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Abstract pattern matching techniques can be classified roughly as
matching space search techniques and transformation space
Pattern matching is a well-known pattern recognition search techniques. Matching space search techniques in-
technique. This paper proposes a novel pattern matching al-clude pruned tree search (PTS) [1], pruned correspondence
gorithm that searches transformation space by sequentialsearch (PCS) [2]etcTransformation space search tech-
subdivision. The algorithm subdivides the transformation niques include relaxation [9], alignment [6], Hough trans-
space in depth-first manner by conducting boolean opera-forms [7], recognition by adaptive subdivision of transfor
tions on the constraint sets that are defined by pairs of tem-mation space (RAST) [3], geometric hashing [11], minimiz-
plate points and target points. For constrained polynomial ing Hausdorff distances [5, 108fc.
transformations that have no more than two parameters on  This paper presents a novel transformation space search
each coordinate, a constraint set can be represented as a 2Dalgorithm—pattern matching by sequential subdivision of
polygon or a Cartesian product of 2D polygons. Then, the transformation space (PMSST). With this algorithm, each
boolean operations can be computed through generic poly-possible pairing between a template point and a target point
gon clipping algorithms. Preliminary experiments on ran- defines a geometric constraint set in the transformation
domly generated point patterns show that the algorithm is space. All constraint sets sharing the same template point
effective and efficient under practical conditions. form a candidate constraint set for the template point. Then
the transformation space is sequentially subdivided by the
candidate sets in depth-first manner. During the subdivjsio
each generated sub-region is the intersection of some con-
1. Introduction straint sets, i.e., any transformation in the sub-regiam ca
match the pairs of points represented by the constraint sets
Pattern matching (or template matching) is one of the The algorithm takes a range of numbers of points that are
well-known approaches for pattern recognition [8]. It has expected to match and returns the sub-region that intersect
been widely used in visual object location and recognition, the maximum number of constraint sets.
data fusion, change detectiogtc. In pattern matching, a The experiments evaluate the effectiveness and compu-
pattern is defined as a set of features and the objective is tQational complexity of the algorithm. Preliminary resuits
establish correspondences from features in a template patrandomly generated point patterns show that the algorithm
tern to features in a target pattern (the unknown pattern). s effective and its computational complexity is low order

This paper focuses on point pattern matching, though polynomial in the size of the point templates under reason-
the proposed algorithm can be easily adjusted for matchingaply large transformation space.

other patterns. The most general formulation of point pat-

tern matchlng problems s as foIIOV\GNenT point templ_ate 2. The Geometric Constraints

(template point patternP = {p;(z;,v:)},_,, target point

pattern@ = {q;(u;,v;)};_,, and transformation spacg, Let P, Q, T, ande be as described in the previous sec-

find a transformatiort in 7' that maximizes the number of  tjon. The objective of pattern matching is to find & T

pOintS inP that can be matched with pOintS@l under dis- that brings as manyi’s as possible close to Sorqﬁ’sy i.e"

tance tolerance. The solution to the problem is either a o compute

transformation or a matching. The two forms of solution

are usually considered to be equivalent. (Jmax A{[IAll ] d(t(pi),45) < €,pi € A, € Q}
Many techniques have been developed for point pattern T

matching. Based on the search spaces explored, the poinvhered(., .) is some distance if?.



Pairing (p;, ¢;) defines a constraint s&t; in T' (a re-
gion) under distance toleranee Priority queue Candidate sets

Tij(e) ={t € T | d(t(pi),qj) < €} _Subdivide D D T

Level0 e e
Let C; be the set of points i) with which p; can be

matched and’; be_the set of constraint sets that have the | | LD‘ ‘Dﬁ _ Subdivide D D o

same template point;:

Ci={g€Q|3HteT dtp),q)<e, L 47
Ti ={T; | q; € Ci}.

