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Abstract

This paper proposes techniques to automate unmixing of
coeluted chemicals in data produced by comprehensive two-
dimensional gas chromatography (GCxGC) coupled with
mass spectrometry (MS). The approach consists of three
steps: i) measure the pureness of a region of interest, ii)
count and locate the peak points of underlying compounds
in impure regions, and iii) unmix the region into pure com-
pounds using parallel factor analysis (PARAFAC). This ap-
proach has parametric controls that allow tuning to balance
demands for performance and computational efficiency. Ex-
periments with real and simulated data demonstrate the ap-
proach is effective in automating the analysis of coelutions
in GCxGC/MS.

1 Introduction

This paper proposes an approach to automating the un-
mixing of a region of interest in data produced by com-
prehensive two-dimensional gas chromatography (GCxGC)
coupled with mass spectrometry (MS). GCxGC/MS is a
powerful separation technique in which mass spectrome-
try provides additional chemical selectivity to the separa-
tions along two chromatographic columns of GCxGC sys-
tems [1]. The output of GCxGC/MS instruments is a three-
way data cube. The first way (x-axis) represents the elapsed
time for the first column separation; the second way (y-axis)
represents the elapsed time for the second column separa-
tion; and the third way (z-axis) represents the mass spec-
trum. Details about GCxGC and GCxGC/MS can be found
in [2].

Three-way chemometric algorithms, such as trilin-
ear decomposition (TLD) and parallel factor analysis
(PARAFAC), have been proposed for unmixing three-way
trilinear chemical data [1, 3]. One common disadvantage
is that they require a priori knowledge of the number of
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underlying compounds in the region. It is desirable to de-
velop a method that can estimate the number of underly-
ing compounds and thus automate the unmixing process for
GCxGC/MS data.

This paper develops an automated approach to unmix a
region of interest. Given a region, the first step is to measure
its pureness. This paper proposes a statistical method for es-
timating the pureness of a selected region. Exploiting the
additional selectivity provided by mass spectrometry, the
paper also develops a method for locating and counting the
peaks for the constituent compounds in the impure regions.
PARAFAC is applied to unmix the impure regions after the
number of underlying compounds is known. PARAFAC
can provide a unique solution on conditions that the data
have trilinear structure, a reasonable signal-to-noise ratio,
and a known number of compounds in the mixture. When
fitting GCxGC/MS data with the PARAFAC model, the so-
lution has physical meaning, i.e., the chromatographic pro-
files and mass spectra of underlying compounds [4, 1].

The rest of this paper is organized as follows. Section 2
describes the visualization and the mathematical model of
the GCxGC/MS data. Section 3 presents the approach to au-
tomating the unmixing process. Section 4 presents the ex-
perimental results of simulation and real GCxGC/MS data.
Finally, Section 5 gives conclusions and future work.

2 System modeling

GCxGC/MS data can be displayed as a two-dimensional To-
tal Intensity Count (TIC) image, where each pixel value is
the total of the corresponding mass spectrum (the third di-
mension or z-axis). The pixels are arranged so that the x-
axis from left to right is the elapsed time for the first col-
umn separation and the y-axis from bottom to top is the
elapsed time for the secondary column separation. Each
chemical compound produces a two-dimensional chromato-
graphic peak in the data, seen as a blob (or cluster) of ad-
jacent pixels with values larger than the background. Visu-
alization and analysis software, such as GC Image [5], can

IEEE Region 4                                                                                         -7803-9232-9/05/$20.00 2005 IEEE.
eit2005 



Figure 1: A portion of a TIC image of GCxGC/MS data. The red
lines show the blob boundaries. The numbers are blob IDs.

accurately isolate, quantitate, and identify compounds that
are well separated in the data, but coeluting compounds that
produce blobs of multiple overlapping peaks pose a more
difficult analysis problem. Figure 1 displays a TIC image
where background removal and blob detection have been
performed [6]. Some of the blobs are well separated peaks,
but other blobs are composed of coeluting peaks.

In this paper, the individual elements of vectors, matri-
ces, and three-way data are denoted by lowercase italics;
vectors are denoted by lowercase bold characters; matrices
are denoted by uppercase bold characters; and three-way
data cubes are denoted by uppercase italics. Let a region of
interest be an I × J ×K GCxGC/MS data cube X, with el-
ements xi,j,k. The vector xi,j represents the mass spectrum
of pixel (i, j) in the TIC image. An individual ion channel
image for mass-charge-ratio k is X1..I,1..J,k.

