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Dynamic aspect-oriented (AO) features have important software engineering benefits such as
allowing unanticipated software evolution and maintenance. It is thus important to efficiently
support these features in language implementations. Current implementations incur unnecessary
design-time and runtime overhead due to the lack of support in underlying intermediate language
(IL) models. To address this problem, we present a flexible and dynamic IL model that we call
Nu. The Nu model provides a higher level of abstraction compared to traditional object-oriented
ILs, making it easier to efficiently support dynamic AO features. We demonstrate these benefits
by providing an industrial-strength VM implementation for Nu, by showing translation strategies
from dynamic source-level constructs to Nu and by analyzing the performance of the resulting IL
code.

Nu’s VM extends the Sun Hotspot VM interpreter and uses a novel caching mechanism to
significantly reduce the amortized costs of join point dispatch. Our evaluation using standard
benchmarks shows that the overhead of supporting a dynamic deployment model can be reduced
to as little as ∼1.5%. Nu provides an improved compilation target for dynamic deployment features,
which makes it easier to support such features with corresponding software engineering benefits
in software evolution and maintenance and in runtime verification.
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1. INTRODUCTION

Software evolution and maintenance is a fact of life [Bennett and Rajlich 2000;
Lehman 1998]. Enhancements, security, and bug fixes are routinely made to a
software system during its usable life. Long-running software systems such as
web and application servers, automatic teller machines (ATMs), critical con-
trol systems often need to balance evolution and availability requirements. As
Malabarba et al. state, “for a large class of critical applications, such as business
transaction systems, telephone switching systems and emergency response sys-
tems, the interruption poses an unacceptable loss of availability” [Malabarba
et al. 2000].

As an example, consider the maintenance needs faced by European banks
while updating ATMs from national currencies to Euro [uwe Mätzel and
Schnorf 1997; Kniesel 1999]. The 24-hour service typical for ATMs dictate
constant availability, whereas the maintenance needs to convert currencies re-
quired immediate software update. Often such maintenance needs are critical
and unanticipated [Kniesel 1999].

Dynamic aspect-oriented features have shown the potential to support such
unanticipated evolution of software systems [Popovici et al. 2002, 2003]. These
features have received a lot of attention in the past three to four years of
aspect-oriented programming literature [Allan et al. 2005; Avgustinov et al.
2007; Baker and Hsieh 2002; Bockisch et al. 2004; Bockisch et al. 2006; Chen
and Roşu 2007; Hanenberg et al. 2004; Hirschfeld 2003; Hirschfeld and Ha-
nenberg 2006; Martin et al. 2005; Stolz and Bodden 2006; Suvée et al. 2003]. A
number of other important use cases for these features have also appeared for
example, in runtime monitoring, runtime adaptation to fix bugs or add features
to long-running applications, runtime update of dynamic policy changes, and
so on. Better support for dynamic aspect-oriented features thus has important
software engineering benefits.

In this article, we describe the design, implementation, and rigorous eval-
uation of our intermediate language (IL) model Nu and corresponding vir-
tual machine implementation, which provides dedicated support for dynamic
aspect-oriented features. The following section briefly gives background on and
motivates the need for these features.

1.1 Dynamic Aspect-Oriented Features

Aspect-oriented programming (AOP) [Kiczales et al. 1997] techniques offer
software designers improved methods to separate certain types of concerns in
a system. For example, consider a thread-pooling concern that returns a new
thread from a previously allocated pool of threads. If this concern were added
to an existing program, every call to allocate a new thread must be replaced
with a call to the thread pool. These calls most likely are scattered throughout
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the program. Using AOP techniques, this change could be implemented in a
modular fashion by using declarative constructs to identify thread creation and
to replace those allocations with calls to the thread-pool. The thread-pooling
concern is thus localized into a single module, allowing for easier evolution.

The declarative constructs to identify points where threads are created and
to replace them with calls to a thread pool are static aspect-oriented (AO)
constructs. These constructs can be statically composed with the original code
to produce the desired result. Certain constructs have a more dynamic nature
to them. For example, these constructs might rely on the dynamic control flow
of a program, and can’t easily be statically composed with the original code,
without requiring additional logic.

Other use cases drive the need to support unanticipated changes. Consider
for example a long-running web application that suddenly shows performance
degredation while allocating threads. Using dynamic AO constructs, we could
apply the thread-pooling concern previously mentioned to temporarily solve the
problem while investigating the underlying issue. Once the underlying issue is
resolved, the thread-pooling concern could be dynamically removed.

Some proposals for dynamic AO features have investigated support for these
constructs by translating them to static constructs [Bockisch et al. 2005; Ha-
nenberg et al. 2004; Stolz and Bodden 2006]. For example, Stolz and Bodden
propose translating LTL formulas into AspectJ code [Stolz and Bodden 2006].
This translation generates automata to check if formulas are satisfied, updat-
ing state for each proposition at certain points of the program using generated
advice. At the points where state may change, the AspectJ code adds additional
logic to update the automata and check the satisfiability of the formulas.

In some cases, a finer-grained deployment model enables simpler implemen-
tations, for example, in the case of temporal assertion checking using aspects,
advice representing the following propositions, need not be checked until the en-
abling proposition(s) are found true [Bodden and Stolz 2006; Stolz and Bodden
2006]. Such translations demonstrate the need for a more flexible deployment
model [Bockisch et al. 2004, 2006, Hanenberg et al. 2004]. In particular, the
need to dynamically adapt the set of join points intercepted at a finer-grained
level than currently available is demonstrated for existing dynamic constructs
such as history-based pointcuts [Bodden and Stolz 2006; Stolz and Bodden
2006] and cflow [Bockisch et al. 2005, 2006, Hanenberg et al. 2004].

1.2 Contributions

In this work, we propose an intermediate-language (IL) model that supports
finer-grained runtime deployment at the level of advice-like constructs. The
rationale for supporting such constructs at the intermediate-language level is
to provide a higher level of abstraction as a compilation target for dynamic
aspect-oriented language constructs, compared to object-oriented intermediate
language models, thereby simplifying the support for such constructs. Such
support at the intermediate-language level can be used as a building block for
a variety of dynamic constructs in high-level aspect-oriented languages.

Our intermediate-language model, which we call Nu, extends the object-
oriented intermediate-language model with two new atomic deployment
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primitives, bind and remove, and a point-in-time join point model [Masuhara
et al. 2006]. The effect of these primitives is to manipulate advising relation-
ships. For the purpose of this article, by advising relationship we mean a many-
to-one relation between join points and a delegate. If a point in the execution
of a program and a delegate are in an advising relationship, the execution of
the join point is extended by the delegate. The effect of the bind primitive is
to dynamically create such an advising relationship. The effect of the remove
primitive is to destroy an advising relationship. Our IL model has the following
properties.

—It is simple. Only two new primitives are added to the object-oriented
intermediate-language model.

—It is flexible enough to be able to accommodate the requirements of a broad
set of dynamic and static source-language constructs1 such as AspectJ’s stat-
ically deployed aspects [Kiczales et al. 2001]; CaesarJ’s deploy [Aracic et al.
2006]; control-flow constructs and history-based pointcuts [Allan et al. 2005;
Stolz and Bodden 2006].

—It provides a higher level of abstraction as a compilation target for dynamic
aspect-oriented language constructs.

—It allows compilers to maintain the conceptual separation present in the
source code in the object code as well. Nu supports what Bockisch et al. have
called structure-preserving compilation [Bockisch et al. 2004]. The interme-
diate code now mirrors the design, which among other things is important
for the efficiency of incremental compilers [Bockisch et al. 2006; Rajan et al.
2006] and dynamic adaptation.

An important consideration for such dynamic models is the performance over-
head of supporting them. Previous research results have shown that support
for such dynamic aspect-oriented models outside the virtual machine (VM) can
be prohibitively expensive [Baker and Hsieh 2002; Popovici et al. 2002]. Fol-
lowing Bockisch et al. [2004], we argue that efficient support is possible for
such constructs by utilizing extra information available inside the VM. To that
end, we discuss strategies that contribute to near negligible overhead for Nu’s
runtime flexibility.

