNR can be varied in the model to account for 
factors such as atmospheric attenuation of the signal, 
sensor detectivity, detector size, gain, and electrical 
bandwidth. 

The simulations presented in Section 6 employ 
four reconstruction functions: a Gaussian spot to 
model the display spot of a display device, nearest 
neighbor, bilinear interpolation, and cubic convolu- 
tion [10]. The transfer function of a Gaussian spot 
with a spread half the distance between elements in 
the filtered image q is 

a~( u, v) = e x p ( -  ½(RTrw)2). (38) 

Alternatively, the transfer function of nearest neigh- 
bor interpolation (multidimensional generalization of 
the sample-and-hold square pulse) is 

d (u ,  v) = sinc(Ru) sinc(Rv),  (39) 

the transfer function of the bilinear interpolation 
function is 

d( u, v) = sine2( Ru)sinc2(Rv),  (40)  

and the transfer function of the separable cubic 
convolution reconstruction function is 

a?(u, o) = d p ( R u )  dp(Rv) (41) 

where 

d~p(v) = (Try)-2(3 sinc2(v) - sinc(2 v) 

- 3  sinc2(2v) + sinc(4v)).  (42) 

This parametric model of FLIR systems is the 
basis for experiments described in Section 6 that 
compare filter performance for various FLIR system 
designs. As has already been noted, the model does 
not account for all aspects of FLIR systems. 
Nonetheless, we believe that it captures the most 
significant factors affecting system performance and 
therefore provides the basis for deriving effective 
filters and conducting valid experiments. 

6. Experimental results 

This section presents three sets of experimental 
results that assess filter effectiveness and overall 
system performance under a range of conditions. 
Results with both simulated images and actual im- 
ages are presented. The software simulation allows 
precise analyses of restoration and reconstruction 
performance; the actual images demonstrate real- 
world effectiveness and support the validity of the 
simulation. In the first experiment, a software simu- 
lation based on the FLIR system model described in 
Section 5 demonstrates the effectiveness of the small 
kernel filter described in Section 4. In the second 
experiment, the small kernel filter is applied to actual 
FLIR images with good results. In the third experi- 
ment, the simulation software is used to examine 
tradeoffs in FLIR system design. 

6.1. Simulation results 

This section uses software simulation to compare 
the effectiveness of conventional reconstruction with 
the small-kernel restoration and reconstruction filters 
for use with FLIR systems. The imaging simulation 
software is based on the model described in Section 
2, including the scene, the image acquisition PSF 
(with optics, detector, and scanning), sampling, noise, 
filtering, and post-filter reconstruction, and accounts 
for the FLIR components detailed in Section 5. 

Fig. 2. Digital scene for simulation. 
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Table 1 
Expected performance for the simulation 

Filter/reconstruction Image fidelity Structural content Correlation quality Coefficient correlation 

Gaussian spot 0.801 0.584 0.693 0.906 
Nearest neighbor 0.810 0.660 0.735 0.905 
Bilinear 0.817 0.605 0.712 0.914 
Cubic convolution 0.840 0.651 0.746 0.924 
3 X 3 small kernel 0.884 0.884 0.884 0.940 
5 × 5 small kernel 0.890 0.890 0.890 0.943 
7 × 7 small kernel 0.891 0.891 0.891 0.944 
Unconstrained Wiener 0.891 0.891 0.891 0.944 

Software simulation allows assessment of overall 
system performance with precision, control, and flex- 
ibility that is not possible with real images [25]. 

The digital image in Fig. 2 is used as the ideal 
image of the scene. This digital scene was acquired 
with a thermoscope at about 315 m and digitized to 8 
bits. The digital scene is 512 × 512 scene elements 
or scenels, with each scenel approximately 2.5 cm in 
the object plane (about 0.08 mrad). As described 
below, this digital scene is blurred with a simulated 
acquisition PSF, resampled, degraded by noise, and 
filtered and/or  reconstructed. For these experiments, 
we used a value of T o = 0.5 m in the object plane 
for the mean spatial detail. (This is 20 scenels or 1.6 
mrad in the image in Fig. 2.) This value of ~ is 
appropriate for human recognition processing of this 

object [26]. The scene is not homogeneous (i.e., the 
level of spatial detail varies from one region to 
another). In particular, this value of ~ is accurate for 
the region with the object, but is too small for the 
background regions in this image (which have greater 
spatial correlation). This is an appropriate value be- 
cause, in practice, one would identify regions of 
interest (e.g., a region with potential targets) at low 
resolution and then process only the identified re- 
gions for high-resolution display or higher-level vi- 
sion processing. 