Then, solving the pattern matching problem is equivalent to ! m“LD‘ ‘DM ubdide D D Tn
finding the intersection among constraint sets from differ-
entT;’s. The computation requires boolean operations (in- Figure 1. Data structure.
tersection and subtraction) on constraint sets. For genera
polynomial transformations, the high dimensionality of th
transformation space renders the boolean operations-ineffi3. The Algorithm
cient. However, for constrained polynomial transformasio
that have no more than two parameters on each coordinate, Most pattern matching methods fall into the so-called
a constraint set can be represented as a 2D polygon or &ypothesis-and-test paradigm [10]. Methods using this
Cartesian product of 2D polygons. Then, the boolean oper-paradigm typically involve two phases. Phase one gener-
ations on the constraint sets can be computed through effi-ates a number of hypothetical transformations (or match-

cient, generic polygon clipping algorithms [4]. ings). These hypotheses are checked in phase two to see
This research uses the following transformation model if they meet some match quality criteria. In PTS [1] and
(the combination of non-uniform scale and translation): PCS [2], hypothetical matchings are formed in match-

_ ing space during depth-first search. The feasibility of
{ u-j:g'xi+e the matchings are then verified using linear program-
vi=d-yitf ming techniques. RAST [3] generates hypothetical regions
With Manhattan distancé, the constraint séf;; canberep-  during adaptive subdivision of transformation space. Af-
resented as the Cartesian product of 2D polygbhsand terwards, the regions are checked if they contain trans-
T, formations that match enough points. The PMSST al-
o . o o o gorithm developed in this paper is closely related to the
T B ﬁfgg;/ ﬁ; 'ea +u; |_§u€_’||d< Ey}l foulsd above three methods. However, PMSST forms hypothet-
X {’(d fer” IZIU- d+ f 7’ ol <} ical regions by sequentially subdividing the transforma-

A ’ It = tion space using boolean operations on constraint sets. The

= Ty xT", set of points that the regions can match and the transforma-
whereT” is the projection of’ on ae plane, " is the pro- tions are directly available within the regions. Therefore

jection of T on df plane, and< denotes Cartesian product the test phase is not needed. ,
of two regions. The relationship between the boolean opera- PMSST uses depth-first search. The main data structures

tions onT;,;'s and the boolean operations @t;,'s (T";,'s) are the c_and_idate constraint sets_an_d the_priority queue as
is as follows: plctureo_l in Flgu_re 1. For each point in P,_lts can_dldate
, . ) . constraint sef; is calculated as described in Section 2. All
Tijy W Thage = (Th,5, x T1)5,) N (T, % Ty j,) such candidate sets are stored in an aff&y ", . A region
= (T} N> T;,,) x (Ti;, n? T ), R in the priority queue has three important properties:
level: indicates thafR is generated by sequentially
T AT . = (T . xT/ T " e R
W 292 ( i 2“”) 2( info 21”2,) subdividingT' by T;, i = 1...R.level.
= T, . —=T; U (szm Tmz)] X

[( 171 71272)
(

T 2T YR (TY . 2T )] e R.matchingSize: the number of constraint sets

4%1, mf;f, ) x &f}, m;;f,"’, 1 whose intersection isR. This value gives the num-
Ty SRR ber of points that the transformations i can
= [ 1171 (Thh le]z)] match.
[( 1171 = Tllzjz) (Tlllljl m2 Tll2/32 )]

e R.css: The set of template point and target point pairs
wheren”, U" and —" stand for boolean operations in that the transformations iRt can match. Note that the
dimensional space. template points imR.css is a subset O{pz}R level



Regions are enqueued with their priorities. The priorities ] . . € 5, °

compared based on two rules: ‘. T P
e Regions with highetevel have higher priorities. This T o " . T S S
rule forces depth-first search. I S
. S Lt e < ° g
e If two regions have the samlievel, the region with . Te

larger matchingSize has higher priority. This rule

forces best-first search. . ' fee T '-f._ e
When the algorithm starts, the priority queue has the . °.O * Lo ;-o' o,
transformation spacg as its only nodel’ is initialized such B T L
thatT.level = 0, T.matchingSize = 0, andT.css = Q. et ‘ ot < oo o a2 ©
Each constraint sef;; in the candidate sets is initialized e A O - ) - . : g
such thatT;;.css = {(pi,¢;)}. The algorithm stops when L A DA

the priority queue is empty or when enough number of tem-
plate points have been matched. Ibe a region extracted
from the priority queue and = R.level + 1. RegionR is

subdivided by candidate sé&t = {Tij};’:l. The subdivi- Figure 2. The point template P (empty ovals)
miJrl

sion generates a set of sub-regigii; } /', where and the target point pattern @ (filled ovals).