Based on the properties of chemical compounds and
GCxGC/MS instruments, the GCxGC/MS data can be for-
mulated by a trilinear model:

XI×JK =
F∑

f=1

an(cT
n ⊗ bT

n ) + E, (1)

where the I × JK matrix X is the GCxGC/MS data un-
folded along the first mode; the operator ⊗ denotes the
Kronecker product; T denotes matrix transpose; F is the
number of chemical compounds; E is an I × JK matrix
accounting for the noise and model error; and an, bn, and
cn are the chromatographic profiles of first and second col-
umn and mass spectral profile for the nth compound (see
Figure 2) [1]. The pair of chromatographic profiles an and
bn determine the volume and the retention time of the nth

compound. The mass spectral profile cn represents the mass
spectrum of the nth compound.

Figure 2: GCxGC/MS data formulated by a trilinear model [1].

3 Automated unmixing

Coeluting compounds produce data with overlapping peaks.
The goals of data analysis are to identify and individually
quantitate the peak for each constituent compound of in-
terest. Implicit in this goal is the challenging problem of
unmixing over-lapping peaks. Blob detection delineates
peaked clusters of pixels, but, with coelution, a detected
blob may account either for only a fraction of one chemical-
related peak (rather than the whole peak) or for parts of
multiple peaks (rather than a single peak). This paper pro-
poses an effective approach to automating the unmixing
of coeluted compounds in a region of interest. The ap-
proach has three steps: a pureness test, peak locating, and
PARAFAC unmixing.

3.1 Pureness test

A region of the data may contain one or several blobs. The
pureness test applies to each blob of the region. If there
exists an impure blob, the region is designated as “impure”.

Suppose a blob contains only one chemical compound.
The mass spectrum of every pixel in the blob should be very
close to that of the blob peak. If there exist two or more
overlapping compounds in a blob, however, the mass spec-
tra of some pixels could be quite different from that of the
peak. With this observation, the paper proposes a statistical
function to measure the impurity of a given blob:

P =
I,J∑

i=1,j=1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
xi,j

K∑
k=1

xi,j,k

− xp,q

K∑
k=1

xp,q,k

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2 K∑
k=1

xi,j,k

K∑
k=1

xp,q,k

, (2)

where (p, q) is the blob peak, xi,j and xp,q are the pixel
and peak mass spectra. The sum of the squared differ-
ences between the normalized pixel and peak mass spec-
tra is weighted by the relative TIC of the pixel (i, j). The
assumption is that the coeluted compounds have different
mass spectra. The expected impurity P should be very
small if the blob is pure; otherwise, it should be large. A
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blob is designated as impure if P is greater than a thresh-
old.

3.2 Peak locating

If a region is determined to be impure, the next step is to
locate and count the peaks in the region. In general, over-
lapping peaks can be distinguished only if there is some sep-
aration in time between the largest values in each peak. If
the separation is relatively large, distinct peaks can be lo-
cated even if the mass spectra are nearly identical. If the
separation is relatively small, distinct peaks can be located
only if the mass spectra of the compounds are different to
some degree.

The peak locating process searches for local maxima in
an ion image by sliding a small window. The center of the
sliding window is considered as a peak candidate if it is
the local maximum for the window. A practical concern is
that noise may generate false peak candidates. Therefore,
two additional criteria are used to verify peak candidates.
The candidate also must have: i) ion intensity that is much
greater than noise level and ii) neighboring values that are
reasonably large.

Performing the peak locating process and the subsequent
step of PARAFAC unmixing on all ion images is computa-
tionally expensive because GCxGC/MS data typical have
hundreds of ion channels. These computations can be re-
duced by operating only on the ion channels that provide the
greatest discrimination. This paper proposes a diamond al-
gorithm to identify the ion channels used for these steps. As
noted previously, underlying this algorithm is the require-
ment that there is some separation between peaks. Using
an impure region with two compounds c1 and c2 as an ex-
ample, Figure 3 shows peak c1 at the center and a diamond
with eight general offset directions for peak c2. The size of
the diamond is regulated by the bounding box of the blob
which contains all pixels with TIC at least w% of the TIC
at the blob peak. The diamond has apexes p1, p3, p5 and p7,
defined from the blob bounding box (w) as:[

x(p1), y(p1)
]

=
[
s1(w), (s2(w) + e2(w))/2

]
,[

x(p3), y(p3)
]

=
[
(s1(w) + e1(w))/2, e2(w)

]
,[

x(p5), y(p5)
]

=
[
e1(w), (s2(w) + e2(w))/2

]
,[

x(p7), y(p7)
]

=
[
(s1(w) + e1(w))/2, s2(w)

]
,

where s1 and s2 are the starting points of the bounding box
along first and second columns and e1 and e2 are the ending
points. Another four points p2, p4, p6 and p8 are defined:[
x(p2), y(p2)