In this experiment, the simulated system has a 
sampling interval A = 36.6 / ,m (in the image plane) 
and focal length D i = 0.457 m. (This is about 0.08 
mrad/pixel.) With aperture A = 0.203 m and mean 
wavelength A = 10 /,m, the normalized OTF cutoff 

Fig. 3. Result images tor simulation. Top row: Gaussian spot, nearest neighbor, bilinear. Bottom row: cubic convolution, 5 X 5 small kernel, 
unconstrained Wiener. 
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frequency is to 0 = 1.63 (about 20 cycles/mrad).  We 
simulate a scanned system, with samples-per-dwell 
P = 1. For simulated imaging at D O = 2500 m, the 
scenel/pixel ratio is 8:1 in each dimension, suffi- 
cient so that the digital scene is effectively continu- 
ous with respect to the simulated imaging process. 
With an 8:1 scenel/pixel ratio, the 512 × 512 digital 
scene is sampled during simulated imaging to 64 × 64 
and the mean spatial detail ~ is 2.5 pixels (about 0.2 
mrad). The simulation SNR is 32. 

For the specific digital scene pictured in Fig. 2, 
the goal of the restoration and reconstruction pro- 
cessing is to take the 64 × 64 image simulating the 
system at 2500 m and produce the 512 × 512 image 
as it appears from 315 m. As described in Section 3, 
system performance can be measured by the fidelity 
of the output image r to the ideal image of the scene 
s. The expected performance measures for this sys- 
tem with four methods of conventional reconstruc- 
tion, three variously sized small kernels, and uncon- 
strained Wiener restoration are given in Table 1. The 
four conventional reconstruction methods (applied 
without filtering) are Gaussian spot, nearest neigh- 
bor, bilinear, and cubic convolution. The three small 
kernels have extent 3 × 3 pixels, 5 × 5 pixels, and 
7 × 7 pixels and density R = 8 elements/pixel. (Note 
that the number of kernel elements is a function of 
both size and density, so for R = 8 the 3 × 3 kernel 
has 25 × 25 elements.) The last result is the uncon- 
strained Wiener filter with density R = 8 and spatial 
extent equal to the image size 64 × 64. As can be 
seen, the small kernels have significantly better ex- 
pected performance than conventional reconstruction 
and perform nearly as well as the unconstrained 
optimal filter. 

Resulting images for the different restoration and 
reconstruction methods are contained in Fig. 3. In 

each case, the result image r has 8 samples/pixel to 
yield a 512 × 512 image. The nearest neighbor re- 
construction gives the clearest illustration of the 
sampling density of the simulated FLIR system. 
Table 2 gives the computed quality measures for this 
particular image. The relative ordering for fidelity 
and correlation coefficient of the various restoration 
and reconstruction methods is as expected, but the 
performance measures are slightly greater than ex- 
pected. This is because the observed autocorrelation 
for the whole image is slightly broader than the 
presumed autocorrelation. (Recall that the autocorre- 
lation model parameter .~ = 2.5 pixels, was set for 
the object which is more detailed than other regions 
of the scene.) The observed structural content and 
correlation quality is rather variable (and not as 
closely related to image quality as fidelity and the 
correlation coefficient). For these images, the struc- 
tural content and correlation quality are somewhat 
larger than expected because the variance of the 
output image is larger than expected (due again to 
finer than expected detail). 

In summary, these simulation results (in Tables 1 
and 2) illustrate that images restored and recon- 
structed with the small kernels have greater fidelity 
than conventional reconstruction methods. Even the 
3 × 3 kernel yields fidelity nearly as large as the 
optimal unconstrained Wiener filter. As can be seen 
in Fig, 3, the small kernel method yields an image 
with greater visual similarity to the scene. 