In summary, this work makes the following contributions:

—a simple, flexible, and dynamic intermediate-language model;
—an implementation of the Nu model as an extension to the interpreter (at

this time the just-in-time compiler is not supported) of the Sun Hotspot Java
Virtual Machine (Hotspot JVM) [Paleczny et al. 2001], which serves to show
the feasibility of supporting the proposed model in a production-level virtual
machine;

—a caching technique to reduce amortized join point dispatch overhead for
dynamic deployment models;

1Note that not all static language constructs are supported in the current implementation. Please
see Section 6.
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Fig. 1. Illustration of the AspectJ Join Point Model (for simplicity some join point shadows are
omitted).

—an implementation in a VM for the point-in-time join point model [Masuhara
et al. 2006]; and

—an analysis of techniques to optimize our highly dynamic deployment model.

In the following section, we describe our intermediate-language design. Our
implementation strategy to support the Nu IL model in the Hotspot JVM is
discussed in Section 3. A novel caching scheme is discussed in Section 4. We
evaluate the performance of our VM in Section 5. Section 6 illustrates the
potential utility of the intermediate-language design by showing strategies to
support a variety of dynamic and static aspect-oriented constructs by trans-
lating them into our intermediate-language model. Section 7 discusses related
work. Section 8 discusses future work, and Section 9 concludes.

2. NU: A DYNAMIC INTERMEDIATE LANGUAGE MODEL

The key requirement for our IL model is to remain simple, yet flexible enough, to
be able to support both dynamic and static constructs in AO source languages.
This section introduces the join point model adopted by our approach. We then
illustrate new primitives using an example.

2.1 Nu’s Join Point Model

One central concept in common AO approaches is the notion of a join point. A
join point is defined as a point in the execution of a program. For example, in
AspectJ [Kiczales et al. 2001], the “execution of the method Hello.main()” in
Figure 1 is an example of a join point. This join point may possibly occur at
a location in the source code, popularly referred to as the shadow of the join
point [Hilsdale and Hugunin 2004; Masuhara et al. 2003]. The shadow of the
example join point is marked in Figure 1.

Instead of AspectJ’s join point model, we adopted a finer-grained join point
model for Nu, proposed by Masuhara et al. [2006]. Masuhara et al. call the join
point model of AspectJ-like languages a region-in-time model, since a join point
in these languages represents duration of an event, such as a call to a method
until its termination. They propose a join point model called the point-in-time
model in which a join point represents an instance of an event, such as the
beginning or the termination of a method call [Masuhara et al. 2006]. They
show that this model is sufficiently expressive to represent common advising
scenarios.
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Fig. 2. Illustration of the Point-In-Time Join Point Model [Masuhara et al. 2006] (for simplicity
some join point shadows are omitted).

In the point-in-time model, corresponding to AspectJ’s execution join point,
there are three join points: execution, return, and throw. Here, throw is
when the executing method throws an exception. These three join points elim-
inate the need for three different kinds of advice: before, after returning, and
after throwing advice. The before execution, after returning execution, and after
throwing execution become equivalent to execution, return, and throw, respec-
tively. Figure 2 illustrates this model. Two join point shadows in the method
Hello.main() are marked as being shadows for the join points “execution of
the method Hello.main()” and “return of the method Hello.main()”. Simi-
larly, corresponding to AspectJ’s call join point, there are three join points:
call, reception, and failure. Here, failure is when an exception is thrown by the
callee.

At this time, Nu’s implementation does not support around advice (see Sec-
tion 8 for more details). Interested readers are referred to Masuhara et al.’s
work [2006] for more detail. We have also explicitly decided not to support static
crosscutting mechanisms, such as intertype declarations in AspectJ [Kiczales
et al. 2001]. These constructs are largely static, and they can be easily supported
by high-level language compilers using static, weaving techniques [Böllert
1999; Hilsdale and Hugunin 2004].

Our adoption of this model was, in part, driven by the clarity it gives to the
semantics of fine-grained dynamic deployment. One issue that arises with the
deployment of dynamic aspects is when the aspect being deployed advises a join
point that is already on the stack. With a region-in-time model, it is not very
clear whether this new aspect should advise the join point already on the stack,
and the problem is often left to the semantics of the virtual machine [Kiczales
2007]. For example, assume that an aspect a is deployed during the execution
of a method m. This aspect contains an after advice that intercepts the join
point “execution of m”. Note that in the region-in-time model we are still in
the scope of the join point “execution of m”. The question is whether to invoke
a when m returns. A region-in-time model can solve this problem, but would
be unnecessarily complicated, whereas a point-in-time model offers a simple
solution.

2.2 New Primitives: BIND and REMOVE

Our IL model adds only two primitives to the object-oriented IL: bind and
remove. The informal specifications including stack transitions is shown in
Figure 3. As described previously, the effect of these primitives is to manipulate
what we call advising relationships.
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Fig. 3. Specification of primitives in Nu.

Fig. 4. Bind and remove in an example program.

An example is given in Figure 4. For ease of presentation, the corresponding
high-level language code is shown. In this figure and in the rest of the presen-
tation, special forms of bind(..) and remove(..) will be substituted where the
intermediate-language primitives would normally appear. In the source code, a
notation such as id = bind(p,d) represents generating two push instructions
for the pattern p and the delegate d, followed by generating the bind prim-
itive, followed by a store instruction to store the result in id. Furthermore,
remove(id) represents an instruction to push id on the stack followed by a
remove primitive.

Figure 4 shows the code for class AuthLogger. The objective is to record
the time of execution of any method named login in the system. Moreover,
we should also be able to enable and disable the authentication logger during
execution. To implement this logger, we need to specify the intention to select
all methods with the name login. In the Nu model, we would create a pattern
to represent this intention.

2.2.1 Patterns in Nu. A pattern is an object of type Pattern. It is created
by instantiating a set of classes provided by the Nu standard library. It is
first-class, in that it can be stored, passed as a parameter, and returned from
methods. Like strings in Java, patterns are immutable; their values cannot be
changed after they are created.

Figure 5 shows some commonly used patterns available in our implemen-
tation. The basic patterns on the left (numbered 1–4) serve to select all join
points (JPs) related to methods, constructors, fields, and so on. For example,
the pattern object returned by new Method("*.login") can be used to select
execution, return, throw, call, reception, and failure join points for all methods
named “login”. The filter patterns on the right (numbered 5–12) expect one of
the basic patterns as an argument and further narrow down the set of match-
ing join points. For example, if we want to match the “execution of any method
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Fig. 5. Patterns available in Nu’s standard library.

named login” we would have to first create the Method pattern discussed be-
fore. We would then pass this instance as an argument to the constructor of
the Execution class. The resulting instance is the pattern for “execution of any
method named login.”

In the example shown in Figure 4, the static initializer of class AuthLogger
creates this pattern and stores it in the static field loginPat, so that it can be
used for enabling the logger usingthe bind primitive.

2.2.2 The Bind Primitive. The bind primitive expects two values on the
stack: a pattern (discussed previously) and a delegate. The delegate is a first-
class, immutable object of type Delegate. These types are part of Nu’s standard
library, which is an integral part of Nu’s virtual machine implementation. The
pattern serves to select the subset of join points in the program. The delegate
points to a method that provides the additional code that is to execute at these
join points.

In Figure 4, the static initializer of class AuthLogger creates a delegate
to the method AuthLogger.log() and stores it in the static field logDel, so
that it can be used to enable the logger via the bind primitive. The enable()
method uses the bind primitive to create an advising relationship between
the join points matched by the pattern loginPat and the delegate logDel,
which enables logging of authentication attempts in the system. After the bind
primitive finishes, the pattern and the delegate are popped off the stack and a
unique identifier, described in Section 2.2.3, is pushed on to the stack.

