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Abstract

This paper develops an approach for restoration of data
from comprehensive two-dimensional gas chromatography
(GCxGC), a powerful new technology for chemical separa-
tions. GCxGC restoration is required to separate coeluting
(i.e., overlapping) peaks. The GCxGC process is modeled
as a two-dimensional linear, shift-variant system, based on
the properties of chemical compounds and gas chromatog-
raphy. The model can account for nonhomogeneous peak
shapes and separability of the two instrument columns. The
restoration problem is formulated to minimize the difference
between observed GCxGC data and an ideal separation,
subject to the physically meaningful constraints: nonneg-
ativity, volume preservation, and unimodality. The paper
develops a constrained alternating least-squares (CALS)
method for solving the restoration problem. Experimental
results based on simulation and real GCxGC data indicate
that the proposed model and CALS method perform well for
GCxGC restoration.

1 Introduction

This paper develops an approach for restoration of data
from comprehensive two-dimensional gas chromatography
(GCxGC), a powerful new technology for chemical anal-
ysis [1]. GCxGC offers an order-of-magnitude improve-
ment in separation capacity compared to traditional, one-
dimensional GC, but for complex samples, peaks associated
with some compounds still may coelute (i.e., overlap) in the
data. Computer-based restoration methods are used to sepa-
rate overlapping chromatographic peaks and produce better
qualitative and quantitative results.

If GC is modeled as a linear system, restoration can
be implemented by deconvolution to separate overlapping
chromatographic peaks (if the peak centers are somewhat
separated). Several papers have presented deconvolution
methods for one-dimensional GC [2, 3, 4]. The two
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columns of GCxGC are designed to be orthogonal, so one-
dimensional deconvolution theoretically can be extended to
GCxGC in the separable fashion.

One important issue of deconvolution is estimation of
chromatographic peak shapes which are regarded as the
point spread function (PSF) of a linear system. In one-
dimension, peak shapes can be described effectively by
mathematical functions such as empirically transformed
Gaussian (ETG), polynomial modified Gaussian (PMG),
generalized exponentially modified Gaussian (GEMG), and
hybrid of Gaussian and truncated exponential (EGH) [5,
6, 7]. For GCxGC, however, there are at least two chal-
lenges. One challenge is that mathematical functions that
can approximately model two-dimensional peak shapes
have many parameters. The other challenge is that optimal
parameter values for two-dimensional peak shapes are non-
homogeneous, subject to different analytes (even from the
same chemical family) and experimental conditions. De-
convolution methods that require homogeneous peak shapes
cannot account for variation of peak shapes in GCxGC data.
It is desirable to develop a more general linear model which
can account for nonhomogeneous peak shapes.

Based on properties of chemical compounds and gas
chromatography, GCxGC can be modeled as a shift-variant
linear system:

D = RPCT + E, (1)

where D is an I × J matrix for observed GCxGC data, R
is an I × I matrix for the shift-variant point spread function
(SVPSF) of the first column, C is a J × J SVPSF matrix
for the second column, P is an I × J matrix of the de-
sired impulse image (i.e., a single impulse for each chemi-
cal compound), E is an I×J matrix accounting for additive
noise and/or model error, and exponent ‘T ’ denotes matrix
transpose. The linear model exploits the orthogonality of
GCxGC and can account for various chromatographic peak
shapes.

Because the desired impulse image P, the SVPSF R,
and the SVPSF C are all unknown, the alternating least-
squares (ALS) approach is employed to find their joint solu-
tions. ALS iteratively estimates each unknown in the least-
squares sense conditionally on the other unknowns [8]. The
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estimates are refined iteratively until there are no significant
changes in them or of the fit of the model to the observed
data. The ALS algorithm may yield many solutions, so in
order to find a desired solution, physically meaningful con-
straints are imposed on estimates during iteration.

Iterative methods have been studied extensively in digi-
tal image restoration [9, 10, 11]. Major advantages of the
iterative methods are: i) closed-form solutions are not nec-
essary; ii) a priori knowledge or constraints, such as non-
negativity and unimodality of peaks, can be incorporated
conveniently; iii) iterative processes can be monitored for
desired solutions; and iv) parameters which control solu-
tions can be updated during iteration. With sufficient iter-
ations, the CALS method can yield the desired image P,
together with SVPSFs R and C.

