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ABSTRACT

This paper formulates a two-dimensional, piecewise-cubic
interpolator that accounts for non-separable and rotation-
ally asymmetric scene statistics. The resulting kernel has
five parameters and is designated 2D-5PCC. As a low-order
polynomial with small spatial support, the kernel is easy to
implement and efficient to apply. A closed-form solution,
developed in this paper, yields the optimal parameter val-
ues for scene ensembles characterized by autocorrelation
or power spectrum. Experiments indicate that 2D-5PCC
yields higher fidelity interpolations than several other pop-
ular methods.

1. INTRODUCTION

Image interpolation is the process of defining a spatially
continuous image from a set of discrete samples. Inter-
polation is fundamental to many digital image processing
applications, particularly in operations requiring image re-
sampling, such as image warping, correction for geometric
distortions, and image registration. Interpolation commonly
is implemented by convolving an image with a small kernel
for the weighting function. Popular methods of interpola-
tion include nearest neighbor interpolation, bi-linear inter-
polation, cubic B-spline interpolation, and piecewise-cubic
convolution (PCC) [1]. PCC has been used for image inter-
polation since the 1970’s and provides a good compromise
between computational complexity and interpolation accu-
racy [2]. Cubic convolution can be parameterized and then
optimized either for general performance characteristics or
for optimal fidelity over an image ensemble with specific
characteristics [3, 4].

This paper formulates a PCC interpolator that accounts
for non-separable and rotationally asymmetric scene statis-
tics. This kernel is the most general two-dimensional, bi-
axial symmetric, piecewise-cubic interpolator defined on [-
2,2]x[-2,2] with constraints for continuity and smoothness.
This paper also develops a closed-form solution for the op-
timal parameters subject to any set of constraints.
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2. FORMULATION OF 2D-5PCC

Interpolation aims to recreate a continuous function from
discrete samples. Let s(x,y), (z,y € R), be a continuous
two-dimensional scene and s[m, n], (m,n € 0,£1,£2, ...),
be an image consisting of uniformly spaced discrete sam-
ples from the scene. Many popular image interpolation meth-
ods, including nearest-neighbor, bi-linear, cubic convolu-
tion, and cubic-spline interpolation implement interpolation
by convolution of the image s[m, n] with a continuous two
dimensional kernel f(z,y), (x,y € R):
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where 7(u,v), f(u,v), and §(u,v) are the Fourier trans-
forms of the interpolated result r(x,y), the interpolation
kernel f(z,y), and the scene s(x, y) respectively.
Traditionally, PCC is implemented by separable convo-
lution with a small one-dimensional kernel consisting of one
parameter and piecewise-cubic polynomials (designated 1D-
1PCC). This method can be generalized to two dimensions
in a nonseparable fashion. With constraints for flat-field in-
terpolation, biaxial and diagonal symmetry, continuity, and
smoothness, the kernel can be reduced to a two-dimensional
function of three parameters (2D-3PCC) [5]. However, many
scenes do not have rotational symmetry. Relaxing the con-
straint on 90° rotational symmetry, yields a five parameter
kernel, designated 2D-5PCC:

f(x,y) = assfas(x,y) + asafa2(x,y) + azs foz(x,y)
+ aso f30(x,y) + ao3 foz(x,y) + foo(z,y), (3)

where ass, as2, a23, aso, and ags are the five parameters and
f33, f32, f23, fgo, f03, and fOO are defined in Flg 1. Flg 2
shows the spatial-domain point spread functions (PSFs) of
the parametric components. The components f3o(z,y) and
fos(x, y) provide capacity for directional edge enhancement.
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Fig. 1. Component equations for 2D-5PCC in Eq. 3.
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Fig. 2. Component plots for 2D-5PCC in Eq. 3.



3. OPTIMAL PARAMETERIZATION

This section develops a closed-form solution for the opti-
mal parameters for 2D-5PCC, based on an analysis of the
expected mean square error (MSE) €2 for interpolation of
an ensemble of scenes characterized by autocorrelation or
power spectrum. By Rayleigh’s Theorem, the expected MSE
of a system for an ensemble of scenes can be analyzed in ei-
ther the spatial or frequency domain:
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If co-aliased components of the sampled scene are uncorre-
lated [6], the expected MSE can be expressed in terms of
the scene power spectrum and the interpolation kernel:
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where @ (u,v) is the scene power spectrum and
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noov

is the image power spectrum (with aliasing). Without loss
of generality, scenes are normalized so that the mean and
variance are zero and one respectively.

