
Language Features for Software Evolution and
Aspect-oriented Interfaces: An Exploratory Study?

Robert Dyer1, Hridesh Rajan1, and Yuanfang Cai2

1 Iowa State University
Dept. of Computer Science

{rdyer,hridesh}@iastate.edu
2 Drexel University

Dept. of Computer Science
yfcai@cs.drexel.edu

Abstract. A variety of language features to modularize crosscutting concerns
have recently been discussed, e.g. open modules, annotation-based pointcuts, ex-
plicit join points, and quantified-typed events. All of these ideas are essentially a
form of aspect-oriented interface between object-oriented and crosscutting mod-
ules, but the representation of this interface differs. Previous works have stud-
ied maintenance benefits of AO programs compared to OO programs, by usually
looking at a single AO interface. Other works have looked at several AO inter-
faces, but only on relatively small systems or systems with only one type of as-
pectual behavior. Thus there is a need for a study that examines large, realistic
systems for several AO interfaces to determine what problems arise and in which
interface(s). The main contribution of this work is a rigorous empirical study that
evaluates the effectiveness of these proposals for 4 different AO interfaces by
applying them to 35 different releases of a software product line called Mobile-
Media and 50 different releases of a web application called Health Watcher. In
total over 400k lines of code were studied across all releases. Our comparative
analysis using quantitative metrics proposed by Chidamber and Kemerer shows
the strengths and weaknesses of these AO interface proposals. Our change impact
analysis shows the design stability provided by each of these recent proposals for
AO interfaces.

1 Introduction

It is generally accepted that advanced separation of concerns tehcniques give software
engineers new and valuable possibilities to organize concerns in their system and im-
prove its overall modularity [20, 21, 23, 25, 30]. Early work in this area was on pro-
gramming language features that focussed on separating base concerns and crosscut-
ting concerns. However, since early 2000 some consensus has emerged in the research
community that a notion of interface between base concerns and now separated, but

? The work described in this article is the revised and extended version of an article in the
informal proceedings of ESCOT 2010 [6] and in the proceedings of AOSD 2012 [9]. Dyer and
Rajan were supported in part by NSF grant CCF-10-17334 and NSF grant CCF-11-17937.

2

previously crosscutting, concerns may be necessary to truly realize the full potential of
advanced separation of concern techniques [1, 18, 23, 30, 36, 39].

A number of researchers have responded to this observation. For example, Aldrich
proposed the notion of Open Modules [1] that make the base code aware of the join
points possibly advised, by writing module definitions that state what join points are
available for advising by aspects. Thus if a join point changes, the maintainer must also
update the module definition which alerts the aspect maintainer to verify their pointcuts.

Around the same time, Kiczales and Mezini proposed the notion of explicit join
point matching using annotations [23]. In their proposal, join points are explicitly
marked using Java annotations and the pointcuts target the annotation instead of us-
ing an implicit pattern, avoiding the fragility of implicitly matching based on names.

More recently, Steimann et al. [36], Hoffman and Eugster [18], and Rajan and Leav-
ens [30] have explored providing a notion of explicit join points with quantification
using types. The basic difference between these ideas and the notion of matching us-
ing annotations is two fold. First, arbitrary program points can be marked as a join
point, whereas annotation-based marking is limited to interface level join points. Sec-
ond, pointcuts match using a declared type that gives information about the context
available at the join point and can also be used for selecting all join points of that type.
This type acts as an interface between base and aspect code [18, 30, 36].

All of these proposals give clear, compelling and representative examples to demon-
strate their main ideas. These examples typically focus on the problem at hand such that
it is easy to demonstrate the issue and the benefits of the proposed solution. What is not
clear is: to what extent do the claimed benefits of each of these ideas help developers,
by decreasing the impact of change in a software system?

1.1 Case Study Overview

There has been a large body of recent case studies on the software engineering (SE) ben-
efits of aspect-orientation [12,13,18,23,24]. These works compute standard SE metrics
such as coupling and cohesion and compare aspect-oriented (AO) designs to object-
oriented (OO) designs or use the metrics to determine stability and fault-proneness of
the systems. However, most of these works focus on comparing AspectJ [20] to Java and
do not compare different AO interfaces with each other, leaving developers to wonder
about the benefits of one proposal over others.