Ry =RNTy, j=1,...,my
R;.level =1,

i ) ) ] The worst case computational complexity of PMSST is
R;.matchingSize = R.matchingSize + 1,

exponential inmn. However, the actual running time of

Rj.css = R.css UT;j;.css the algorithm depends on many issues: the transformation
space, the distance tolerance, the knowledge about the num-
Rj=R—U™ Ty, j=m;+1 ber of matched points that are expectet, Under practi- -
R; level =i, cal conditions, the algorithm has computational compjexit

that is low order polynomial imn, as suggested by the ex-

R;.machingSize = R.matchingSize, ; . g
periments in Section 4.

Rj.css = R.css.

With reasonably smad, T;;'s typically do notoverlapin T. 4. Experimental Results

Therefore,R;'s do not overlap andJ;”;fle = R. This

property means that the algorithm typically does not re- The experiments evaluate the effectiveness and the com-

explore a region during the depth-first search. putational complexity of the algorithm. The evaluation is
After the subdivision is done, non-empty sub-regien based on randomly generated point patterns and noise. The

is enqueued iR;.matchingSize+m— R;.level isnoless  setup of the experiments are as follows:

than the lowest number of matched points that are expected o point templateP: First, a set of 200 points (denoted

so far. This rule prunes those regions that will not meet the by P) are selected independently and uniformly in do-

matchiqg criterion. ) main[—2.0, 2.0] x [-2.0, 2.0]. Then, choosé to be a
The inputs to the PMSST algorithm are: subset ofP. The size ofP steps from 10 to 190 with
e P: point template. step size 10.

e transformation spac@&’ {(a,e,d, f) | a € [0.7,1.3],
ee[-0.2,02],de[0.7,1.3], f € [-0.2,0.2]}.

e noise range[—0.005, 0.005] x [—0.005, 0.005].

e distance tolerance ¢ is set to 0.005 according to the
o [kmin, kmaz]: the range of the number of template noise range.
points to be matched, whetg,;,, specifies the mini-
mum number of matched points that are expected, and
the algorithm stops if,,,.,. Or more points have been
matched.

e (): target point pattern.
e ¢ distance tolerance.
e T transformation space.

e target point patterrd): First, randomly select a trans-
formation t inT'. Then, for eachp; in P, select a ran-
dom noise vectoe; uniformly within the noise range
and letQ = {q¢; | ¢; = t(p;) + €, p; € P}. P andQ

The output of the algorithm is a region that matches the are shown in Figure 2. After that, randomly permu-

maximum number of points. tate. Finally, for eachP, a certain percentage of its
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Figure 3. The running time of the algo-
rithm under different percentages of missing
points.

transformed points i are removed to simulate miss-
ing point occasions. The percentage (denotegdyy
steps from0% to 50% with step sizel 0%.

L4 [kminakmam]: kmzn = (10 — per — 02) . |P| and
Emaz = (1.0 — per) - |P| in all occasions, whergP|
is the size ofP.

The test results are shown in Figure 3. For easy compar-

ison, functiontime = 0.7 - size - log(size) is also plotted
in the same figure. The results suggest that:

e The expected running time of the algorithmis no worse
thanO(m - log(m)) under this experimental setting.

e The algorithm degrades gracefully when missing point
percentag@er increases.

e The algorithm is especially efficient for point patterns
of up to 100 points or wheper is low.

In all test cases, more th@3% of the template points are
matched correctly.

5. Conclusion

This paper develops a novel pattern matching algorithm

by sequential subdivision of transformation space. The al- [9]
gorithm represents the constraint sets as 2D polygons or
Cartesian products of 2D polygons and then uses efficient(10

polygon clipping algorithms for space subdivision. The-sub
division naturally integrates two crucial pruning techureg:

e Any region in transformation space typically is ex-
plored only once.

e The regions in the priority queue are expanded in
a best-first manner. The more promising regions are
likely to be found earlier in the search. These regions
are then used to promote minimum expected match-
ing sizek,,;, and subsequently to prune the remain-
ing of the priority queue. If a region can not gener-
ate better results than what has already been seen, it is
pruned. This technique is called the branch-and-bound
technique.

Preliminary experiments suggest that PMSST is a practical
algorithm.

Because computing boolean operations of polygonal re-
gions in high (three or larger) dimensional space is costly,
the PMSST algorithm is difficult to extend to higher dimen-
sional transformation models than those described in Sec-
tion 2.
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