6.2. Ac tua l  results 

To test the actual performance of the restoration 
and reconstruction methods as a function of range, 
we acquired a sequence of FLIR images at various 

Table 2 
Computed performance for the simulation 

Filter/reconstruction Image fidelity Structural content Correlation quality Correlation coefficient 

Gaussian spot 0.946 0.857 0.902 0.974 
Nearest neighbor 0.946 0.880 0.913 0.973 
Bilinear 0.950 0.865 0.907 0.976 
Cubic convolution 0.954 0.879 0.916 0.978 
3 × 3 small kernel 0.961 0.971 0.966 0.980 
5 × 5 small kernel 0.962 0.989 0.975 0.981 
7 × 7 small kernel 0.963 0.975 0.969 0.981 
Unconstrained Wiener 0.963 0.969 0.966 0.981 
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Fig. 4. Unprocessed actual images at distances of 100 m to 800 m at 100 m intervals. 

distances while attempting to keep constant all vari- 
ables other than range. The target object, an automo- 
bile, was imaged at distances from 100 m to 800 m 
at 100 m intervals. The images are pictured in Fig. 4. 
The confounding effects of the bright glare spot 
(caused by sunlight glin0 in the 400 m, 500 m, and 
600 m images on the results are discussed below. 
This experiment investigates the effectiveness of the 
methods at restoring the longer range images to the 
100 m image (i.e., the longer-distance images are 
processed and then compared to the 100 m image). 

The detector size of the staring FLIR system used 
to gather the image set is A = 31 /xm (approxi- 
mately 100% fill factor) and the focal length is 
D i = 100 mm, so at 100 m the pixel size is 3.1 cm. 
The mean spatial detail ~o = 0.5 m maps to 16 
pixels at 100 m. The aperture is about A = 43 mm 
and the maximum wavelength is about A = 5.5 /~m, 
so the normalized OTF cutoff frequency is about 
to o --2.45 cycles/pixel. This is a two-dimensional 
array system, so there is no scanner, and with 100% 
fill, the detector size is the same size as the sampling 
interval. The theoretical diffraction-limited acquisi- 
tion transfer function for this system is much broader 
than is actually observed in these images. In other 
words, the system caused significantly more blurring 
than the system specifications would indicate. This 
could be due to a combination of the optics, detector 
crosstalk, and other factors. Using the method in 

[27], we estimated the actual PSF and set the defocus 
parameter COb in Eq. (33) to 0.281 in order to 
roughly fit the observed acquisition transfer function. 
Fig. 5 illustrates this defocus in the acquisition trans- 
fer function. From examination of the relatively uni- 
form regions, we estimate the system SNR in these 
images at about 22.5. 

Ideally, the only variable in the system for these 
images would be the range from the camera to the 
target automobile. The expected fidelity as a function 
of distance is given in Fig. 6. However, there are 
unavoidably some changes in the horizontal and 
vertical position of camera relative to the initial 
optical axis. Likewise, the imaging positions are not 
exactly at multiples of 100 m from the automobile. 
Fortunately, these XYZ differences are fairly easy to 
address. As the image is reconstructed, the transla- 
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Fig. 5. Acquisition transfer function model for actual images. 
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tion and scale are adjusted slightly to achieve the 
highest correlation between the result image and the 
100 m image. (The small kernel restorations are 
adjusted slightly with post-filter bilinear interpola- 
tion.) Unfortunately, there are also slight differences 
in roll, pitch, and yaw from image to image. These 
are impossible to correct. There are other problems 
as well. For example, the 400 m, 500 m, and 600 m 
images each have a bright glare spot on the wind- 
shield that is not present in the 100 m image. Such 
variables are confounding, but despite these prob- 
lems, the experiment provides meaningful results. 

The correlation between the result images at the 
various distances and the 100 m image are reported 
in Table 3. In all cases where the scene did not have 
a bright glare spot (200 m, 300 m, 700 m, and 800 
m), the images produced with the 5 x 5 small kernel 
are better correlated with the 100 m image than are 
the images reconstructed with conventional recon- 
struction. In the other images (400 m, 500 m, and 
600 m), the glare is an additional degradation (rela- 
tive to the 100 m image) that is not accounted for in 
the system model nor in the filter derivation. Be- 
cause the small kernel is derived without accounting 
for glare noise, the small kernel filter sharpens the 
image and the glare too much. If the glare noise were 
included in the derivation, the small kernel filter 
would perform less sharpening (more blurring) and 
produce an image with greater fidelity. 

Note that the image acquired at 300 m and re- 
stored with the 5 X 5 kernel is better correlated with 
the 100 m image than is the image acquired at 200 m 
and reconstructed with a Gaussian spot. Similarly, 
the image acquired at 700 m and restored with the 
5 × 5 kernel is nearly as correlated with the 100 m 
image than is the image acquired at 300 m and 
reconstructed with a Gaussian spot. The result im- 

Table 3 
Computed performance for actual images 

Filter/reconstruction Correlation coefficient 

200 m 300 m 400 m 500 m 600 m 700 m 800 m 

Oaussian spot 0.915 0.847 0.548 0.544 0.691 0.709 0.681 
Bilinear 0.933 0.896 0.555 0.552 0.726 0.800 0.763 
Cubic convolution 0.937 0.888 0.554 0.547 0.729 0.807 0.757 
5 X 5 small kernel 0.946 0.926 0.536 0.545 0.717 0.841 0.802 

Note: the 400 m, 500 m, and 600 m images are degraded by glare. 