The bind primitive dynamically creates an advising relationship between the
join points matched by the pattern and the supplied delegate. On completion of
a bind, when a join point executes each delegate supplied with a pattern that
matches that join point will intercept its execution. Delegates are invoked in
the same order in which they were bound. Delegates are invoked at most once
per join point (for reasons described in Section 6.2).

Future language extensions may allow ordering constructs; however, at this
time we believe they are not necessary, since compilers generating Nu inter-
mediate code could re-order the bind calls (for example, when modeling the
static deployment model of AspectJ and implementing the declare precedence
construct).

Upon completion of a call to bind, the delegate will intercept any join point
that executes and matches the associated pattern. This behavior is intentional.
Consider a tracing aspect, which will output a trace at the entry and exit of a
method. If a bind primitive is used to enable the tracing, we want it to take
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effect immediately (thereby tracing the method exit of the method containing
the bind primitive).

The language is defined with a per-thread semantics. This means that bind
and remove primitives only affect advising relationships on the same thread
that they were called from. This semantics is selected to avoid the need to
make groups of bind/remove calls atomic (note, however, that individual calls
are atomic). The termination of a thread causes all associations created by that
thread to be automatically removed, since reaching a join point in the context
of that thread is no longer possible.

2.2.3 Bind Handles. The unique identifier returned by a bind primitive is
an immutable object representing the advising relationship. This unique iden-
tifier is an object of opaque type BindHandle, which is also part of Nu’s standard
library. A type is opaque if there is no way to find out its representation, even
by printing. This identifier may only be created by the virtual machine.

2.2.4 The Remove Primitive. The remove primitive expects a unique, im-
mutable identifier representing the advising relationship on the stack. It de-
stroys the advising relationship corresponding to the identifier. An example
is shown in Figure 4, where the disable() method uses the remove primitive
to destroy the advising relationship corresponding to the BindHandle instance
stored in the static field id, effectively ceasing logging.

3. NU VM: PROOF OF FEASIBILITY FOR THE NU IL MODEL

We have extended the Sun Hotspot Java virtual machine (or Hotspot for short)
to support the bind and remove primitives. In our prototype implementation,
we mimic these instructions as native methods inside the VM. In the rest of
this section, we describe the relevant aspects of Hotspot, our extensions, and
a comparison of their runtime performance that serves to support our claim
that it is feasible to support Nu in an industrial-strength VM implementation
without significant performance degradation. In Section 3.4 we describe the
dispatch at join points. Section 3.3 describes the implementation specific details
for the bind and remove primitives. A novel caching mechanism is described in
Section 4. Section 5 details our evaluation of the implementation.

3.1 Our VM Implementation Strategy

Hotspot uses mixed-mode execution for faster performance [Agesen and Detlefs
2000]. The key idea is that there are often no gains achieved by compiling the
entire program to produce native code before running it [Agesen and Detlefs
2000; Paleczny et al. 2001]. The compilation efforts are focused on performance-
critical methods [Paleczny et al. 2001]. The insight is based on Hölzle and
Ungar’s work on adaptive optimization of Self [Hölzle and Ungar 1996].

There are three modes of bytecode execution: an interpreter, a fast nonopti-
mizing compiler, and a slow optimizing compiler. Hotspot uses runtime profiling
to identify a set of performance-critical methods in the Java program. For the
parts that are performance-critical, the adaptive optimizing compiler produces
optimized native code.
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Fig. 6. Overview of Nu’s VM implementation.

Previous studies of Java programs, for example by Krintz et al. [2001], show
that up to 57% of the methods loaded by the VM are never executed. These
studies, the results on adaptive optimization [Hölzle and Ungar 1996], and
the highly dynamic nature of our intermediate-language model led us to our
implementation strategy. Instead of using bytecode rewriting, which would
spend time rewriting methods that may never execute, we should dispatch
advice using a method-dispatch table when methods actually execute.

3.2 VM Implementation Overview

Figure 6 shows an overview of the components modified to implement the Nu
virtual machine. The Hotspot interpreter was modified by adding additional
assembly code for advice dispatch (JP Dispatcher). The standard Java Runtime
Environment (JRE) has additional Java classes added to it for the Nu pattern
library. The VM has additional C++ code added to handle bind and remove calls
as well as perform pattern matching at join points. The caching mechanism
described in Section 4 adds additional data to the methodOop class as well as
a global counter. Additionally it adds code into the classloader to initialize the
cache. More details about the caching mechanism are in Section 4.

3.3 Handling Bind/Remove Calls in Nu VM

The modified VM handles bind calls by storing the pattern and delegate objects
into a list. There is one list for each kind of join point, and the pattern indicates
which join point kind(s) it applies to. It also performs some simple sanity
checks (like verifying neither object is null, if the delegate is nonstatic then an
instance object was passed in, and so on). The VM then stores the pair into all
applicable lists, generates, and returns a unique BindHandle to the caller. The
BindHandle is an instance of the immutable Java class BindHandle, which may
only be instantiated by the VM.

For remove calls, the modified VM simply removes the pattern/delegate pair,
matching the passed in BindHandle from all lists. Any join point that previously
cached the delegate will lazily, on its next execution, recognize that the cache
is invalid and remove the delegate from its local cache.
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Fig. 7. The join point dispatch code.

The class file processor was modified to initialize data structures used at each
join point. These data structures consist of several flags for use in caching,
a local cached delegate list, and storage for the join point’s static reflective
information (which is created lazily upon first use). The class file processor
already accesses the bytecode of potential join point shadows, so no additional
iterations were needed for initializing these data structures.

3.4 Join Point Dispatch in Nu VM

Our current VM implementation provides an advice dispatch mechanism at
each join point. The focus of the prototype presented in this articles is to op-
timize this dispatch mechanism. This mechanism handles matching the join
point to existing patterns and invoking any corresponding matched delegates.
We take advantage of the stubgeneration code of Hotspot, adding in additional
code to perform our advice dispatch.

The stubgeneration code in Hotspot uses an assembler to generate generic
stubs for the entry and exit of Java methods. These stubs include a check to
see if a compiled version of the method exists and, if so, directly jumps to the
compiled code. If not, the stub will continue executing inside the interpreter.

We inserted an advice dispatch mechanism in these stubs. Our advice dis-
patch mechanism performs three checks, implemented as three mov, three cmpl,
and three jcc assembly instructions. These assembly instructions, pseudo-code
is shown in Figure 7, are directly emitted in the assembly code stubs generated
by the VM. The caching mechanism is described in more detail in the following
section.

The first check is a filtering check to prevent JRE and Nu runtime join point
shadows from being advised. Filtered join point shadows use a special value in
the cache.
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Fig. 8. Cache hits/misses and their respective costs.

The second check is a cache validation check that determines if the cached
pattern-matching results for the join point shadow are valid. If the results are
not valid, an incremental pattern match is performed for the join point shadow
and the pattern-matching results are cached.

The third check determines if there are any cached delegates that need to
be invoked at this join point shadow, pending a check of any dynamic residues.
If the check passes, the delegates are invoked, otherwise the join point shadow
execution continues. This code is designed to maximize the use of branch-
prediction algorithms implemented by most modern processors. If a join point
is executed frequently, these checks will be optimized away by the (correct)
branch prediction, minimizing the dispatch overhead.

One part not shown in Figure 7 is the exposing of context such as this,
target, and so on, to delegates. The signature of the delegate method indicates
if such context is needed, and bind checks for this signature and sets a flag
in the bindHandle. Before the cached delegates execute, if any delegate needs
context exposed, the VM generates a thisJoinPoint object using information
already available on the stack.