The MSE €2 is a quadratic function of the parameters
(ass3, asa, a3, azg and ag3), so the optimal values can be
derived by substituting the Fourier transform of the kernel
from Eq. 3 into Eq. 5, computing the partial derivatives of ¢2
with respect to the parameters, and solving for simultaneous
equality with zero:
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This yields five equations for the optimal parameter values:
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for go = fas. §1 = fs2. G2 = fas. 3 = fs0. and g4 = fos.
With matrix notation, Eq. 8 can be written as K = H A:
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where:
k; :// gi(u,v) (@S(um) — foo(u,v)@p(u,v)) dudv
hij://gi(u,v)gj(uw)ép(u,v)dudv. (10)

Then, the optimal parameter values can be solved as:

A = HK, (11)
if H is well-conditioned.

If the scene statistics have 90° rotational symmetry, then
the optimal values have aso = as3 and agg = ags and 2D-
5PCC reduces to 2D-3PCC with ago parameterizing f3o +
fo3 and a3 parameterizing f3o + fos-

4. EXPERIMENTAL RESULTS

This section examines the performance of 2D-5PCC in two
aspects: visual quality and quantitative MSE. Fig. 3A shows
a fence scene [7]. This 256x256 scene contains more de-
tails along-x than along-y. The scene is downsampled and
then interpolated back to 256256 by various algorithms.
The images sampled to 64x64 and then interpolated are
shown in Fig. 3(B)-(H). Visually, 2D-5PCC outperforms
traditional cubic convolution (1D-1PCC), the 90° rotation-
ally symmetric nonseparable cubic kernel (2D-3PCC), cu-
bic B-spline interpolation [8], and cubic o-Moms interpo-
lation [9]. Table 1 lists the MSE €2 of various algorithms
for the fence scene. In these experiments, the (optimal, ap-
proximating) Wiener filter gives the smallest MSE, but 2D-
SPCC yields smaller MSE than the other methods.

Note that the Wiener filter is a global filter and so is
computationally expensive. It is presented only to bench-
mark optimal fidelity. Regarding the PCC kernels (1D-1PCC,
2D-3PCC, and 2D-5PCC) and the B-spline family (cubic
B-spline interpolation and cubic o-Moms interpolation), the
former can balance the error budget tradeoff between sig-
nal error caused by alternation of scene signal components
at frequencies where f (u,v) # 1 and aliasing error caused
by interpolation of the aliased components. The balancing
is realized by optimizing parameters of the PCC kernels.
Aliasing occurs frequently in many imaging applications
where anti-aliasing filters can not be applied on physical
matter [10]. As the down-sampling rate increases, alias-
ing becomes more pronounced and so does the difference of
MSE between piecewise-cubic convolution and the B-spline
family.

5. CONCLUSIONS

This paper presents the most general two-dimensional, non-
separable, biaxial-symmetric, piecewise-cubic interpolator
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Fig. 3. A 256x256 fence scene downsampled to 64 x 64, then interpolated to 256 x256 by various algorithms.

Table 1. MSE results for the fence image.

Mean Square Error
Method 128x128 | 64x64 | 32x32
Wiener 0.112 0.225 | 0.295
2D-5PCC 0.169 0.342 | 0471
2D-3PCC 0.170 0.352 | 0.506
1D-1PCC 0.182 0.404 | 0.554
Cubic B-spline 0.196 0.431 | 0.576
Cubic o-Moms 0.204 0.446 | 0.591
Nearest neighbor 0.185 0.453 | 0.612

defined on [-2,2]x[-2,2] and constrained for continuity and
smoothness. The closed-form solution for the optimal pa-
rameters is derived with respect to the power spectrum of
an ensemble of scenes. Experimental results indicate that
2D-5PCC outperforms traditional methods in quantitative
MSE and visual quality.
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