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ABSTRACT

This paper formulates a two-dimensional, piecewise-cubic
interpolator that accounts for non-separable and rotation-
ally asymmetric scene statistics. The resulting kernel has
five parameters and is designated 2D-5PCC. As a low-order
polynomial with small spatial support, the kernel is easy to
implement and efficient to apply. A closed-form solution,
developed in this paper, yields the optimal parameter val-
ues for scene ensembles characterized by autocorrelation
or power spectrum. Experiments indicate that 2D-5PCC
yields higher fidelity interpolations than several other pop-
ular methods.

1. INTRODUCTION

Image interpolation is the process of defining a spatially
continuous image from a set of discrete samples. Inter-
polation is fundamental to many digital image processing
applications, particularly in operations requiring image re-
sampling, such as image warping, correction for geometric
distortions, and image registration. Interpolation commonly
is implemented by convolving an image with a small kernel
for the weighting function. Popular methods of interpola-
tion include nearest neighbor interpolation, bi-linear inter-
polation, cubic B-spline interpolation, and piecewise-cubic
convolution (PCC) [1]. PCC has been used for image inter-
polation since the 1970’s and provides a good compromise
between computational complexity and interpolation accu-
racy [2]. Cubic convolution can be parameterized and then
optimized either for general performance characteristics or
for optimal fidelity over an image ensemble with specific
characteristics [3, 4].

This paper formulates a PCC interpolator that accounts
for non-separable and rotationally asymmetric scene statis-
tics. This kernel is the most general two-dimensional, bi-
axial symmetric, piecewise-cubic interpolator defined on [-
2,2]×[-2,2] with constraints for continuity and smoothness.
This paper also develops a closed-form solution for the op-
timal parameters subject to any set of constraints.
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2. FORMULATION OF 2D-5PCC

Interpolation aims to recreate a continuous function from
discrete samples. Let s(x, y), (x, y ∈ R), be a continuous
two-dimensional scene and s[m,n], (m,n ∈ 0,±1,±2, ...),
be an image consisting of uniformly spaced discrete sam-
ples from the scene. Many popular image interpolation meth-
ods, including nearest-neighbor, bi-linear, cubic convolu-
tion, and cubic-spline interpolation implement interpolation
by convolution of the image s[m,n] with a continuous two
dimensional kernel f(x, y), (x, y ∈ R):

r(x, y) =
+∞∑

m=−∞

+∞∑
n=−∞

s[m,n]f(x − m, y − n). (1)

In the Fourier frequency domain:

r̂(u, v) = f̂(u, v)
+∞∑

µ=−∞

+∞∑
ν=−∞

ŝ(u − µ, v − ν), (2)

where r̂(u, v), f̂(u, v), and ŝ(u, v) are the Fourier trans-
forms of the interpolated result r(x, y), the interpolation
kernel f(x, y), and the scene s(x, y) respectively.

Traditionally, PCC is implemented by separable convo-
lution with a small one-dimensional kernel consisting of one
parameter and piecewise-cubic polynomials (designated 1D-
1PCC). This method can be generalized to two dimensions
in a nonseparable fashion. With constraints for flat-field in-
terpolation, biaxial and diagonal symmetry, continuity, and
smoothness, the kernel can be reduced to a two-dimensional
function of three parameters (2D-3PCC) [5]. However, many
scenes do not have rotational symmetry. Relaxing the con-
straint on 90o rotational symmetry, yields a five parameter
kernel, designated 2D-5PCC:

f(x, y) = a33f33(x, y) + a32f32(x, y) + a23f23(x, y)
+ a30f30(x, y) + a03f03(x, y) + f00(x, y), (3)

where a33, a32, a23, a30, and a03 are the five parameters and
f33, f32, f23, f30, f03, and f00 are defined in Fig. 1. Fig. 2
shows the spatial-domain point spread functions (PSFs) of
the parametric components. The components f30(x, y) and
f03(x, y) provide capacity for directional edge enhancement.
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f33(x, y) =




x3y3 − x2y2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x − 2)2
(
5xy3 − 4xy2 − 4y3 + 3y2

)
1 < x ≤ 2, 0 ≤ y ≤ 1

(x − 2)2 (y − 2)2 (9xy − 8x − 8y + 7) 1 < x ≤ 2, 1 < y ≤ 2

(y − 2)2
(
5x3y − 4x2y − 4x3 + 3x2

)
0 ≤ x ≤ 1, 1 < y ≤ 2

f32(x, y) =




x3y2 − x2y2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x − 2)2
(
xy2 − y2