This work helps fill that gap by studying and comparing different proposals for
aspect-oriented interfaces to investigate how these interfaces impact code changes.
For this, we consider a software product line for handling multimedia on mobile de-
vices, called MobileMedia [13] and a web-based health application, called Health
Watcher [24, 34]. MobileMedia is a medium sized system with 8 releases. Health
Watcher is also a medium sized system with 10 releases. In total, this study contains
over 400k lines of code across these 18 releases.

Similar to previous in-depth analyses by Figueiredo et al. [13] and Greenwood et
al. [16], we present metrics such as coupling and cohesion as well as an analysis of
the change propagation across releases. However, unlike those studies we consider not
only OO and pattern-based pointcuts (PCD) but also three other proposals for AO in-

3

terfaces: open modules [1] (OM), annotation-based pointcuts [23] (@PCD), and quan-
tified, typed events [30] (EVT).

1.2 Results and Contributions

There were several interesting results to come out of our case study. First, the
annotation-based pointcut and quantified, typed event approaches showed several ben-
efits, in terms of change impact, over the standard pattern-based pointcut approach.

– The @PCD releases have 18% fewer changed pointcuts than the PCD releases, due
to a lack of fragile pointcuts.

– The total number of changed event types in MobileMedia is 74% fewer than the
total number of changed pointcuts in the PCD releases and 66% fewer than the
total pointcuts changed in the @PCD releases.

Second, the PCD and @PCD releases showed benefit over EVT for certain design
rules.

– For the EVT releases, we had to be aware of and manually maintain design rules
related to encapsulating entire types (e.g. to make an entire class synchronized).
The PCD, @PCD, and OM releases used pointcuts to automatically maintain such
design rules.

– Such design rules show cases where patterns do not exhibit fragile pointcut behav-
ior, as the pointcuts are expected to capture all methods in the advised types.

Additionally, the EVT releases showed some benefit over the @PCD releases due
to its ability to uniformly access context information when announcing events.

In summary, the key contributions of the case study performed in this work are:

– The first rigorous study of different language features for four different AO inter-
faces on substantial case studies.

– A suite of tools to automate measuring change propagation for PCD, OM, @PCD,
and EVT. This automation reduces the chance for errors in our empirical study.
These tools are released in the public domain, thus they will be useful to empirical
researchers conducting studies of a similar nature.

– A new set of 21 MobileMedia and 30 Health Watcher releases using @PCD, OM,
and EVT interfaces. These artifacts are also released in the public domain with the
hope that they will encourage additional rigorous measurements in aspect-oriented
language research.

– A change propagation analysis, that shows the stability gained from designs us-
ing annotation-based pointcuts and quantified, typed events in the face of fragile
pointcuts [13, 30, 37].

Next we describe some prior studies on AO interfaces. In Section 3 we introduce
the studied language designs. We then present our case study in Sections 4–7. Then we
conclude with discussion in Section 9 and future work.

4

2 Related Work

Previous case studies on AO interfaces can be broken down into two categories: compar-
ative studies that compare one or more AO language feature with standard OO features
and studies that focus solely on measuring metrics to predict maintainability of an AO
language feature. Here, we describe some of these studies.

2.1 Language Feature Comparison Studies

Figueiredo et al. [13] studied the effects of evolving software product lines (SPLs) using
aspects. Similar to our study, they measure change propagation and a set of standard
metrics (such as coupling and cohesion). Their study showed some of the pros and cons
to using AO language features when compared to OO features. For example, their study
showed that changes affecting core features (such as changing a mandatory feature into
an optional feature) are not well suited for AO. However, their study was limited to only
one AO interface (pattern-based pointcuts).

Hoffman and Eugster [18] studied the coupling, cohesion and separation of con-
cerns for several projects with implementations in Java, AspectJ, and explicit join points
(EJPs). Their study focused solely on implementing exception handling with each AO
interface. Similar to our study, their study examines software engineering metrics and
compares each AO interface against each other. Our study however looks at a total of
4 AO interfaces and multiple types of crosscutting behavior (instead of just exception
handling) in two distinct systems with a total of 68 AO releases.

Kiczales and Mezini [23] studied seven different AO interfaces for improving sepa-
ration of concerns in AspectJ-like languages. These included standard method calls, ex-
plicit join points using annotation-based pointcuts and implicit pattern-based pointcuts.
They analyze each mechanism based on locality, explicit/implicit and ease of evolution
and then provide guidelines on when each mechanism should be used in practice. Our
work is similar in the sense that we analyze several language interfaces. Their work
uses a simple example for comparison while our work examines the medium-sized Mo-
bileMedia [13] software product line and Health Watcher [16, 34] web application.