4. CACHING TECHNIQUE IN NU VM

Matching a join point with a list of bound patterns at runtime is an expensive
operation, which is a separate research topic on its own; however, caching
techniques can be used to reduce the amortized cost of this operation. To that
end, we have implemented a two-level caching algorithm for dynamic matching
in our advice dispatch mechanism. Following the terminology of the computer
architecture community, hereon we refer to these two caches as the L1 cache
and L2 cache. A join point shadow match result being present or not present in
a cache is referred to as a hit or miss, respectively.

The L1 cache is maintained at the join point shadow in the form of a list
of references to the (delegate, pattern) pairs that have already matched with
that join point shadow. In the previous section, the cache validation check that
we described pertains to the L1 cache (see Figure 7). The L2 cache for each
join point kind is maintained inside the pattern matcher in the form of a hash
map from the join point shadow signature to a list of current patterns that
potentially match that signature. The L1 cache helps avoid calls to the incre-
mental matcher. The L2 cache is inside the matcher and enables incremental
matching. Similar to L1 and L2 caches inside a processor, a L1 hit is the least
costly operation, followed by a L2 hit (see Figure 8).

Patterns internally maintain the information about possible join point
shadow kinds that may match during their construction using an iterative
scheme. All patterns maintain a fast-match flag. All concrete patterns such as
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Execution, Call, and so on, statically assign values to this flag that represent
matching their specific join point shadow kinds. All dynamic patterns such as
This, Target, match selective join point kinds. When constructed, all And/Or
composite patterns retrieve the fast-match flags from inner patterns supplied
as arguments to their constructors and set their own fast match flag to the
logical and/or of their inner pattern’s flag. This scheme is an adaptation of
the fast-match technique used by the standard AspectJ compiler (ajc) during
compilation [Hilsdale and Hugunin 2004].

Our algorithm for detecting an L1 cache hit/miss is as follows. Each join
point shadow (methodOop) contains a counter (methodOop.Counter) that is ini-
tialized to zero, when the class containing the join point shadow is loaded.
There is also a global counter (globalCounter) for each join point kind (items
5–12, Figure 5) initialized to zero when the VM is initialized. The global
counter for a join point kind is incremented on bind and remove operations,
if the bound/removed pattern may match that join point kind. Global coun-
ters are never decremented, so that the local caches always know if they are
valid.

At advice dispatch time, the check for L1 cache hit/miss is simply an equal-
ity test between the local counter for the join point shadow and the global
counter for that join point kind. Upon exiting, the join point matcher sets the
local counter to the current value of the global counter. We suspect that better
checking techniques might be possible; however, we were able to implement
this check using two mov, one cmpl, and one jcc instruction, and therefore we
did not investigate further in this direction.

When a join point shadow incurs an L1 cache miss, the incremental pat-
tern matcher is called. The incremental matcher is the L2 cache and refers
to a simple technique of only matching patterns that have not already been
matched against that join point shadow. The join point shadow stores a pointer
to the bindHandle of the last pattern it was matched against. When an incre-
mental match is performed, it only performs matching against patterns with
newer bindHandles (internally, bindHandles are stored in a linked list). The
incremental matcher must also check the list of delegates in the L1 cache
to verify that none have been removed and, if so, they are taken out of the
join point’s L1 cache. At the end of the incremental match, the join point’s L1
cache is set to valid by setting the local counter in the L1 cache to the global
counter’s value and storing a pointer to the last matched bindHandle in the
L2 cache.

5. RUNTIME PERFORMANCE OF NU VM

To evaluate the runtime performance of our implementation of Nu, we eval-
uated the performance of the system in the case where no bind calls have
occurred to determine the join point dispatch overhead of our VM implementa-
tion. We used two standard Java benchmarks for our evaluation: SPEC JVM98
and Java Grande Framework (JGF). Since we are advocating modifying a
production-level VM, it is important that the modifications do not significantly
affect the performance of existing applications. To measure the overhead in
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Fig. 9. Comparison of join point dispatch times using the JGF benchmark (larger bars are better).

Fig. 10. Comparison of join point dispatch times using the JGF benchmark (larger is better).

these cases, we ran the SPEC JVM98 and JGF method benchmarks with no
bind/remove calls. We measured the performance of the unmodified JVM, our
initial implementation of Nu, and our current implementation of Nu as de-
scribed in this article. All measurements were performed on a dual 2.2GHz
XEON server with 2GB memory.

The results for the JGF method benchmarks are shown in Figures 9 and 10.
Since the JGF method benchmark repeatedly executes simple methods to ob-
tain the average number of method calls per second, this is where our caching
implementation really shows up. Our initial version had to perform matching
on each method call (even though there were no binds). With caching in place,
this match is performed once. Our implementation went from 21.3% to 98.5%
of the method calls achieved by the unmodified JVM.

The results for the SPEC benchmark are shown in Figures 11 and 12. This
benchmark measures the time to execute a set of realistic applications. Similar
to the JGF benchmark, our implementation went from a 37% execution time
overhead to about 1.5% overhead.

5.1 Cache Performance

To measure the penalty for a cache miss, we created a synthetic benchmark.
This benchmark determined the baseline performance of calling a method
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Fig. 11. Comparison of join point dispatch times using the SPEC JVM98 benchmark (smaller
bars are better).

Fig. 12. Comparison of join point dispatch times using the SPEC JVM98 benchmark (smaller is
better).

Fig. 13. Cache benchmark results.

(which has already had its cache initialized). It then creates a number of ad-
vising relationships which do not advise the method being measured. We then
call the method and measure its performance. This process is then repeated
10,000 times and the results averaged. The results are shown in Figure 13.
Most common AO programs today contain relatively few aspects (and point-
cuts), and thus these results show that the performance of our caching mech-
anism scales well. Note that the results indicate a linear relationship to the
number of patterns already bound.

5.2 Bind/Remove Performance

To measure the performance of the bind and remove primitives, we created an-
other synthetic benchmark. This benchmark contains one class with a method
that will be matched by patterns in bind calls. The benchmark starts with an
initial number of pattern/delegate pairs bound. This number was varied from 0
to 2048 and set in NUM. It then measures (separately) bind and remove calls and
determines their averages. This benchmark was run 30 times for each value of
NUM.
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Fig. 14. Deployment benchmark results.

The results showed that performance for both primitives was independent
of the number of existing advising relationships. The average time taken by
the bind and remove primitives was 11 μs and 3.4 μs with a variance of ap-
proximately 3 μs and 1 E−4μs, respectively.

We measured the deployment and undeployment time of Nu and the closest
related work, Steamloom [Bockisch et al. 2004]. This measurement was on a
synthetic benchmark. Three benchmarks of varying size were used. The aspect
(un)deployed for all three benchmarks was a tracing aspect, and the number of
classes in the system was varied (10, 100, and 1000).

The results are shown in Figure 14, and include the initialization time for
both VMs. Nu’s initialization is about 45 ms longer than Steamloom’s initializa-
tion, however, both bind and remove and outperform Steamloom’s deploy/un-
deploy in all cases. In particular, note the times for Nu are almost constant
due to the fact Nu does not match join points immediately. Steamloom on the
other hand will match and weave the pointcut against all join points. In the
Large benchmark, this means that Steamloom must weave into 1000 classes
and incurs an overhead of almost 20 seconds.

5.3 Delegate Invocation in Nu VM

Due to the lack of delegates in Java, our initial implementation made use of
the reflection API and Java Native Interface (JNI) methods. Users passed in
strings representing the name of a class and the name of the delegate method,
and the runtime created a reflection Method object representing the specified
delegate. This object was then passed into bind calls. JNI methods available
inside the VM were then used to invoke the delegate.

Our current strategy still makes use of the reflection API Method class for
passing in a delegate to bind calls. The bind implementation makes use of
data structures already available inside the VM to keep track of information
regarding the delegate, such as class, instance, method, and so on. When the
VM initially loads, template code for invoking delegates is generated inside
the method stubs. This code makes use of the stored information about the
delegate, avoiding the need to use expensive JNI methods.