)
1 < x ≤ 2, 0 ≤ y ≤ 1

(y − 2)2 (x − 2)2 (4xy − 4y − 3x + 3) 1 < x ≤ 2, 1 < y ≤ 2

(y − 2)2
(
4x3y − 4x2y − 3x3 + 3x2

)
0 ≤ x ≤ 1, 1 < y ≤ 2

f23(x, y) =




x2y3 − x2y2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x − 2)2
(
4xy3 − 4xy2 − 3y3 + 3y2

)
1 < x ≤ 2, 0 ≤ y ≤ 1

(y − 2)2 (x − 2)2 (4xy − 4x − 3y + 3) 1 < x ≤ 2, 1 < y ≤ 2

(y − 2)2
(
x2y − x2

)
0 ≤ x ≤ 1, 1 < y ≤ 2

f30(x, y) =




x3 − x2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x − 2)2 (x − 1) 1 < x ≤ 2, 0 ≤ y ≤ 1

(x − 2)2 (y − 2)2 (2xy − 2y − x + 1) 1 < x ≤ 2, 1 < y ≤ 2

(y − 2)2
(
2x3y − 2x2y − x3 + x2

)
0 ≤ x ≤ 1, 1 < y ≤ 2

f03(x, y) =




y3 − y2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x − 2)2
(
2xy3 − 2xy2 − y3 + y2

)
1 < x ≤ 2, 0 ≤ y ≤ 1

(y − 2)2 (x − 2)2 (2xy − 2x − y + 1) 1 < x ≤ 2, 1 < y ≤ 2

(y − 2)2 (y − 1) 0 ≤ x ≤ 1, 1 < y ≤ 2

f00(x, y) =




x2y2 − x2 − y2 + 1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x − 2)2
(
2xy2 − 2y2 − 2x + 2

)
1 < x ≤ 2, 0 ≤ y ≤ 1

(y − 2)2 (x − 2)2 (4xy − 4y − 4x + 4) 1 < x ≤ 2, 1 < y ≤ 2

(y − 2)2
(
2x2y − 2x2 − 2y + 2

)
0 ≤ x ≤ 1, 1 < y ≤ 2.

Fig. 1. Component equations for 2D-5PCC in Eq. 3.
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Fig. 2. Component plots for 2D-5PCC in Eq. 3.



3. OPTIMAL PARAMETERIZATION

This section develops a closed-form solution for the opti-
mal parameters for 2D-5PCC, based on an analysis of the
expected mean square error (MSE) ε2 for interpolation of
an ensemble of scenes characterized by autocorrelation or
power spectrum. By Rayleigh’s Theorem, the expected MSE
of a system for an ensemble of scenes can be analyzed in ei-
ther the spatial or frequency domain:

ε2 = E

{∫ ∫
|r(x, y) − s(x, y)|2 dxdy

}

= E

{∫ ∫
|r̂(u, v) − ŝ(u, v)|2 dudv

}
. (4)

If co-aliased components of the sampled scene are uncorre-
lated [6], the expected MSE can be expressed in terms of
the scene power spectrum and the interpolation kernel:

ε2 =
∫ ∫ (

Φ̂s(u, v) − 2f̂(u, v)Φ̂s(u, v)

+|f̂(u, v)|2Φ̂p(u, v)
)
dudv, (5)

where Φ̂s(u, v) is the scene power spectrum and

Φ̂p(u, v) =
∑

µ

∑
ν

Φ̂s(u − µ, v − ν), (6)

is the image power spectrum (with aliasing). Without loss
of generality, scenes are normalized so that the mean and
variance are zero and one respectively.