2.2 Maintenance Studies

Ferrari et al. [12] studied several SPLs to determine the possible language features that
led to faults in those systems. Their results show that obliviousness was a key cause
of faults in those systems and that pattern-based pointcuts are not necessarily the main
cause of faults in AO designs. Their study determined the cause of faults in AO systems
while our study examines the effects of several AO interfaces on software maintenance.

Kulesza et al. [24] investigated the effect of AO interfaces on software maintenance
by measuring standard software engineering metrics. They measured separation of con-
cerns, coupling, cohesion, and size and concluded that in the presence of widely-scoped
design changes, the AO designs exhibited superior stability and reusability compared
to OO designs. In their study, they look at 2 releases of the Health Watcher application.
Our study on the other hand examines 10 releases of Health Watcher and 7 releases
of MobileMedia, giving us more variability to examine and allowing us to analyze the

5

effects of varying types of interfaces added to a system. Their work also focuses solely
on pattern-based pointcuts, whereas we consider several AO interfaces.

Similar to Hoffman and Eugster, Filho et al. [14] studied how implementations of
exception handling in Java and AspectJ compared. Again, their study mostly focused
on one type of crosscutting behavior and only examined a single AO interface.

2.3 Summary

Prior works tend to focus on a single AO interface in their comparison (usually pattern-
based pointcuts) and compare AO designs to a similar OO design. The studies that
do compare more than one AO interface (such as Kiczales and Mezini [23]) tend to
use small examples (4 classes) or only look at one type of modularization (such as
Hoffman and Eugster [18]). Thus there is a need for a case study that examines both
larger systems and multiple AO interfaces.

3 Background

In this section, we describe our language feature selection process and then give an
overview of each studied AO interface using an example based on a pattern occurring
frequently in one of our case study candidates, MobileMedia [13].

3.1 Language Feature Selection

Quantification is how aspect-oriented techniques select points in the program to provide
additional behavior. Different languages provide different features for controlling quan-
tification. For this study, we categorized the various AO interfaces in recent literature
and determined three main categories based on how quantification is controlled.

– In the first category, quantification is controlled solely by aspects.
– In the second category, quantification is controlled solely by the base code.
– In the third category, quantification is controlled by an intermediary between base

components and aspects.

Language Controls Quantification Implementation? Selected?
Pattern-based pointcuts [21] Aspects Yes Yes
Aspect-aware Interfaces [22] Base Code No No

Open modules [1, 26] Base Code Yes Yes
Annotation-based pointcuts [23] Intermediary Yes Yes

IIIA [36] Intermediary Yes No
Join point interfaces [19] Intermediary Yes No

Quantified, typed events [30] Intermediary Yes Yes
XPIs [39] Intermediary No No

Fig. 1. Languages, their features, and our selection (this list is not exhaustive)

6

For the first category, pattern-based pointcuts [21] (PCD) was the most relevant
choice, as it is used in industry and also highly researched.

For the second category, there were two possible candidates: aspect-aware inter-
faces [22] and open modules [1]. We selected open modules (OM) because an imple-
mentation [26] was readily available.

For the third category, there were several candidates: XPIs [39], annotation-based
pointcuts [23], implicit invocation with implicit announcements [36] (IIIA), join point
interfaces [19] (JPIs), and quantified, typed events [30].

We selected quantified, typed events (EVT) due to our familiarity with its compiler
infrastructure. Since one of the authors was involved in the design of this language,
we decided to pick a second candidate in this category and chose annotation-based
pointcuts (@PCD), as this language feature was not developed by the authors and once
again compiler support was readily available.

It is important to note that we only selected a handful of candidates and while we
grouped them into categories for our selection process, the results of our study may
not generalize to other candidates even within the same category as each language has
varying features. Still, this categorizing was a useful mechanism for us to select a subset
of varying language features for our study.

3.2 Running Example: Exception Handling

Throughout this section, we use the same example which was taken directly from the
MobileMedia case study candidate. Note that this example may not represent the best
possible design for any particular language. Instead, it represents a real-world example
and helps to highlight some of the potential issues that can arise when using the various
AO interfaces.

Let us consider the class FileScreen shown in Figure 2. This class repre-
sents a screen presented to a user for manipulating a file. When the saveCommand
(line 5) is requested, the class saves the data to the specified file name. When the
deleteCommand (line 11) is requested, the file is deleted. The screen is shown on
a display (line 2), which can be updated to show different screens (line 9).