To measure the performance of our delegate invocation code, we created a
benchmark that repeatedly calls a simple test method. A delegate method that
increments a static counter is then used to create an advising relationship with
our test method. A copy of the test method is created with manually inlined
calls to the delegate method. The number of manually inlined calls is equal to
the number of advising relationships created using bind. We then measure both

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 7, Pub. date: August 2010.



P1: IAZ

TOSEM2002-07 ACM-TRANSACTION August 9, 2010 12:42

Supporting Dynamic Aspect-Oriented Features • 7:17

Fig. 15. Invoke benchmark results.

copies of the test method (one with manually inlined calls and one with advising
relationships to the delegate). A comparison to AspectJ’s advice invocation code
was not made, since most typical AspectJ compilers generate two methods at
the call site (one to get an instance of the aspect and one to call the advice
method).

The left of Figure 15 varies the total number of bind calls while keeping the
percent that match the test method at 100%. The right of Figure 15 varies the
percentage of bind calls that match the test method while keeping the total
number of bind calls at 256. As can be seen from the figures, our delegate in-
vocation technique went from around 4% as efficient as the manually inlined
version to around 82%. We believe that as we refine our technique, our invo-
cation mechanism should approach relatively the same efficiency as manually
inlining calls to delegate methods.

5.4 Summary

Our current prototype implementation serves as a proof of concept of our claim
that support for the Nu IL model in production-level virtual machines is feasi-
ble. Starting from our very inefficient implementation, we have improved our
join point dispatch by reducing the overhead from 37% to 1.27% for the SPEC
JVM98 benchmark and increased our performance on the JGF benchmark from
21.34% of the unmodified Hotspot to 98.48% of the unmodified Hotspot. Dele-
gate invocation improved from around 4% as efficient as the manually inlined
version to around 82% as efficient.

6. THE NU IL MODEL AS A TARGET COMPILATION LANGUAGE

In this section, we describe strategies for compiling static and dynamic AO
constructs to the Nu IL model. The rationale for this section is to demonstrate
that the IL model is flexible enough to support static2 dynamic, control-flow, and
history-based constructs in AO languages. Moreover, it also shows, by giving

2Note that not all static constructs, such as around advice, are currently supported in Nu’s
implementation.
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Fig. 16. The world aspect.

Fig. 17. Compiling an AspectJ aspect to Nu IL.

a translation, that compilation of these constructs generates modular object
code, which is an additional benefit of the Nu model.

6.1 Compiling AspectJ Constructs

In this section, we demonstrate compilation strategies from AspectJ to the
Nu IL model. The intention here is neither to discuss AspectJ in detail nor to
compare the proposed approach with AspectJ. The intention here is to illustrate
the potential utility of the Nu intermediate language model.

To illustrate the compilation strategies from AspectJ constructs to the Nu IL
model, consider a simple extension of the Hello program shown in Figure 1. Let
us assume that we were to write an aspect that would extend the functionality of
the method main(), so that instead of printing “Hello” it prints “Hello” followed
by “World” on successive lines. An aspect World that implements this simple
functionality is shown in Figure 16. The source code equivalent (for ease of
presentation) of the Nu object code that will be generated for this aspect follows
in Figure 17.

6.1.1 Compiling Aspects, Pointcuts, and Advice. Aspects are compiled into
intermediate code units in the following way: pointcuts are compiled into pat-
tern object instances; advice code is compiled into delegate methods; and bind
primitives are generated in a static initializer of the aspect to associate the
delegate code to the join points matched by the patterns. In the example shown
in Figure 17, the generated object code for the method ajc$0() contains the
advice code.

The generated intermediate code for the static initializer of aspect World
contains additional code to first create an instance of the pattern Method. This
instance is then used to create an instance of the pattern Execution. After cre-
ating the pattern instances, the delegate is created. The pattern and delegate
instances are then used by the bind primitive to initiate join point interception.
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Fig. 18. Compiling AspectJ’s perthis instantiation model to Nu IL.

An interesting property of the Nu version of the intermediate code for the
aspect class World and the base class Hello (not shown) is that they remain
separate in their own object code modules. Also, the object code for the base
class Hello remains free of the aspect-related intermediate code. This shows
that Nu supports what Bockisch et al. have called struture-preserving compi-
lation [Bockisch et al. 2004]. The intermediate code now mirrors the design,
which among other things is important for the efficiency of incremental com-
pilers [Bockisch et al. 2006; Rajan et al. 2006].

The example in Figure 17 shows a singleton instantiation model for the
aspect World. Compiling other instantiation models follows a similar structure.
For example, to compile a perthis version of the example aspect, the advice
ajc$0 will now have a wrapper to look up the aspect instance in a table. This
compilation technique is similar to the technique proposed by Sakurai et al. for
compiling association aspects [Sakurai et al. 2004].

6.1.2 Compiling Complex Aspects. The illustrative AO application com-
piled in the previous section served to provide an example of a basic translation.
To preserve the semantics of an aspect in the AspectJ language, compilation
of an aspect in a real-world AO application needs to account for two addi-
tional conditions: deployment as a single unit and whole program deployment
of aspects.

First, aspects are deployed as a single unit at the beginning of the program.
This requirement is addressed by generating all bind instructions for an aspect
inside a transaction in the static initializer or in a synthetic static method
ajc$preClinit(). A dummy reference to all aspects is inserted in the static
initializer of the main application class as the first few instructions. This causes
all aspects to initialize before the application execution begins. In the case
of libraries containing aspects, a synthetic method could be generated and a
requirement to call this function at initialization time could be imposed to
initialize all aspects in the library.

A strategy similar to AspectJ’s load-time weaving can also be used, where
an XML file is generated by the compiler containing the details of all aspects
in the system. All such aspects are then loaded by a custom class loader.

Second, aspects in AspectJ advise all threads in the program. In Java, when
a thread is created it must be permanently bound to an object with a run()
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Fig. 19. Performance comparison of AspectJ constructs on Java grande benchmarks (larger bars
are better).

method. When the thread starts by calling Thread.start(), it will invoke the
object’s run() method. The strategy to deploy aspects for all threads in the
program is to generate a set of instructions that execute between the methods
Thread.start() and run(). These instructions are calls to the static method
ajc$preClinit() on all aspects in the program. As mentioned previously, the
bind instructions are generated in the ajc$preClinit() as a transaction. Exe-
cuting this method deploys the aspects for the new thread.

6.1.3 AspectJ Constructs Performance. The performance of AspectJ con-
structs translated to Nu IL was measured on the Java Grande method bench-
marks. We measured four versions of a simple counting aspect: a version com-
piled with the standard AspectJ compiler (ajc); two versions compiled with
the AspectBench compiler (abc) [Avgustinov et al. 2005]; and a version using
our compilation strategies to generate Nu IL. All versions ran in interpreted-
only mode, due to the Nu VM not currently supporting the Just-in-Time (JIT)
compilation process.

ajc usually generates two method calls for an advice invocation: one to fetch
an aspect instance and then the actual call to the advice method [Hilsdale
and Hugunin 2004]. The idea behind this compilation strategy is that the
JIT compiler can inline these calls. Unfortunately, since we have to run in
interpreted-only mode, these inlining optimizations will never be performed by
the VM. In order to study the behavior as if the advice had been inlined, we
made use of abc, which has an option to enable advice inlining.

Figure 19 shows the results of the benchmarks. The Nu IL compiled code
is faster than the AspectJ and noninlined abc compiled code in all cases. The
inlined abc version was slower in two cases and faster in the remaining cases.
On average, it was only about 5% faster than the Nu IL version. This shows
that even with the overhead shown in Figure 9, our implementation of the Nu
IL model performs well for static AO constructs.
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Fig. 20. Jikes RVM compared to steamloom on Java grande benchmarks (with 1 advice active).