Fig. 7. Processed actual images at 200 m. Top row: Gaussian spot and bilinear. Bottom row: cubic convolution and 5 X 5 small kernel. 
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Fig. 8. ,ocessed actual images at 400 m. Top row: Gaussian spot and bilinear. Bottom row: cubic convolution and 5 × 5 small kernel. 

Fig. 9. Processed actual images at 800 m. Top row: Gaussian spot and bilinear. Bottom row: cubic convolution and 5 X 5 small kernel. 

ages for 200 m, 400 m, and 800 m are pictured in 
Figs. 7 -9 .  These images also illustrate the improve- 
ments in the images restored with the small kernel. 

6.3. Sys tem design 

The final experiment presented in this paper, ex- 
plores the effects o f  design tradeoffs on system 
performance. Specifically, the mean spatial detail (as 
a function of  range), the presampling acquisition blur 
(as a function of  the cutoff of  the diffraction limited 
optical system), and the SNR are varied and the 

expected fidelity is reported for each configuration. 
The results are obtained using the software simula- 
tion described above. 

The scene mean-spatial-detail in the object plane 
is fixed at 0.5 m and three ranges are considered: 
315 m, where the image-plane mean-spatial-detail is 
about 1.6 rm'ad; 1250 m, where the image-plane 
mean-spatial-detail is about 0.4 mrad; and 5000 m, 
where the image-plane mean-spatial-detail is about 
0.1 mrad. To simplify the consideration of  blurting, 
the acquisition system is modeled with only diffrac- 
tion-limited optics, detector with 100% fill factor, 
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and noise (i.e., no defocus blur or scanner), with the 
OTF cutoff expressed in cycles/mrad. The sampling 
interval is fixed at 0.1 mrad, a figure appropriate for 
narrow-field-of-view tactical FLIRs. Three SNRs, 
128, 32, and 8, are considered. 

The results of the simulations are presented in 
Fig. 10. For the high SNR images, restoration pro- 
cessing is able to correct for a fairly high degree of 
presample blurring, even in images at great distance. 
At 5000 m, where the mean spatial detail is equal to 
the sample spacing of 0.1 mrad, in the images with 
SNR = 128, performance is good even with the ac- 
quisition transfer function cutoff down to about 10 
cycles/mrad, which is equal to the sampling fre- 
quency. Restoration is less successful in correcting 
presample blurring in images with low SNR. This 
sort of simulation could be used in the design of a 
FLIR system, for example to choose the optical 
configuration based on anticipated distance and SNR. 
Of course, in practice other more extensive simula- 
tions would be used (e.g., with SNR a function of 
distance to account for atmospheric attenuation [28]). 

A benefit of restoration processing is that it al- 
lows greater freedom in design tradeoff between 
blurring and aliasing. Without restoration, the utility 
of presample blurring to reduce aliasing is usually 
limited in the system design by the level of blurring 
that is visually acceptable. Of course, this may not 
maximize the total information content of the image 
that is passed to the human or ATR [29]. Restoration 
processing can compensate for blurring and so al- 
lows greater latitude in designing the system to 
reduce aliasing. 

7. Conclusion 

This paper describes the design of an efficient 
filter that significantly improves the performance of 
FLIR imaging systems. The filter is based on a 
comprehensive model of the digital imaging process 
that accounts for the significant effects of sampling 
and reconstruction as well as acquisition blur and 
noise. The filter both restores, partially correcting 
degradations introduced during image acquisition, 
and interpolates, increasing apparent sharpness and 
improving reconstruction. The filter derivation is 
conditioned on explicit constraints on spatial support 

and density so that it can be implemented efficiently 
and is practical for real-time applications. Subject to 
these implementation constraints, the filter optimizes 
end-to-end system fidelity, yielding an image that 
more closely resembles an 'ideal' close-range image. 
In experiments with simulated and actual FLIR sys- 
tems, the filter significantly increases fidelity and 
apparent clarity with relatively little computation. 

References 

[1] J.D. Howe, in: Infrared and Electro-Optical Handbook, ed. 
M. Dudzik, Vol. 4 (ERIM and SPIE, 1993) ch. 2, pp. 
55-120. 