An example requirement for such a class is to consistently display error messages to
the user. There may be multiple screens that deal with I/O and all such screens should
consistently handle errors that occur during that I/O by showing the I/O error screen.
Note that in some cases, the designers have decided no error should be displayed (for
example, when deleting a file and it was deleted by another user between the time of
request and handling of the command).

Notice that this requirement would thus be scattered across multiple screen classes.
Thus this is an example of a crosscutting concern and aspect-oriented [21] interfaces
can help modularize this concern. Next we examine how four such AO interfaces can
achieve such a modularization.

3.3 Exception Handling Using Pattern-Based Pointcuts

The aspect ExceptionHandler shown in Figure 3 (lines 12–27) implements the
requirement to consistently handle all exceptions using pattern-based pointcuts. This

7

1 class FileScreen {
2 Display display;

4 void handleCommand (Command c) {
5 if (c == saveCommand) {
6 try {
7 // open the file and save data
8 } catch (FileNotFoundException e) {
9 display.ShowFileError (e);

10 }
11 } else if (c == deleteCommand) {
12 try {
13 // delete the file
14 } catch (FileNotFoundException e) {
15 // do nothing
16 }
17 }
18 }
19 }

Fig. 2. Exception Handling with OO features (based on a code pattern from MobileMedia [13])

aspect contains an around advice (lines 15–20), which when triggered will properly
handle the exception. The named pointcut savepc (lines 13–14) matches the execution
of the method save, which had to be created in order to have a join point capable of
being advised by the aspect. This is an example of quantification failure [39]. More
details are given later in Section 7.4. The same problem exists for the delete method.

The pointcut is also fragile [13,30,37], due to using the name of the save method.
If the method is renamed inside the class, the aspect will no longer match that point and
the pointcut must also be updated to reflect this renaming. More details are given later
in Section 7.5. Again, this problem exists for the deletepc pointcut as well.

The advice uses the display variable, which is not exposed as context in the
pointcut and is instead accessed indirectly through available context (the receiver ob-
ject, screen). This inability to express the exact context information needed intro-
duces unintended coupling to the receiver object’s class. More details are given later in
Section 7.6.

3.4 Exception Handling Using Quantified, Typed Events

Quantified, typed events [30] allow programmers to declare named event types. An
event type declaration p has a return type, a name, and zero or more context variable
declarations. These context declarations specify the types and names of reflective infor-
mation communicated between announcement of events of type p and handler methods
registered for announcement of events of type p. These declarations are independent
from the modules that announce or handle these events. The event types thus provide
an interface that completely decouples subjects and observers. An example event type
declaration is shown in Figure 4 (line 1). The event FileSaveEvent declares that
events of this type make one piece of context available: the display.

8

1 class FileScreen {
2 Display display;

4 void handleCommand (Command c) {
5 if (c == saveCommand) { save (); }
6 else if (c == deleteCommand) { delete (); }
7 }
8 void save () { /* open the file and save data */ }
9 void delete () { /* delete the file */ }

10 }

12 aspect ExceptionHandler {
13 pointcut savepc(FileScreen screen):
14 execution(* FileScreen.save ()) && this(screen) {
15 around(FileScreen screen): savepc(screen) {
16 try { proceed (); }
17 catch (FileNotFoundException e) {
18 screen.display.ShowFileError (e);
19 }
20 }
21 pointcut deletepc(FileScreen screen):
22 execution(* FileScreen.delete ()) && this(screen) {
23 around(FileScreen screen): deletepc(screen) {
24 try { proceed (); }
25 catch (FileNotFoundException e) { /* do nothing */ }
26 }
27 }

Fig. 3. An example usage of pattern-based pointcuts [20]

The class FileScreen (lines 4–14) declares and announces an event of type
FileSaveEvent using an announce statement [30] (line 9). Arbitrary blocks can
be declared as the body of an announce statement, which avoids quantification fail-
ure. These blocks can be replaced by handler methods, giving functionality similar to
around advice in pattern-based languages. The event type FileSaveEvent declares
one context variable, thus the announce statement binds the field display to the con-
text variable named display (line 9).

Finally, the names of event declarations can be utilized for quantification in a bind-
ing declaration. A binding declaration [30], binding in short, associates a handler
method to a set of events identified by an event type. The binding (line 25) says to run
the method handler when events of type FileSaveEvent are announced. This al-
lows quantifying over all announcements of FileSaveEventwith a succinct binding
declaration, without depending on the modules that announce those events. Use of event
names in bindings simplifies them and avoids coupling the observers to the subjects.