So far we have not been very concerned about space overheads of our imple-
mentation, primarily because our main objective was to optimize the runtime
performance of a highly flexible and dynamic AO system. Despite this, when
measuring the maximum memory usage for the base Hotspot VM with no ad-
vice (2,195.6 MB), with advice compiled by ajc, (2,425.9 MB); abc (2,468.0 MB),
and the Nu VM (2,682.9 MB), we see only a 10% increase in memory usage
compared to the ajc version.

Steamloom [Bockisch et al. 2004] is based on the Jikes Research VM (RVM),
whereas Nu is based on Sun’s Hotspot JVM. The difference in baseline VMs
complicates a direct comparison to this related work. The Jikes RVM does not
use an interpreter, instead opting to baseline compile all code and recompile
with an optimizing compiler the hot segments of code. In order to give the
reader some sense of the relative overhead of these approaches, we measured
the overhead compared to the baseline VMs when introducing an aspect into
these systems.

The results of the JGF benchmark on Steamloom and the baseline Jikes RVM
are shown in Figure 20. The Jikes RVM benchmark was run with no advice
active to give a baseline performance, while the Steamloom benchmark had the
same advice active as in Figure 9. With the advice activated, Steamloom ran
at 54% of the baseline Jikes RVM. For comparison, compared to the baseline
Hotspot VM, AspectJ ran at 24%, ABC with inlining ran at 33%, and Nu ran
at 32%.

In addition to Steamloom, we measured the performance of PROSE [Popovici
et al. 2002, 2003] running on the same version of the Sun Hotspot VM as the
previous benchmarks. Older versions of PROSE used the debugger interface
to expose join points and dynamically register advice [Popovici et al. 2002].
The results for this version of PROSE averaged around 5500 calls/sec, and
thus would not even show in Figure 19. Newer versions of PROSE modify the
VM and use a stub and advice weaver for improved performance [Popovici
et al. 2003]. Unforntunately, even with PROSE 1.4.0, there was a bug that
prevented the benchmark from completing. The portion of the benchmark that
ran, however, showed improvements of around 57% compared to the earlier
version of PROSE. Both versions are considerably slower than any of the other
approaches measured.

6.2 Compiling Control-Flow Constructs

Our compilation strategy for the cflow and cflowbelow constructs is similar to
the ideas presented by Hanenberg et al. [2004]. We will discuss the cflowbelow
case, as it is slightly more interesting, pointing out differences from cflow as
necessary. Note that in addition to these compilation strategies, optimization
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Fig. 21. The generated code for cflowbelow.

strategies proposed by Avgustinov et al. can also be applied, such as sharing
cflow states and caching thread-local state objects [Avgustinov et al. 2005].

Consider an example usage, where an aspect Counting uses the cflowbelow
construct to count the number of calls to the method Bit.Set() below the
control flow of the method Word.Set(). The pointcut expression will select all
calls to the method Bit.Set() that occur between entry and exit of the method
Word.Set().

Our compilation strategy for the cflow and cflowbelow constructs is as fol-
lows: first, generate two new methods, say Enter() and Exit(), making sure
that the names are unique in the class (since the class may already contain
other methods); second, bind these two methods to execute at the entry and
exit of the method Word.Set(), respectively; and third, generate code in Enter()
and Exit() to bind and remove the code to the actual advice to execute when-
ever Bit.Set() is called. In the terminology of Avgustinov et al. [2005] the
shadows for Enter() and Exit() are update shadows and the residue in the
advice is a query shadow. The stack stack is used to track multiple bind calls
to Word.Set(), allowing the code to remove the proper association. Note that
since a delegate is invoked at most once per join point, binding the same associ-
ation relationship multiple times will not cause the VM to invoke the delegate
multiple times at matching join point shadows.

Some bookkeeping is required to keep track of the execution stack depth in
the variable depth. Inside the advice body, a check is generated to determine if
the stack depth is the same. If the stack depth is the same, then any call being
made to Bit.Set() is being performed from the initial call to Word.Set()—we
are not below the control flow of Word.Set(). In this case, the delegate simply
returns without executing the advice body. If the stack depth is larger, then
we are below the control flow of Word.Set() and may continue executing the
advice body. Figure 21 shows the results of the code generation for the example
program described at the start of this section. As previously mentioned, the
equivalent source code is shown for ease of presentation. The only difference
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Fig. 22. Optimized code for cflowbelow.

Fig. 23. Performance comparison of cflow constructs using JGF benchmarks (larger bars are
better).

between the compilation of cflow and cflowbelow is that the bookkeeping code
for stack depth (highlighted in grey in Figure 21) is not generated in the case
of cflow.

A slightly more optimized version is shown in Figure 22. In this version,
a counter is added to track if we are entering and exiting the intial call to
Word.Set() instead of binding every time Word.Set() is called. While the per-
formance of bind and remove calls was shown (in Section 3) to be small, in-
crementing and decrementing a counter is significantly faster, as shown in the
following section.

6.2.1 Control-Flow Construct Performance. The performance of control-
flow constructs was measured on the JGF method benchmarks. Five versions
were measured: a version compiled with AspectJ 1.5.3; two versions compiled
with abc 1.3.0 at the lowest (O0) and highest (O3 plus inlining) optimization
levels; and both code generations shown in Figure 21 and Figure 22. Once
again, all benchmarks were run in interpreted-only mode.

The results are shown in Figure 23 and demonstrate that both of our com-
pilation strategies fair well when compared to AspectJ and abc. In particular
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Fig. 24. Compiling dynamic deployment constructs.

note that our approach performed similarly to the version compiled with abc’s
highest level of optimizations and fully inlined advice. With these optimiza-
tions, abc was able to statically determine exactly where the advice executes
and inline it. Our approaches performed similarly, but did not require any static
analysis.

6.3 Compiling Deployment Constructs

Some aspect languages such as CaesarJ [Aracic et al. 2006] provide declarative
constructs for dynamic deployment, for example, deploy and undeploy, which
are naturally supported by our primitives. Figure 24 shows a strategy for
compiling such constructs.

The deploy and undeploy constructs are modeled by generating methods
that contain the code to bind and remove the pointcuts and delegates in
the aspect. The call to deploy and undeploy in the program is replaced by
World.aspectOf().deploy() and World.aspectOf().undeploy(), respectively.

The strategies discussed in Section 6.1.2 also apply in this case. This strategy
for compiling dynamic deployment constructs also maintains the separation of
the aspect modules and base modules.

6.4 Compiling Temporal Constructs

Stolz and Bodden proposed a runtime verification framework, where the static
aspect deployment model is utilized to verify properties expressed as linear
temporal logic formula over pointcuts [Stolz and Bodden 2006]. These proper-
ties are predicates over program traces, and have also been called history-based
pointcuts. Among others Douence et al. [2004]; Bockisch et al. [2005]; Walker
and Viggers [2004]; and Allan et al. [2005] have argued for aspect language
constructs of similar flavor. An example of such a temporal property is

G(call(∗Word.set(..)) → F(call(∗Bit.set(..))))

which means that every call to the method Word.set() is finally followed by a
call to the method Bit.set(). This property contains two propositions, call to
the method Word.set() and call to the method Bit.set(). For checking such a
property, Stolz and Bodden [2006] create aspects that contain state variables
representing the fact that a proposition has been satisfied. For each proposition
(pointcut), an advice would be created that manipulates the state variables in
the aspect. The advice and state variables together serve to model the state
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Fig. 25. Temporal property checking aspect based on Stolz and Bodden [2006].

Fig. 26. Nu’s version of the tcheck aspect.

machine. Figure 25 shows the aspect for our example, based on Stolz and
Bodden’s example [Stolz and Bodden 2006, Fig 3].

A version of the temporal aspect in Nu IL model is shown in Figure 26.
First, patterns are created to model pointcuts, and delegates to the methods
are created. The first pattern and delegate are used for the one-time bind on
line 12 in Figure 26. The bind handle received from this bind is not stored
to allow for optimizations. The effect of the one-time bind is that afterP1()
starts intercepting the join points matched by call(* Word.set(..)), which
represents the first proposition in the temporal formula. Once the first propo-
sition is true, that is, the method afterP1() executes, besides managing the
logic as before, a check for the second proposition is inserted into the system.
This is achieved by the bind on line 19 in Figure 26. When the second proposi-
tion is satisfied, the method afterP2() executes, which besides managing the
logic as before, stops the check for the second proposition, as it is no longer
necessary.

