
Towards Combining Usage Mining and Implementation Analysis
to Infer API Preconditions

Hoan Anh Nguyen
Iowa State University, USA

hoan@iastate.edu

Tien N. Nguyen
The University of Texas at

Dallas, USA
tien.n.nguyen@utdallas.edu

Hridesh Rajan
Iowa State University, USA

hridesh@iastate.edu

Robert Dyer
Bowling Green State
University, USA
rdyer@bgsu.edu

ABSTRACT
The preconditions of an API method are constraints on the states of
its receiver object and arguments intended by the library designer(s)
to correctly invoke it in the client code. There have been two main
kinds of approaches for automatically inferring API preconditions.
The first kind of approaches mines the frequently checked condi-
tions guarding the API usages in the client code and generalize
them into preconditions. The second kind of approaches analyzes
the implementation of the API to compute preconditions.

In this paper, we report an observation that the usage-based ap-
proach often produces preconditions stronger than those intended
while the implementation-based produces weaker ones. Our finding
calls for a new direction of integrating those kinds of precondition
inference approaches and refinement solutions to reduce the differ-
ences between sets of inferred preconditions.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS
API Preconditions, Specification Mining, Program Analysis

ACM Reference Format:
Hoan Anh Nguyen, Tien N. Nguyen, Hridesh Rajan, and Robert Dyer. 2018.
Towards Combining Usage Mining and Implementation Analysis to Infer
API Preconditions. In Proceedings of the 1st ACM SIGSOFT International
Workshop on Automated Specification Inference (WASPI ’18), November 9,
2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3278177.3278182

1 INTRODUCTION
Libraries enable pragmatic software reuse by allowing developers to
access the library’s functionality via Application Programming In-
terfaces (APIs). To correctly use an API method, developers must en-
sure the receiver and arguments conform to certain conditions that
are intended by the library/framework’s designers. Such conditions
are referred to as the preconditions of an API. Violating a precondi-
tion will lead to undesired behavior and possibly an exception. For
example, begin <= end is a precondition of String.substring(begin,end).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WASPI ’18, November 9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6057-9/18/11. . . $15.00
https://doi.org/10.1145/3278177.3278182

Preconditions, and specifications in general, tell API users about
intended behaviors of APIs and make verification possible. Useful,
comprehensible, and efficiently checkable formal specifications can
help contain the cost of developing high assurance, reliable, and
secure software systems [2, 5]. Ideally, designers would specify all
the preconditions for all of their API methods in the library/frame-
work. However, in practice, due to the large number of APIs, not all
libraries/frameworks are delivered with the specified preconditions.

To reduce the manual effort required to define the preconditions
for software libraries, several approaches have been introduced
to automatically derive the preconditions for the API methods.
Broadly speaking, existing precondition mining approaches can be
classified into two kinds: mining software repositories (MSR) based
approaches and program-analysis based approaches.

The first kind relies on (MSR) techniques applied to the code using
the APIs (called client code). Specifically, they analyze the usages of
APIs at call sites in the client code to derive the preconditions [3, 6].
The idea behind these approaches is that the preconditions of an
API method could be mined from the guard conditions of the calls to
that API in the client code. Let us call them usage-based approaches.

The second kind of approaches is program analysis-based. Specif-
ically, they rely on analyzing the implementation of APIs. They
analyze the guard conditions along the exception paths to detect
preconditions. Most of those approaches rely on static analysis [1, 6].
Let us call them implementation-based approaches.

Despite their successes, no existing research has studied the
nature and the relation between the two kinds of approaches. In
this paper, we report two observations. First, the usage-based ap-
proach often produces preconditions stronger than those in-
tended by the APIs’ designers. That is, the set of valid values for
the arguments of an API according to the mined rules from the
client code is smaller than the set of valid values allowed by the true
precondition of the API. On the other hand, the implementation-
based approach often produces weaker ones. That is, violating
these preconditions will lead to exception behaviors, however, satis-
fying them does not guarantee no exception behaviors. The former
often produces the upper bounds and the latter often produces the
lower bounds of the preconditions.

Our finding calls for a direction of integrating precondition infer-
ence approaches and refinement solutions to reduce the difference
between upper and lower bounds of the inferred preconditions.

2 MOTIVATION FOR THE COMBINATION
We will first use several examples to demonstrate the limitations of
the usage- and implementation-based inference techniques.

Example 1. Too weak preconditions when inferring from
implementation. Fig. 1a shows the implementation of method

15

https://doi.org/10.1145/3278177.3278182
https://doi.org/10.1145/3278177.3278182
https://doi.org/10.1145/3278177.3278182

WASPI ’18, November 9, 2018, Lake Buena Vista, FL, USA Hoan Anh Nguyen, Tien N. Nguyen, Hridesh Rajan, and Robert Dyer

1 public E get(int index) {
2 rangeCheck(index);
3 return elementData(index) ; }
4 private void rangeCheck(int index) {
5 if (index >= size) throw new IndexOutOfBoundsException(...); }
6 E elementData(int index) { return (E) elementData[index]; }

a) java.util.ArrayList
1 public E removeFirst () { return remove(header.next) ; }
2 private E remove(Entry<E> e) {
3 if (e == header) throw new NoSuchElementException();
4 ... }

b) java.util.LinkedList

Figure 1: Excerpts of implementations.