The rest of this paper is organized as follows. Sec-
tion 2 gives the mathematical formulation of restoration of
GCxGC data. Section 3 presents the algorithm of CALS
and discusses some practical issues for its implementation.
Section 4 demonstrates experimental results of both simu-
lation and real GCxGC data. Finally, Section 5 gives con-
clusions and describes future work.

2 Formulation of the problem

In this paper, elements of vectors and matrices are denoted
by lowercase italics, vectors are denoted by lowercase bold
characters, and matrices are denoted by uppercase bold
characters. The dimensions of matrices R,C, P, and D
are respectively I × I , J × J , I × J , and I × J .

Solving Equation (1) for the desired impulse image P
is an inverse problem and requires a well-defined objective
function. A typical objective function is the least-squares
error defined as:

F(R,C,P) = ‖D − RPCT ‖2
F , (2)

which is a functional of R,C, and P and where ‖.‖F is the
Frobenius norm.

In most GCxGC applications, only D is known, so an
infinite number of solutions of R,C, and P can account for
D according to theories of matrix factorization. In order
to guarantee the uniqueness of the solution, the orthogonor-
mal constraint can be imposed on columns of R and C like
singular value decomposition (SVD). But the orthogonor-
mal constraint does not have chemical or physical meaning
in factor analysis. Fortunately, there are several physically
meaningful constraints such as nonnegativity and unimodal-
ity [8] which can reduce the number of solutions signifi-
cantly. Subject to physically meaningful constraints and ef-
ficient mathematical models for peaks, minimizing the ob-
jective function F(R,C,P) can give a reasonable solution
of the desired impulse image P. If sufficient constraints are

Mathematical formulation of the problem
Given observed I × J GCxGC data D, minimize

F(R,C,P) = ‖D − RPCT ‖2
F , subject to

1. Nonnegativity:
(a) rij ≥ 0 ,∀1 ≤ i , j ≤ I ,
(b) cij ≥ 0 ,∀1 ≤ i , j ≤ J ,
(c) pij ≥ 0 ,∀1 ≤ i ≤ I , 1 ≤ j ≤ J .

2. Constant volume:
∀1 ≤ j ≤ I ,

∑I
i=1 rij = 1 ; ∀1 ≤ j ≤ J ,

∑J
i=1 cij = 1

=⇒ ∑I
i=1

∑J
j=1 dij =

∑I
i=1

∑J
j=1 pij .

3. Unimodality:
If ∃i and j, such that pij �= 0 , then r1i ≤ ... ≤ rii ≥
... ≥ rIi and c1j ≤ ... ≤ cjj ≥ ... ≥ cJj
else r1i = ... = rIi = 0 and c1j = ... = cJj = 0 .

Figure 1: Mathematical formulation of the problem of find-
ing the desired impulse image P from observed GCxGC
data D.

available, the solution can be unique. Figure 1 mathemati-
cally formulates the problem of finding the desired impulse
image P from observed GCxGC data D.

Let R = [r1...rI ] and C = [c1...cJ ]. From the aspect
of factor analysis of matrices, the observed GCxGC data
D can be factorized as the summation of I ∗ J rank-one
matrices weighted by pij as follows:

D = RPCT + E

=
∑

1≤i≤I

∑
1≤j≤J

pij ricT
j + E

≈
∑

1≤i≤I

∑
1≤j≤J

pij ricT
j

=
∑

1≤i≤I

∑
1≤j≤J

pij



ri1
...

riI


 [cj1 . . . cjJ ] . (3)

Because the number of chromatographic peaks in GCxGC
data D is typically much less than the number I ∗ J of ele-
ments of D, the desired impulse image P is a sparse matrix
and most columns of R and C are all zeros and so don’t
contribute to D.

3 Constrained alternating least-
squares

ALS is a basic technique for Tuck3 model and PARAFAC
(parallel factor analysis) model [12, 13]. The essential idea
of ALS is to estimate each unknown in the least-squares
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1. Initialize X,
2. Y = DT X(XT X)−1,
3. X = DY(YT Y)−1,
4. Go to step 2 until stop conditions are satisfied.