The MSE ε2 is a quadratic function of the parameters
(a33, a32, a23, a30 and a03), so the optimal values can be
derived by substituting the Fourier transform of the kernel
from Eq. 3 into Eq. 5, computing the partial derivatives of ε2

with respect to the parameters, and solving for simultaneous
equality with zero:

∂ε2

∂a33
=

∂ε2

∂a32
=

∂ε2

∂a23
=

∂ε2

∂a30
=

∂ε2

∂a03
= 0. (7)

This yields five equations for the optimal parameter values:
∫ ∫

ĝi(u, v)
(
Φ̂s(u, v) − f̂00(u, v)Φ̂p(u, v)

)
dudv

=
∫ ∫

ĝi(u, v)
(
f̂(u, v) − f̂00(u, v)

)
Φ̂p(u, v)dudv (8)

for ĝ0 = f̂33, ĝ1 = f̂32, ĝ2 = f̂23, ĝ3 = f̂30, and ĝ4 = f̂03.
With matrix notation, Eq. 8 can be written as K = HA:




k0

k1

k2

k3

k4


 =




h00 h01 h02 h03 h04

h10 h11 h12 h13 h14

h20 h21 h22 h23 h24

h30 h31 h32 h33 h34

h40 h41 h42 h43 h44







a33

a32

a23

a30

a03


 , (9)

where:

ki =
∫ ∫

ĝi(u, v)
(
Φ̂s(u, v) − f̂00(u, v)Φ̂p(u, v)

)
dudv

hij =
∫ ∫

ĝi(u, v)ĝj(u, v)Φ̂p(u, v)dudv. (10)

Then, the optimal parameter values can be solved as:

A = H−1K, (11)

if H is well-conditioned.
If the scene statistics have 90o rotational symmetry, then

the optimal values have a32 = a23 and a30 = a03 and 2D-
5PCC reduces to 2D-3PCC with a32 parameterizing f32 +
f23 and a30 parameterizing f30 + f03.

4. EXPERIMENTAL RESULTS

This section examines the performance of 2D-5PCC in two
aspects: visual quality and quantitative MSE. Fig. 3A shows
a fence scene [7]. This 256×256 scene contains more de-
tails along-x than along-y. The scene is downsampled and
then interpolated back to 256×256 by various algorithms.
The images sampled to 64×64 and then interpolated are
shown in Fig. 3(B)-(H). Visually, 2D-5PCC outperforms
traditional cubic convolution (1D-1PCC), the 90o rotation-
ally symmetric nonseparable cubic kernel (2D-3PCC), cu-
bic B-spline interpolation [8], and cubic o-Moms interpo-
lation [9]. Table 1 lists the MSE ε2 of various algorithms
for the fence scene. In these experiments, the (optimal, ap-
proximating) Wiener filter gives the smallest MSE, but 2D-
5PCC yields smaller MSE than the other methods.

Note that the Wiener filter is a global filter and so is
computationally expensive. It is presented only to bench-
mark optimal fidelity. Regarding the PCC kernels (1D-1PCC,
2D-3PCC, and 2D-5PCC) and the B-spline family (cubic
B-spline interpolation and cubic o-Moms interpolation), the
former can balance the error budget tradeoff between sig-
nal error caused by alternation of scene signal components
at frequencies where f̂(u, v) �= 1 and aliasing error caused
by interpolation of the aliased components. The balancing
is realized by optimizing parameters of the PCC kernels.
Aliasing occurs frequently in many imaging applications
where anti-aliasing filters can not be applied on physical
matter [10]. As the down-sampling rate increases, alias-
ing becomes more pronounced and so does the difference of
MSE between piecewise-cubic convolution and the B-spline
family.

5. CONCLUSIONS

This paper presents the most general two-dimensional, non-
separable, biaxial-symmetric, piecewise-cubic interpolator



A. Fence scene B. Wiener C. 2D-5PCC D. 2D-3PCC

E. 1D-1PCC F. Cubic B-spline G. Cubic o-Moms H. Nearest neighbor

Fig. 3. A 256×256 fence scene downsampled to 64×64, then interpolated to 256×256 by various algorithms.

Table 1. MSE results for the fence image.
Mean Square Error

Method 128×128 64×64 32×32
Wiener 0.112 0.225 0.295
2D-5PCC 0.169 0.342 0.471
2D-3PCC 0.170 0.352 0.506
1D-1PCC 0.182 0.404 0.554
Cubic B-spline 0.196 0.431 0.576
Cubic o-Moms 0.204 0.446 0.591
Nearest neighbor 0.185 0.453 0.612

defined on [-2,2]×[-2,2] and constrained for continuity and
smoothness. The closed-form solution for the optimal pa-
rameters is derived with respect to the power spectrum of
an ensemble of scenes. Experimental results indicate that
2D-5PCC outperforms traditional methods in quantitative
MSE and visual quality.
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