To use Hanenberg et al.’s terminology [Hanenberg et al. 2004], Nu’s version
of the aspect Tcheck affects only the initial set of join points selected by the
the pointcut call(* Word.set(..)). After the advice on line 18 executes, it
morphs to include the join points selected by the pointcut call(* Bit.set(..)).
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Fig. 27. Performance comparison of AspectJ and Nu versions of temporal constructs (larger bars
are better).

As Bodden and Stolz pointed out, dynamically (un)deploying portions of the
temporal matching infrastructure in this manner can lead to improved runtime
performance [Bodden and Stolz 2006].

6.4.1 Temporal Construct Performance. The performance of temporal con-
structs was measured on the Java Grande method benchmarks. The same
framework and formula were used for both the AspectJ and Nu versions. Once
again, all benchmarks were run in interpreted-only mode. The results are
shown in Figure 27. Once again, the Nu IL version performed similarly to
the AspectJ version.

7. RELATED WORK

Three closely related and complimentary research ideas are runtime weaving,
load-time weaving, and virtual-machine support for AOP. We discuss these
ideas in detail below.

7.1 Run- and Load-Time Weaving

There are several approaches for run-time weaving such as PROSE [Popovici
et al. 2002]; Handi-Wrap [Baker and Hsieh 2002]; and Eos [Rajan and Sullivan
2003, 2005]. A typical approach to run-time weaving is to attach hooks at all join
points in the program at compile-time. The aspects can then use these hooks
to attach and detach advice at runtime. An alternative approach is to attach
hooks at potentially interesting join points only. In the former case, aspects can
use all possible join points, excluding those that are created dynamically so
that the system will be more flexible. The disadvantage is the high overhead of
unnecessary hooks. In the latter case, only those aspects that utilize existing
hooks can be deployed at runtime, but the overhead will be minimal for a
runtime approach.
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Eos uses the second model, that is, only instruments the join points that may
potentially be needed. Handi-Wrap uses the first model, making all join points
available through wrappers. PROSE indirectly uses the first model, exposing
all join points through the debugger interface. PROSE allows aspects to be
loaded dynamically without restarting the system. An additional advantage
of indirectly exposing join points through a debugger interface is that new
join points (created by reflection) are registered automatically. As observed by
Popovici et al. [2002] and Ortin et al. [2004], however, performance in both
cases is a problem.

A load-time weaving approach delays weaving of crosscutting concerns until
the class loader loads the class file and defines it to the VM [Liang and Bracha
1998]. Load-time weaving approaches typically provide weaving information in
the form of XML directives or annotations. The aspect weaver then revises the
assemblies or classes according to weaving directives at load-time. A custom
class loader is often needed for this approach.

There are load-time weaving approaches for both Java and the NET frame-
work. For example, AspectJ [Kiczales et al. 2001] has load-time weaving sup-
port. Weave.NET [Lafferty and Cahill 2003] uses a similar approach for the
.NET framework. The JMangler framework can also be used for load-time
weaving [Kniesel et al. 2001]; it provides mechanisms to plug-in class-loaders
into the JVM.

A benefit of the load- and runtime weaving approaches is that they delay
weaving of AO programs. A contribution of our approach might also be per-
ceived as delaying weaving, however, we view the interface and corresponding
contracts between the language designs and execution model designs as a
larger contribution of our work. The decoupling between language compilers
and the virtual machine achieved by the interface provided by our IL model
enables independent research in these areas. Simpler aspect language designs
and compiler implementations might be realized without spending significant
time on the optimization of the underlying AO execution models. Novel opti-
mizations for the underlying execution models can be developed independent of
the language design as long as it conforms to the interface. Load-time weaving
approaches do not provide these benefits.

The bind and remove primitives are similar to install and uninstall messages
in AspectS [Hirschfeld 2002]. The difference is that Smalltalk gives reflective
access to the method tables, allowing aspects to (un)install advice dynamically,
while the Java VM does not have such reflective capabilities and thus need a
mechanism such as bind and remove.

7.2 Virtual-Machine Support of Aspects

Steamloom [Bockisch et al. 2004] and PROSE2 [Popovici et al. 2003] both aim to
achieve an aspect-aware Java VM, to enhance the runtime performance of AOP.
Steamloom extends the Jikes Research VM, an open-source Java VM [Alpern
et al. 2005]. Traditional approaches for supporting dynamic crosscutting
involve weaving aspects into the program at compilation. Steamloom moves
weaving into the VM, which allows preserving the original structure of the code
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after compilation and shows performance improvements of 2.4 to 4 times when
compared to AspectJ. It accomplishes this by modifying the Type Information
Block to point methods to a stub that modifies the existing byte code to weave in
the advice. On the other hand, PROSE2 proposes an enhanced implementation
for the original PROSE approach by incorporating an execution monitor for
join points into the virtual machine. This execution monitor is responsible
for notifying the AOP engine, which in turn executes the corresponding
advice.

Steamloom has support for (un)deploying aspects as a unit. Nu’s model al-
lows for a finer-grained level of deployment. Aspects in Nu can be deployed
in whole, or in part, due to the lower-level abstractions provided by the
intermediate-language primitives. This functionality would need to be sim-
ulated in Steamloom using conditional pointcuts.

Haupt and Schippers propose a delegation-based machine model [Haupt
and Schippers 2007] for AOP support that uses proxy objects and delegation
chains to add/remove additional functionality as needed. This model could be
considered an implementation of Ossher’s proposed machine model based on
fragmented objects [Ossher 2007]. Both the delegation-based model and Nu’s
model aim to be targets for high-level AOP languages, however, the imple-
mentation of Nu focuses on efficiency and production-level VM support. The
delegation-based model is slightly more flexible due to its support of introduc-
tions, which is future work for the Nu model.

Golbeck et al. [2008] propose lightweight support in virtual machines for
AspectJ. A modified version of the Jikes research virtual machine reads anno-
tations generated by the standard AspectJ compiler (ajc) to provide additional
support for the woven aspects in the form of generating more optimized machine
code. The virtual machine itself does not perform any advice weaving, and thus
the language model is quite different from that of Nu. Their approach shows
potential performance benefits for programs written with AspectJ, while our
approach tries to be general enough to support multiple high-level languages.
Note that both approaches allow execution of AsepctJ code compiled with a
standard AspectJ compiler.

8. FUTURE WORK

Our future investigations will focus on two key areas: language extensions and
virtual machine optimizations.

8.1 Language Extensions

There are several possible routes for extensions to the Nu IL model. One ex-
tension would create another IL primitive, say bindStatic, which would behave
similarly to bind, but with the additional semantics that the call does not return
a bind identifier and thus can never be removed. These semantics are useful
for static deployment cases and would allow virtual machine implementations
to perform optimizations such as code rewriting.

Our current implementation does not support around constructs in AspectJ-
like languages. Masuhara et al. [2006] have proposed adding two constructs,
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proceed and skip, to handle around advice. We plan to add and implement
similar constructs in our IL model to explore support for around advice in our
pointcut model.

Currently, our intermediate-language design does not support intertype dec-
larations. These constructs allow aspects to declare new methods or fields in
another type, declare a type extends a new class, or declare a type imple-
ments new interfaces. Intertype declarations can be compiled to the Nu in-
termediate language by directly adding the declarations to the class that it
crosscuts. In cases where the declaration affects more than one class, this
will require compiling several classes. Clearly, this strategy is not modular
since a change in an aspect may affect not only the aspect’s object code, but
also the object code of each class into which the intertype declaration is being
introduced.