Figure 2: The classic ALS algorithm for a two-way prob-
lem.

sense conditionally on the other unknowns. For example,
let a two-way problem D = XYT , where D is a matrix
of observed data and X and Y are two unknown matrices.
Figure 2 presents the classic ALS algorithm for solving

argmin
X,Y

{‖D − XY‖2
F

}
. (4)

This classic ALS implementation requires the pseudoin-
verse (e.g., Moore-Penrose) of matrices, which may cause
frequent violations of the unimodality constraint.

The ALS restoration of minimizing F(R,C,P) with re-
spect to R,C, and P is equivalent to two successive two-
way problems. Let W = CPT be an intermediate matrix.
The two two-way problems can be formulated as:

argmin
R,W

{F1(R,W) = ‖D − RWT ‖2
F

}
(5)

and

argmin
C,P

{F2(C,P) = ‖W − CPT ‖2
F

}
. (6)

The optimal solution of W in Equation (5) is used succes-
sively for optimizing C and P in Equation (6).

Iterative methods without matrix pseudoinverse have
lower possibility of violating the constraints. In particu-
lar, when an iterative estimate is close to the optimal solu-
tion, the update is very small and the unimodal shape can be
maintained. One popular iterative method is the steepest de-
scent which updates unknowns along the opposite direction
of the gradient of an objective function at the latest estimate
of the unknowns. Mathematically,

F1(R,W) = ‖D − RWT ‖2
F

=
I∑

i=1

‖di − Rwi‖2
F

=
I∑

i=1

‖di − riWT ‖2
F . (7)

The gradients of the objective function F1(R,W) with re-
spect to R and W are:

∂F1

∂R
=

{∂F1

∂r1
, ...,

∂F1

∂rI

}
= (RWT − D)W (8)

∂F1

∂W
=

{ ∂F1

∂w1
, ...,

∂F1

∂wI

}
= (WRT − DT )R. (9)

Similarly, the gradients of the objective function F2(C,P)
with respect to C and P are:

∂F2

∂C
=

{∂F2

∂c1
, ...,

∂F2

∂cJ

}
= (CPT − W)P (10)

∂F2

∂P
=

{∂F2

∂p1
, ...,

∂F2

∂pJ

}
= (PCT − WT )C. (11)

Figure 3 proposes the CALS algorithm for solving the
problem as defined in Figure 1. |⊗| stands for Khatri Rao
columnwise product [13]. The algorithm has two inner it-
erations and one outer iteration. Each inner iteration mini-
mizes one two-way problem. The optimal W of F1(R,W)
is used to optimize C and P in F2(C,P). The outer itera-
tion re-initializes R0,C0, and P0 in step 4 so that optimal
estimates for F2(C,P) can be used to update R and W
in F1(R,W) as further optimization. The algorithm con-
verges eventually because each iteration never degrades its
previous estimates in the least-squares sense.

An important concern for iterative algorithms is the risk
that minimization of the objective function F with respect
to R,C, and P may fall into local minima. Complicated al-
gorithms such as simulated annealing [14, 15] can help find
the global minima, but they are commonly time-consuming.
One effective method which can avoid many local minima
is to initialize R,C, and P with appropriate values rather
than random values or zeros. An initialization close to the
global minima can reduce the risk of stopping at local min-
ima and the convergence time. For the initial R0 and C0

of the CALS algorithm, chromatographic peak shapes can
be assumed to be homogeneous. Either peaks that can be
identified clearly from GCxGC data or the Gaussian func-
tion (if clear peaks are unavailable) can be good candidate
PSFs for deconvolution. Digital image restoration methods
for linear, shift-invariant systems can be used to initialize
the desired image P0. Blind image deconvolution also can
be exploited for more accurate initialization [16, 17].