[2] W.F. Schreiber, Fundamentals of Electronic Imaging Sys- 
tems: Some Aspects of Image Processing (Springer-Verlag, 
New York, 1986). 

[3] H.C. Andrews and B.R. Hunt, Digital Image Restoration 
(prentice-Hall, Englewood Cliffs, NJ, 1977). 

[4] F.O. Huck, C.L. Fales, N. Halyo, R.W. Samms and K. Stacy, 
J. Opt. Soc. Am. A 2(10) (1985) 1644-1666. 

[5] C.L. Fales, F.O. Huck, J.A. McCormick and S.K. Park, J. 
Opt. Soc. Am. A 5(3) (1988) 300-314. 

[6] J.A. Ratches, Opt. Eng. 15(6) (1976) 525-530. 
[7] W. McCracken and L. Wajsfelner, in: Thermal Imaging, 

Proc. SPIE 636 (1986) pp. 31-35. 
[8] H.V. Kennedy, Opt. Eng. 30(11)(1991) 1771-1778. 
[9] S.E. Reichenbach and S.K. Park, IEEE Trans. Signal Pro- 

cess. 39(10) (1991) 2263-2274. 
[10] S.K. Park and R.A. Schowengerdt, Comput. Vision Graphics 

Image Process. 23 (1983) 258-272. 
[11] F. RoseU and G. Harvey (eds.), The Fundamentals of Ther- 

mal Imaging Systems, NRL Report 8311, ADA 073 763 
(1979). 

[12] J.A. Ratches, W.R. Lawson, L.P. Obert, R.J. Bergemann, 
T.W. Cassidy and J.M. Swenson, Night Vision Laboratory 
Static Performance Model for Thermal Viewing Systems, 
ECOM-7043 (1975). 

[13] D.L. Schumaker, J.T. Wood and C.D. Thacker, FLIR Perfor- 
mance Handbook, DCS Corp. (1988). 

[14] Night Vision and Electronic Sensors Directorate Report, 
FLIR92 Thermal Imaging Systems Performance Model, US 
Army, January (1993). 

[15] E.H. Linfoot, J. Opt. Soc. Am. 46(9) (1956) 740-752. 
[16] W.K. Pratt, Digital Image Processing, 2nd Ed. (John Wiley 

and Sons, New York, 1991). 
[17] Y. Itakura, T. Suteo and T. Takagi, in: Infrared Physics, Vol. 

14 (Pergamon Press, Ehnsford, NY, 1974) pp. 17-29. 
[18] K. Ben-Yosef, N. Wilner, S. Simhony and G. Feigin, Appl. 

Opt. 24(14) (1985) 2109-2113. 
[19] H.H. Hopkins, Proc. R. Soc. London A 231 (1955) 91-103. 
[20] P.A. Stokseth, J. Opt. Soc. Am. 59(10) (1969) 1314-1321. 
[21] J.E. Murguia, J.M. Mooney and W.S. Ewing, Opt. Eng. 

29(7) (1990) 786-794. 



192 S.E. Reichenbach et a l . /  Infrared Physics & Technology 38 (1997) 177-192 

[22] R.D. Hudson, Jr., Infrared System Engineering (John Wiley 
and Sons, New York, NY, 1969). 

[23] W.L. Wolfe and GJ. Zissis (eds.), The Infrared Handbook, 
ERIM, Ann Arbor, MI (1985). 

[24] J.D. Vincent, Fundamentals of Infrared Detector Operation 
and Testing (John Wiley and Sons, New York, NY, 1990). 

[25] S.E. Reichenbach, S.K. Park, R. Alter-Gartenberg and Z. 
Rahman, in: Stochastic and Neural Methods in Signal Pro- 
cessing, Image Processing and Computer Vision, Proc. SPIE 
1569 (1991) pp. 422-433. 

[26] J. Johnson, in: Image Intensifier Symposium, U.S. Army 
Research and Development Laboratories (1958) pp. 249-273. 

[27] S.E. Reichenbach, S.K. Park and Ramkumar Narayanswamy, 
Opt. Eng. 30(2) (1991) 170-177. 

[28] S.E. Reichenbach, S.K. Park, G.F. O'Brien and J.D. Howe, 
in: Visual Information Processing, Proc. SPIE 1705 (1992) 
pp. 165-176. 

[29] J.A. McCormick, R. Alter-Gartenberg and F.O. Huck, J. Opt. 
Soc. Am. A 6(7) (1989) 987-1005. 