]
=

[
(x(p1) + x(p3))/2, (y(p1) + y(p3))/2

]
,[

x(p4), y(p4)
]

=
[
(x(p3) + x(p5))/2, (y(p3) + y(p5))/2

]
,[

x(p6), y(p6)
]

=
[
(x(p5) + x(p7))/2, (y(p5) + y(p7))/2

]
,[

x(p8), y(p8)
]

=
[
(x(p7) + x(p1))/2, (y(p7) + y(p1))/2

]
.

peak

p1

p2

p3

p4

p5

p6

p7

p8

Figure 3: Diamond algorithm. The solid oval represents c1. The
dotted ovals are possible positions for c2 around c1.

Wherever c2 lies, at least one of these eight points has a
mass spectrum which is more similar to the mass spectrum
of the compound for c2 than is the mass spectrum at the blob
peak. The diamond can be constricted by increasing w or
enlarged it by decreasing w. Normalizing the mass spectra
at the eight diamond points and computing their differences
with the peak yields eight arrays. The ion channels that
contain the largest mass spectral differences are used for
peak locating.

3.3 PARAFAC unmixing

PARAFAC is a method to decompose trilinear data. It yields
three physically meaningful component matrices A, B, and
C that contain an, bn, and cn in Equation 1.

Initializing and refining the profiles are two major steps
in the implementation of PARAFAC unmixing. Any ini-
tialization leads to the same result if the data are strictly
trilinear because PARAFAC has the property of uniqueness
under this condition [7, 4]. However the GCxGC/MS data
are not strictly trilinear, so different initializations may pro-
duce different results. A good starting point can not only
speed up the convergence dramatically, but also helps to
avoid local minima. In this paper, an enhanced trilinear de-
composition (TLD) is used to initialize PARAFAC because
it is a non-iterative algorithm and its solution is close to real
profiles. The enhanced TLD is initialized by Tucker3 and
adjusted by generalized rank annihilation method (GRAM)
so that the solution gets closer to the final profiles than
does TLD. Details about TLD, Tucker3, and GRAM can
be found in [3, 4, 8]. Alternating least squares (ALS) tech-
nique is used to refine the component matrices during the
PARAFAC fitting. In the course of ALS, constraints of uni-
modality and nonnegativity [9] are imposed to make the
component matrices more physically meaningful. Figure 4
presents the algorithm and the mathematical derivations for
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[A, B, C] = PARAFAC(X, F)
• Initialized by the enhanced TLD:

[A, B, C] = eTLD(X, F)
– Initialized by Tucker3

1. [ATuck, BTuck, CTuck, G] = Tucker3(X, F)

– Adjusted by GRAM
1. [BGRAM , CGRAM ] = GRAM(G, F)
2. B = BTuckBGRAM , C = CTuckCGRAM ,

A = XI×JK((C|⊗|B)−1)T

• Refining component matrices with ALS
1. Repeat if relative change between two consecu-

tive iterations is greater than threshold
2. Reshape X into XI×JK

3. Improve A: Z = C|⊗|B, A = XZ(ZT Z)−1

4. Reshape X into XJ×IK

5. Improve B: Z = C|⊗|A, B = XZ(ZT Z)−1

6. Reshape X into XK×IJ

7. Improve C: Z = B|⊗|A, C = XZ(ZT Z)−1

8. Impose constraints of unimodality and nonnega-
tivity

• Postprocessing

Figure 4: PARAFAC unmixing algorithm.

a three-way data cube X that has F components. The oper-
ator |⊗| in Figure 4 stands for khatri Rao product [4].

4 Experimental results

4.1 Simulation

The simulation data is synthesized according to Equation 1.
Two Gaussian-shaped components are created with differ-
ent standard deviations along abscissa and ordinate as well
as two different mass spectra. White noise is added so that
the signal to noise ratio (SNR) is consistent with real data.
The three-way data cube has dimensions I = 40, J = 100,
and K = 10 for three modes respectively. Figure 5(a) and
(b) show the TIC images of the simulated components c1

and c2, with peaks at (16, 56) and (23, 37), respectively.
Their volumes (summation of all the elements) are 1.2×108

and 1.2 × 107, respectively. Figure 6 illustrates the simu-
lated mass spectra of the two components. Figure 5(e) il-
lustrates the synthesized data, the summation of component
c1, component c2, and noise.