At each iteration, the CALS algorithm searches esti-
mates along the steepest descent. Setting the values of αi

(i = 1, 2, 3, 4), called step size in the numerical analysis
literature, is important. In simple iterative methods, step
sizes are fixed within a safe convergence interval [10, 11].
Updating step sizes αi (i = 1, 2, 3, 4) at each iteration so
that they minimize the objective functions F1 and F2 can
speed convergence. Because constraints of unimodality and
nonnegativity are nonlinear projection, line search methods
can work well [15, 18]. The conjugate gradient is inappli-
cable here because conjugation of two successive searching
directions may be destroyed by nonlinear projections.

The stop condition is determined by iteration times and
the expected quality of an estimate. The quality measures
how close an estimate is to its expected value or global min-
imum. There are several stop conditions in the numerical
analysis literature. For example, i) two successive iterations
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CALS Algorithm for GCxGC Restoration

1. Initialize R0,C0,P0 and let W0 = C0PT
0 be an intermediate estimate.

2. Optimize F1(R,W) = ‖D − RWT ‖2
F with respect to R and W. At the kth inner iteration:

(a) Use steepest descent (or line search) method to estimate optimal α1,

(b) Rk = Rk−1 + α1|⊗|(D − Rk−1Wk−1T )Wk−1,
(c) Impose constraints on Rk,
(d) Use line search method to estimate optimal α2,

(e) Wk = Wk−1 + α2|⊗|(DT − Wk−1RkT )Rk,
(f) Impose constraints on Wk,
(g) Rk−1 = Rk and Wk−1 = Wk if Fk−1

1 > Fk
1 ,

(h) Go to step 2.a until inner stop conditions are satisfied.
3. Optimize F2(C,P) = ‖W − CPT ‖2

F with respect to C and P. At the kth inner iteration:
(a) Use steepest descent (or line search) method to estimate optimal α3,

(b) Ck = Ck−1 + α3|⊗|(W − Ck−1Pk−1T )Pk−1,
(c) Impose constraints on Ck,
(d) Use line search method to estimate optimal α4,

(e) Pk = Pk−1 + α4|⊗|(WT − Pk−1CkT )Ck,
(f) Impose constraints on Pk,
(g) Update Ck−1 = Ck and Pk−1 = Pk if Fk−1

2 > Fk
2 ,

(h) Go to step 3.a until inner stop conditions are satisfied.
4. Reinitialize R0,C0, and P0 with solutions from steps 2 and 3 if F l−1 > F l at the lth outer iteration.
5. Go to step 2 until the outer stop conditions are satisfied.

Figure 3: The CALS algorithm for GCxGC restoration.

have little difference about the estimates or the objective
function; or ii) the gradient is sufficiently close to 0.

Physically meaningful constraints are crucial to guaran-
tee that the algorithm can converge to an expected solution.
The nonnegativity and volume preservation constraints an
be implemented with low computational cost. Regarding
the unimodality of columns of R and C, Bro and Sidir-
poulos have developed an efficient algorithm in the least-
squares sense for an N-way problem [8].

4 Experimental results

4.1 Simulation

The simulation is implemented in Matlab 6.5. Figure 4(A)
illustrates a 31 × 21 simulated-GCxGC image D with
three overlapping chromatographic peaks, synthesized as in
Equation 1. Columns of the SVPSF matrices R and C are
simulated by Gaussian functions:

rij = Arje
−i2/(2σ2

rj), 1 ≤ i, j ≤ 31

cij = Acje
−i2/(2σ2

cj), 1 ≤ i, j ≤ 21, (12)

where σrj and σcj are set randomly in the intervals (2, 3)
and (0.7, 1) respectively, with uniform distribution, in order

to simulate the shift-variance in R and C. The constraint
of volume preservation (from Figure 1) implies that for this
example:

Arj = 1

/
31∑

i=1

e−i2/(2σ2
rj), 1 ≤ j ≤ 31

Acj = 1

/
21∑

i=1

e−i2/(2σ2
cj), 1 ≤ j ≤ 21. (13)

The desired image P has three impulses, corresponding to
the three chromatographic peaks in D. Tables 4.1 list lo-
cations and heights of the impulses. The noise matrix E is
simulated by the normal distribution with 0 mean and 0.001
standard deviation.