A more general problem is support for multidimensional separation of
concerns and HyperJ constructs in the virtual machine. Fortunately, re-
searchers are beginning to identify possible directions. For example, recently
Ossher [2007] identified a runtime model based on fragmented objects as a
basis, which appears to be a promising direction for future extensions of the
Nu model.

8.2 Optimizations

We have planned several optimizations to further decrease the dispatch time
of our prototype VM. Additional optimizations for improved pattern-matching
and delegate invocation are also planned. In this section, we briefly describe
these and other optimizations.

8.2.1 Further Improved Join Point Dispatch. The Hotspot VM keeps a list
of tables for efficient dispatch. During VM initialization time, this table is
initialized with code buffers that contain optimized code for various different
types of entry and exit events. In our current implementation, we insert addi-
tional instructions into these code buffers. During the execution of a program,
an entry and exit is translated to jumps to different entries in these tables, as
appropriate.

We plan to implement strategies to swap entries in this table such that an
entry always points to the most optimal code buffer. At VM initialization time,
we will generate multiple generic code buffers, each optimized for specific advice
dispatch scenarios. For example, if we have not yet seen any bind instructions
for a join point kind, there is no need for advice dispatch condition checks. As
soon as the VM sees a bind call for a specific join point kind, it checks to see if
the entry table is already initialized to support the dispatch of that join point
kind. If not, it replaces the entry with the right code buffer. These modified
entries will not be generated for every join point instance, just for each join
point kind.

On a remove, the VM will check to see if there are any more binds remaining
in the list of a join point kind. If there are no more binds in a list of join point
kinds, the entry for that join point kind is replaced with the original entry
that does not contain advice dispatch checks. These two modifications should
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further speed up the join point dispatch by eliminating the need for redundant
checks.

We also plan to investigate using existing frameworks inside Hotspot to
detect frequently dispatched advice. This advice could then be inlined using
either byte code reweaving or natively using Hotspot’s JIT compilers. Hotspot’s
deoptimization framework could possibly be used to remove previously inlined
advice.

8.2.2 More Efficient Join Point Matching. The language implementation
techniques for aspect-oriented quantification mechanisms, that is, matching
join points against a (possibly large) set of pointcut predicates, have not received
much attention. This is primarily because most aspect-oriented approaches to-
day employ compile-time deployment of aspects, where the cost of quantifica-
tion is a small percentage of total compilation time. Recently, however, many
use cases for dynamic aspect deployment have emerged [Baker and Hsieh 2002;
Bockisch et al. 2004; Popovici et al. 2002, 2003].

An implementation challenge for languages providing dynamic deployment
constructs is to efficiently determine the set of join points that are matched
by the aspect being deployed (or removed). This is primarily because in this
case the cost of matching may become a significant portion of the cost of the
deployment operation.

Sewe et al. [2008] used ordered binary decision diagrams (BDD) for evalua-
tion of dynamic residues. Dynamic residues appear due to partial evaluation of
pointcuts performed by static compilers [Masuhara et al. 2003]. Sewe et al. con-
vert those dynamic residues into an ordered BDD, allowing them to evaluate
all residues for a specific join point while only evaluating each atomic residue
once. Similar techniques might be applicable to our implementation.

In the future, we will look into efficient join point-matching mechanisms. One
direction is a decision tree-based approach for matching join points against a
set of pointcuts [Dyer and Rajan 2008]. Unlike previous approaches imple-
mented in AO compilers that treat each pointcut individually, we can maintain
all pointcuts in the system in a single decision tree, which allows utilizing
implicationrelationships and results in a faster matching process.

8.2.3 Additional Identified Optimizations. Since patterns are first-class
objects available in the high-level language, they are reusable. This allows for
possible optimizations by compilers such as locating commonly used subpat-
terns that can be cached for reuse. Additionally, since patterns are immutable, a
virtual machine that implements the Nu model needs not worry about a pattern
instance changing after creation, which allows for the following optimizations
inside the virtual machine.

When a pattern is created, a mirror native (C++) object can be created inside
the virtual machine that will be much faster to access for pattern-matching
purposes, compared to accessing Java objects. By making patterns immutable,
we eliminate the requirement to maintain the consistency between the pattern
and its mirror C++ object.
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For patterns that use regular expressions, at the time of their creation a
deterministic finite-state automaton can be created and stored in the mirror
native object for faster matching [Myers 1992]. By making patterns immutable,
we once again eliminate the requirement to maintain the consistency between
the regular expression contained inside the pattern and its mirror deterministic
finite-state automaton contained inside the C++ object. A similar strategy is
feasible for bind handles, where the internal representation of the bind handle
can also be mirrored as a C++ object. The representation of the opaque Java
object can contain a pointer to its mirror C++ object, and vice-versa.

During a remove, the pointer in the Java object corresponding to the
bind handle can be redirected to null, marking the bind handle as stale.
This will allow for an easy check for stale bind handles. Note that, if a
stale bind handle is supplied to the remove primitive, an exception of type
IllegalArgumentException is thrown.

Additionally, the C++ objects for bind handles can be allocated on a separate,
small heap ignored by the standard garbage collector. Instead, a specialized
and very fast garbage collector can be run more often on this second heap,
which will traverse the C++ object to Java object link to check if the Java
object representing the bind handle has fallen out of scope. In other words,
it will compute whether the Java object for the bind handle can be garbage-
collected. If so, this means that the advising relationship corresponding to
that bind handle will never be removed in the thread’s life-time because the
semantics of the remove primitive requires the original bind handle. Such
advising relationships can be safely optimized using advice inlining techniques
similar to those used by Steamloom [Bockisch et al. 2006; Bockisch et al. 2004],
which have been shown to have comparable performance to static-weaving
approaches.

This optimization is likely to be helpful for static deployment of aspects. If
the generated intermediate code for statically deployed aspects does not store
the bind handle returned by the bind primitive, the bind handle is eligible for
garbage collection immediately. Recognizing the opportunity for such optimiza-
tion allows the Nu model to remain flexible in general, but offers comparable
performance in cases where limited power is needed.

9. CONCLUSION

Dynamic aspect-oriented language features support unanticipated software
evolution [Popovici et al. 2002, 2003] and have been the focus of recent re-
search [Allan et al. 2005; Avgustinov et al. 2007; Baker and Hsieh 2002; Bock-
isch et al. 2004, 2006; Chen and Roşu 2007; Hanenberg et al. 2004; Hirschfeld
2003; Hirschfeld and Hanenberg 2006; Martin et al. 2005; Stolz and Bodden
2006; Suvée et al. 2003]. Important use cases exist for these features in the
form of runtime monitoring, runtime adaptation to fix bugs or add new fea-
tures, runtime update of policy changes, and so on. Better support for such
dynamic features shows important software engineering benefits.

Existing proposals for these dynamic features have investigated support us-
ing static translations [Bockisch et al. 2005; Hanenberg et al. 2004; Stolz and

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 2, Article 7, Pub. date: August 2010.



P1: IAZ

TOSEM2002-07 ACM-TRANSACTION August 9, 2010 12:42

7:32 • R. Dyer and H. Rajan

Bodden 2006]. These translations, however, incur additional design-time and
runtime overhead due to the lack of support for these constructs at the inter-
mediate language level. To solve this problem we propose the Nu intermediate
language model, which adds two new constructs to existing object-oriented IL
models, bind and remove.

Using these two simple constructs, the high-level AO language constructs
of a dynamic nature can easily be supported. Additionally, the VM implemen-
tation for Nu shown in this article incurs a relatively small overhead (∼1.5%)
when compared to an unmodified Java VM due to our novel caching mecha-
nism. The overhead associated with deploying and undeploying aspects was
also shown to be significantly lower than existing approaches, thus showing
the feasibility of supporting our IL model. Our IL model and VM implemen-
tation thus gives better support for dynamic AO features, and in turn better
support for use cases of these features such as runtime monitoring, runtime
adaptation, and so on.
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