Figure 5(c) and (d) demonstrate the TIC images of the
components restored from the outer product of chromato-
graphic profiles extracted by PARAFAC. The peaks of re-
stored components are located exactly at the same places as
the simulated components c1 and c2. The volumes of the
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Figure 5: Simulated data and PARAFAC unmixing results.

restored components are 1.2034 × 108 and 1.1752 × 107,
respectively. Figure 7 illustrates the mass spectral profiles
for the two restored components. For clearer visualization,
Figure 8 shows the unmixing results in two-dimension.

Let the original three-way data be X and the restored
three-way data from the resulting profiles be X̂ . The resid-
ual is computed by:

E(i, j) =
∑

k

|xijk − x̂ijk|. (3)

The ratio r of residual to original data is computed by:

r =
∑
ij

∑
k

|xijk − x̂ijk|
/ ∑

ij

∑
k

xijk. (4)

Figure 5(f) shows the residual, which has residual ratio
0.5%.

4.2 Real data

This subsection presents experimental results for real
GCxGC/MS data, whose TIC image is shown in Figure 1.
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Figure 6: Simulated mass spectra.
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Figure 7: Mass spectra extracted by PARAFAC.

In terms of Equation 2, the impurities P of most blobs in
Figure 1 are very small. For example, the impurities P of
blob 19 and blob 27 are 0.10 and 0.08, indicating they are
relatively pure. No further analysis is needed in these cases.
However, the impurity P of the blob 102 is 5.37, indicating
that this blob is impure.

Figure 9(a) illustrates the results of the peak locating
process for blob 102. The peak finding process locates
two peaks, noted by black crosses, c1 at (321, 279) and c2

at (324, 286). Figure 9(b) and (c) display the two peaks
extracted by PARAFAC unmixing. The peaks of the two
compounds, marked by black crosses at (321, 279) and
(324, 286), are consistent with the positions found by the
peak locating process. Figure 9(d) shows the residual.

The chromatographic profiles along the first column, pic-
tured in Figure 10(a), carry the volume information, be-
cause the chromatographic profiles along the second col-
umn, pictured in Figure 10(b), as well as mass spectral
profiles are normalized. The outer product of chromato-
graphic profiles generates two pure peaks (Figure 9(b) and
(c)). The two extracted peaks are well-shaped for quan-
titation and their locations provide the retention times of
the corresponding chemical compounds. Figure 10 (c) and
(d) illustrate the integrated profiles along first and second
columns of the extracted model X and the residual E. The

(a) (b) (c) (d)

Figure 8: 2D view of the result of PARAFAC unmixing on the
simulated data. (a) is the TIC image of the synthesized data. (b)
and (c) are two component TIC images restored by the resulting
profiles. (d) is residual.

(a) (b) (c) (d)

Figure 9: The PARAFAC unmixing result on blob 102. (a) shows
TIC image of blob 102 and the result of peak locating. (b) and
(c) show the TIC images of two restored compounds c1 and c2,
respectively, as well as the peaks of c1 and c2. (d) illustrates the
residual.
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Figure 10: (a) and (b) are chromatographic profiles along first and
second column extracted by PARAFAC unmixing. The profiles in
(a) carry the volume information; the chromatographic profiles in
(b) are normalized so that the summation is 1.0. Solid lines are for
compound c1 and dotted lines are for compound c2. (c) and (d)
show the combined chromatographic profiles X as solid lines and
the residual E as dotted lines.
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residual ratio (Equation 4) is 15%. The reason for the larger
residual is that the real GCxGC/MS data deviates slightly
from the trilinear model.

Figure 11 displays mass spectral profiles extracted by
PARAFAC unmixing and the mass spectra of the data at
the two peak points. The spectra in Figure 11 (a) and (b)
are very similar and so are the spectra in Figure 11 (c) and
(d).
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(d) Mass spectrum of (324,286).

Figure 11: Mass spectral profiles of two pure compounds ex-
tracted by PARAFAC unmixing and mass spectra of two points in
blob 102.

5 Conclusion

This paper proposes an approach for automated unmixing
of coelutions in comprehensive two-dimensional chemical
separations with mass spectrometry. The approach has three
steps: a pureness test, peak locating, and PARAFAC unmix-
ing. The pureness test evaluates whether the mass spectrum

of a region is relatively uniform, indicating if it has more
than one compound. Any impure region is subjected to fur-
ther analysis. Peak locating determines the number of the
underlying compounds as well as their location. PARAFAC
unmixing with constraints of unmodality and nonnegativity
decomposes the region into several pure peaks described by
their individual chromatographic profiles and mass spectra.

The approach developed in this paper is demonstrated
experimentally to be effective. In both simulated and real
data, the coeluting compounds are unmixed and quanti-
fied successfully. Ongoing work is investigating models for
GCxGC/MS data, the limits of PARAFAC unmixing, and
the performance of the approach for various chemical mix-
tures.
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