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This correspondence corrects the description in a recent
paper by Mondello et al., “Quantification in Comprehen-
sive Two-Dimensional Liquid Chromatography” [Mon-
dello, L.; Herrero, M.; Kumm, T.; Dugo, P.; Cortes, H.;
Dugo, G. Anal. Chem., 2008, 80, 5418-5424], of previ-
ous research on peak integration. This correspondence
also shows that the peak integration method proposed in
that paper is equivalent to, but is less efficient than,
simply summing the data values.

A recent paper, “Quantification in Comprehensive Two-
Dimensional Liquid Chromatography”,1 proposed a method for
integrating peaks. In discussing previous work on two-dimensional
peak integration, the authors, Mondello et al., stated that the two-
dimensional peak integration method described by Reichenbach
et al.2,3 utilizes “interpolated 2D plots” and concluded that “such
integration methodologies may not produce correct results.”4

Actually, Reichenbach et al. integrated peaks by summing intensity
values without interpolation, which is most efficient. This cor-
respondence corrects that description and examines the effect of
interpolation on peak integration.

PREVIOUS WORK BY REICHENBACH ET AL.
Mondello et al.1 wrote “[Our proposed] procedure is based

purely on chromatographic properties and differs from previously
reported applications, where 2D peaks are integrated as images
or considering peak volumes.2,3,5 However, such integration
methodologies may not produce correct results, because the
programs employed represent bidimensional chromatograms as
interpolated 2D plots, with the aim of showing three-dimensional
images.”

This description of the cited work is incorrect. In the cited
research and in the software developed from it,6 peak integration

is performed by summing the values of the data points in the peak.
In the cited paper, Reichenbach et al. describe the computation
for integration as the “sum”7 and the software documentation
describes the computation as “the total of [the peak’s] values or
total response”.8 In both the research and the software, peak
integration is performed as a summation of the data values,
without interpolation.

This misunderstanding may stem from the digital-image
terminology used by Reichenbach et al. and from confusion of
the operation of storing two-dimensional chromatographic data
as a two-dimensional image with the operations that are used to
view images. Two-dimensional chromatograms typically are ac-
quired sequentially, in a one-dimensional array. When two-
dimensional chromatographic data is stored as a two-dimensional
image, the value(s) generated by the detector at each data point
(e.g., an intensity value produced by a flame ionization detector
or an array of intensities produced by a mass spectrometer) is/
are stored successively as pixels in a two-dimensional array, with
a column of pixels for each modulation cycle. In this operation,
there is a one-to-one identity between the data points of the
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Figure 1. This figure, from Mondello et al., appeared with the caption:
“Integration area of a given peak when it is shown with (A) or without
graphical interpolation (B), and example of the integration process
for a second-dimension peak (C).”13 Actually, both images A and B
are interpolated.
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detector output and the pixels of the image, i.e., each single pixel
has the value(s) produced by the chromatograph at a single data
point. After the two-dimensional chromatographic data is stored
as a two-dimensional image, viewing the image may involve
operations such as panning, scrolling, and zooming. These
operations may require interpolation and resampling to produce
a shifted or scaled visualization of the image, but the underlying
digital image with the chromatographic data-point values is not
changed.

INTERPOLATION
In their Figure 1, reproduced here, Mondello et al.1 purported

to show a two-dimensional peak (A) with interpolation and (B)
without interpolation. However, both images clearly were created
by interpolating discrete data points for visualization, because data
points alone are not visible as an image. An image is visible only
when the two-dimensional space between the points is filled, e.g.,
by interpolation.9 In Figure 1A, the data points evidently were
interpolated using a higher-order interpolator compared to the
image in Figure 1B, perhaps a bilinear interpolator. In Figure 1B,
it is evident that the data points were interpolated using nearest-
neighbor interpolation to visualize the two-dimensional image,
effectively creating a uniformly colored rectangular tile for each
data value.

Although the image visualizations in Figure 1 appear different
because of the different methods of interpolation, it is important
to note that the data values for both are the same. That the data
values are the same is more clearly seen in one dimension. Figure
2 illustrates a one-dimensional chromatographic peak with data
points (shown with b) interpolated by two popular interpolation
methods: (1) Linear interpolation, in Figure 2A, fills between data
points with connecting lines. (2) Nearest-neighbor interpolation,
in Figure 2B, fills between data points with a constant value
determined by the nearest data point.

The resulting profiles are visually different, but the data values
(shown with b) which are used for quantitative processing are
the same. Two-dimensional interpolation methods (e.g., bilinear
or nearest-neighbor interpolation in parts A and B of Figure 1)
work similarly.

PEAK INTEGRATION
In discussing Figure 1, Mondello et al.1 claimed that errors

could result from integrating the interpolated peak in Figure 1A,
compared with what they called the “noninterpolated”10 peak in
Figure 1B. However, as shown here, if the interpolation function
has a weighting function that integrates to 1, the result of peak
integration is the same. In this section, the equality for peak
integration with interpolation is first illustrated with a one-
dimensional example and then proven for two dimensions.