ArrayList.get(index). This API returns the element at the specified
position index of the list. It throws IndexOutOfBoundsException when
accessing the array on line 6 if the specified position index is negative,
or greater than or equal to the size of the list. In its implementation,
in method rangeCheck (lines 4–5), index is explicitly checked against
the size of the list, size, because the length of the internal array
could be greater than the actual size. However, the developer did not
check the precondition index >= 0 and let this unchecked exception
be thrown at runtime. This practice could be an optimization for
performance purposes. However, this would make an automated
technique based on implementation miss the precondition index >= 0
and the inferred precondition weaker than expected.

On the other hand, due to the practice of defensive programming,
developers of client code of this API often write explicit checks
of index >= 0 and index < size() before calling it to avoid IndexOut-
OfBoundsException. In this example, the preconditions mined from
usages match exactly with the expected ones.

Example 2. Inaccessible preconditionswhen inferring from
implementation. Fig. 1b shows the implementation of method
LinkedList.removeFirst() whose purpose is to remove and return the
first element from the list. It throws NoSuchElementException if in-
voked on an empty list, thus, its precondition is !isEmpty(). In the
client code, developers usually check this condition before calling it,
so this precondition could be mined from the API usages. However,
it could not be inferred from the API’s implementation because it
is never checked there. Instead, an equivalent condition header.next
== header is checked (line 3). The condition header.next == header is
not useful for the API users since it is inaccessible from outside of
the library implementation. In this example, the precondition mined
from implementation is inaccessible, thus, not useful for API users,
and exposes implementation details which is not desirable [4].

Example 3. Too strong preconditions when mining from
usages. String.substring(begin) returns a substring in the string that
starts from the character at the index begin and extends to the end
of the string. The expected preconditions are begin >= 0 and begin
< length(). In the usages of this API, developers usually check the
precondition begin < length() before calling it. However, instead of
begin >= 0, developers often check the stronger condition of begin >
0 because when begin is 0 the API returns the original string, which
is not very useful. This example illustrates a phenomena that when
using APIs, developers could check conditions which are stronger than
the actual preconditions of the APIs.

2.1 Observations
The above examples show that both implementation-based and
usage-based approaches face the problem of incompleteness. The
preconditions inferred from the former are likely to be weaker than
the expected ones. There would exist values of the receiver object
and/or argument(s) satisfying the inferred preconditions, but still
leading to exception. In the example with ArrayList.get(index), an
implementation-based solution can only guarantee that an excep-
tion will be thrown if index > size() but does not know that there are
values of index in the range (−∞, 0) that still lead to an exception.

In contrast, the preconditions mined from the usage-based ap-
proach are likely to be stronger than expected. There would ex-
ist values of the receiver object and/or argument(s) violating the
mined preconditions, but not causing exception. In the third ex-
ample with String.substring(begin), the preconditions mined from
a usage-based solution imply that passing a value of begin in the
interval (0, length()) would not throw exception, but cannot tell
whether the value of begin == 0 would or not.

Importantly, the examples suggest that the boundary of the ex-
pected preconditions could be in the gap between the results in-
ferred from the two approaches. For example, this gap is the interval
index < 0 in the first example with ArrayList.get(index), isEmpty() in
the second example with LinkedList.removeFirst(), and begin == 0 in
the third example with String.substring(begin).

This observation suggests that we could perform an additional
step to validate the gap. For example, we can validate if the pro-
gram would throw an exception or not if passing a negative value
of index to ArrayList.get(index) or calling removeFirst() on a LinkedList
in the state satisfying isEmpty() or passing begin == 0 when calling
String.substring(begin). If an exception is thrown, like in the first two
cases, we would conclude that the gap is not part of the precondi-
tions. Otherwise, like in the last case, the gap would be included as
part of the preconditions.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. CCF-1518897,1518776,1512947. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
[1] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:

A general approach to inferring errors in systems code. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, SOSP’01, pages 57–
72. ACM, 2001.

[2] A. Hall. Seven myths of formal methods. IEEE Softw., 7(5):11–19, Sept. 1990.
[3] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining preconditions of apis

in large-scale code corpus. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 166–177, New
York, NY, USA, 2014. ACM.

[4] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, Dec. 1972.

[5] H. Rajan, T. N. Nguyen, G. T. Leavens, and R. Dyer. Inferring behavioral spec-
ifications from large-scale repositories by leveraging collective intelligence. In
Proceedings of the 37th International Conference on Software Engineering - Volume
2, ICSE ’15, pages 579–582, Piscataway, NJ, USA, 2015. IEEE Press.

[6] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference
using predicate mining. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, pages 123–134.
ACM, 2007.

16

	Abstract
	1 Introduction
	2 Motivation for the Combination
	2.1 Observations

	Acknowledgments
	References