Impulses for synthesis Peaks from restoration
ID row col height row col volume
1 16 13 11.681 16 13 12.928
2 19 11 10.841 19 11 10.596
3 22 13 6.855 23 13 5.555
4 - - - 23 10 0.160

Table 1: Parameters values for the synthesis (left part). Lo-
cations and volumes of the restored peaks (right part).
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R0 and C0 are initialized respectively by the Gaussian
function with σrj = 3 (1 ≤ j ≤ 31) and σcj = 1 (1 ≤ j ≤
21) in the shift-invariant fashion. The initial impulse image
P0 is estimated by the traditional iterative image restora-
tion [10]. Figure 4(B) illustrates the resulting image. The
three peaks are separated completely in this image. Ta-
ble 4.1 lists the locations and volumes of the restored peaks.
The major peaks (ID=1, 2, and 3) have good estimates of
location and shapes. Peak 4 is a pseudo-peak which has
very small peak volume, so it can be removed by appropri-
ate thresholding. Figure 4 illustrates the residual, which is
close to the noise matrix E.
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Figure 4: Experimental results for simulation.

4.2 Real GCxGC data

Figure 5(A) illustrates a 34 × 21 subimage cropped from
GCxGC data “oven040209run5” (Zoex Corporation, Lin-
coln NE) with an oven-temperature ramp-rate of 5◦C/min.
This subimage has two chemical constituents: hexamethyl-
benzene and 1-dodecanol. Again, the Gaussian function is
used to initialize R0 and C0 homogeneously with σrj =
2 (1 ≤ j ≤ 34) and σcj = 0.5 (1 ≤ j ≤ 21) respectively
and traditional iterative image restoration [10] is used to ini-
tialize P0. Figure 5(B) illustrates the resulting image. After
restoration the two chemical compounds are separated, with
the hexamethylbenzene peak located at pixel (18, 9) and the
1-dodecanol peak at (16, 11). After restoration, the volume
ratio of the two peaks is 8.96. By comparison, in GCxGC
runs with different temperature ramp rates which fully sep-
arated the peaks, the ratios were 9.07 at 2◦C/min, 9.12 at
3◦C/min, and 9.04 at 4◦C/min. The difference of the re-
stored ratio with the mean ratio for separated data is about
1.3%, which is about 2.7 times the inferred standard devia-
tion from the separated data. The residual data E (illustrated
in Figure 5(C)) is close to a noise distribution, but in the real
GCxGC data, compounds produce peaks that are not com-
pletely separable, so the residual also contains slight model
error.

5 Conclusions

This paper develops an approach for restoration of data
from comprehensive two-dimensional gas chromatography
(GCxGC). The GCxGC process is modeled as a shift-
variant linear system, based on the properties of chemi-
cal compounds and gas chromatographic instruments. The
model can account for nonhomogeneous peak shapes and
separability of two columns of instruments. The restoration
problem is formulated to minimize the difference between
observed GCxGC data and an ideal separation, subject to
the physically meaningful constraints: nonnegativity, vol-
ume preservation, and unimodality.

The paper also proposes a constrained alternating least-
squares (CALS) method for GCxGC restoration. The essen-
tial idea is to estimate each unknown in the least-squares
sense conditionally on the other unknowns and the con-
straints. The approach is implemented by iteration with low
computational cost because the linear model is separable.

Experimental results based on the simulation and the real
GCxGC data indicate that the proposed linear model and
CALS perform well for GCxGC restoration. It is an effec-
tive approach to improving separation, identification, and
quantification of analytes. Ongoing work is evaluating the
quantitative performance for more chemical analytes.
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Figure 5: Experimental results for real GCxGC data.
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[1] J. Dallüge, J. Beens, and U. A. Brinkman, “Comprehensive

two-dimensional gas chromatography: a powerful and ver-
satile analytical tool,” Journal of Chromatography A, vol.
1000, pp. 69–108, 2003.

[2] R. D. Caballero, M. C. Garcı́a-Alvarez Coque, and
J. J. Baeza-Baeza, “Parabolic-Lorentzian modified gaussian
model for describing and deconvolving chromatographic
peaks,” Journal of Chromatography A, vol. 954, pp. 59–76,
2002.
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