Figure 2C overlays the peak profiles for linear interpolation
from Figure 2A and nearest-neighbor interpolation from Figure
2B. For each region under the profile for linear interpolation that
is outside the profile for nearest-neighbor interpolation (the
regions filled with horizontal lines), there is an equally sized region
above the profile for linear interpolation that is inside the profile
for nearest-neighbor interpolation. As can be seen, the total
integrated areas under the two different profiles are equal.

This equality can be proven for any two-dimensional interpola-
tion method that has a weighting function h(x,y) that integrates
to 1:

Both nearest-neighbor interpolation and bilinear interpolation have
weighting functions satisfying eq 1. The interpolation of discrete
data points (e.g., those in a peak) p[m,n], m ) 1 . . . M, n )
1 . . . N, is the result of convolution of the data points with the
interpolator weighting function:9

The integration of the interpolated peak can be simplified as

which is just the sum of the data-point values. This proof also
holds for one dimension.

(9) Burger, W.; Burge, M. J. Digital Image Processing: An Algorithmic Introduc-
tion Using Java; Springer-Verlag: New York, 2008. (10) Reference 1, p 5420.

Figure 2. Interpolation of the same data points (b) forming a one-dimensional chromatographic peak with (A) linear interpolation and (B)
nearest-neighbor interpolation. In part C, the overlay of the two interpolated profiles illustrates that the integrated areas of the interpolated
profiles are equal.
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So, any interpolator with a weighting function that integrates
to 1 (including nearest-neighbor interpolation and bilinear inter-
polation) yields the same peak integration value, which can be
computed by simply summing the data values. It is possible that
interpolation with a weighting function that has a radius larger
than one sample interval could introduce overlap between nearby
peaks. Both nearest-neighbor and linear interpolation have a radius
of less than one sample, so one data point on the baseline between
peaks is necessary and sufficient for proper integration without
unmixing/deconvolution.

EFFICIENCY
Mondello et al. described a method for peak integration which

they characterized as a “novel approach”.1 Figure 3A illustrates
their method of peak integration by triangularization. In their
approach, each peak is sequentially triangulated from the data
points (shown with b) on alternating sides of the apex down to
the baseline. As can be seen, the profile created by their approach
is the profile from linear interpolation (Figure 2A).

Mondello et al. compute the peak integration as follows: “The
triangle areas are then determined and then summed.”11 This is
an inefficient approach that yields a result identical to simply
summing the data values. Equation 3 proves this equality, and
Figure 3B shows graphically that the integration can be computed
by simply summing the data values. In Figure 3B, each data point
determines the height of a rectangle with unit width, taking the
intersample time as the horizontal unit of measure. (This profile
is the same as for nearest-neighbor interpolation, in Figure 2B.)
Then, the total area of the rectangles can be computed by
summing the data-point values. Figure 3C illustrates that the total
area of the rectangles and total area of the triangles are equal.
For each region under the triangulated peak profile that is outside
the rectangles (the regions filled with horizontal lines), there is
an equally sized region above the triangulated peak profile that
is inside the rectangles. So, the triangularization approach
proposed by Mondello et al. yields the same result as simply

summing the values; it is just computationally less efficient than
summing the values as described by Reichenbach et al.2,3

SOFTWARE FOR TWO-DIMENSIONAL
CHROMATOGRAPHY

Mondello et al. wrote of “the lack of dedicated software capable
of identifying and quantifying more precisely a peak taken from
a two-dimensional (2D) plot.”12 Software for comprehensive two-
dimensional gas and liquid chromatography (GC × GC and LC ×
LC) from GC Image6 (Lincoln, NE) is capable of identifying and
precisely quantifying two-dimensional peaks, using the methods
described by Reichenbach.3 For example, the calibration correla-
tion (R2) values for the sample data provided with the GC Image
software ranges from 0.999 84 to 0.999 99.6 It is noted here
that Professor Reichenbach, the author of this correspondence,
is the founder of GC Image, LLC, a spinoff from the University
of Nebraska, and that Professor Mondello is a founder of a
commercial spinoff from the University of Messina.

SUMMARY
This correspondence recognizes that Mondello et al. have

contributed to the developing literature on LC × LC technologies
but corrects their description of previous work on peak integration
and proves that interpolation (as it is normally implemented) does
not change the result of peak integration. Peak integration is most
efficiently implemented by simply summing data-point values, as
described by Reichenbach et al.2,3
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Figure 3. Integration areas of a one-dimensional peak using (A) the triangulation method proposed by Mondello et al.1 and (B) the method of
summing data values for unit-width rectangles. Data points are indicated by b. As illustrated in part C, both methods in parts A and B yield the
same total integration area, but the method of summing in part B is computationally more efficient.
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