Despite the name, quantified, typed events follow a unified model [31, 32] and do
not actually distinguish between classes containing handlers and normal classes. For
ease of reading however, we call any class containing a handler method a handler class.

Handler classes also contain register statements [30] (line 17). These statements
make all bindings contained within the handler class active for the instance and allow
for dynamically adding or removing advice functionality in the system. Pattern-based
pointcuts can emulate this functionality by adding a boolean flag to aspects.

9

1 void event FileSaveEvent { Display display; }
2 void event FileDeleteEvent { Display display; }

4 class FileScreen {
5 Display display;

7 void handleCommand (Command c) {
8 if (c == saveCommand) {
9 announce FileSaveEvent(display) { /* open the file and save data */ }

10 } else if (c == deleteCommand) {
11 announce FileDeleteEvent(display) { /* delete the file */ }
12 }
13 }
14 }

16 class ExceptionHandler {
17 ExceptionHandler() { register (this); }

19 void handler(FileSaveEvent next) throws Throwable {
20 try { next.invoke(); }
21 catch (FileNotFoundException e) {
22 next.display().ShowFileError (e);
23 }
24 }
25 when FileSaveEvent do handler;

27 void handler(FileDeleteEvent next) throws Throwable {
28 try { next.invoke(); }
29 catch (FileNotFoundException e) { /* do nothing */ }
30 }
31 when FileDeleteEvent do handler;
32 }

Fig. 4. An example usage of quantified, typed events [30]

Each handler method takes an event closure as the first argument. An event clo-
sure [30] contains code needed to run other applicable handlers and the original event’s
code. An event closure is run by an invoke expression. The invoke expression in the
implementation of the handler method (line 20) causes other applicable handlers and
the original event’s code to run before handling any exceptions.

While this version of the program did not require refactoring to expose join points,
it still requires modifying the class in order to add explicit event announcements. Unlike
the pattern-based version which only modifies the class in cases where it needs to refac-
tor to expose a join point, the Ptolemy version must modify each class to add explicit
announcements.

3.5 Exception Handling Using Annotation-based Pointcuts

When using pattern-based pointcuts, the code being advised by aspects is completely
oblivious to those aspects. One approach that is less oblivious, which is quite similar
looking to quantified, typed events, is to mark each advised join point with an annota-
tion [23]. The aspects then match based on that annotation.

10

1 @interface FileSaveEvent { }
2 @interface FileDeleteEvent { }

4 class FileScreen {
5 Display display;

7 void handleCommand (Command c) {
8 if (c == saveCommand) { save (); }
9 else if (c == deleteCommand) { delete (); }

10 }

11 @FileSaveEvent

12 void save () { /* open the file and save data */ }

13 @FileDeleteEvent

14 void delete () { /* delete the file */ }
15 }

17 aspect ExceptionHandler {
18 pointcut savepc(FileScreen screen):

19 execution(@FileSaveEvent * *(..)) && this(screen) {

20 around(FileScreen screen): savepc(screen) {
21 try { proceed (); }
22 catch (FileNotFoundException e) {
23 screen.display.ShowFileError (e);
24 }
25 }
26 pointcut deletepc(FileScreen screen):

27 execution(@FileDeleteEvent * *(..)) && this(screen) {

28 around(FileScreen screen): deletepc(screen) {
29 try { proceed (); }
30 catch (FileNotFoundException e) { /* do nothing */ }
31 }
32 }

Fig. 5. Exception Handling with annotation-based pointcuts [23] (changes from Figure 3 are high-
lighted)

For example, consider the code shown in Figure 5. The gray portions of the code
represent what was changed from the pattern-based implementation. An annotation
FileSaveEvent was created (line 1) and then used to mark the advised join point
method save (line 12). The pointcut for the aspect (line 14) was modified to become
execution(@FileSaveEvent * *(..)) and match based on that annotation
instead of matching against the string representation of the method name.

Similar to quantified, typed events, this AO interface helps avoid the fragile pointcut
problem: if the method save is renamed the pointcut will still match (to the annota-
tion). This comes as a trade-off of limiting the obliviousness of the base code. One may
argue that loss of obliviousness is not necessarily a trade-off, as it is not clear this prop-
erty is actually desirable [33, 35]. Regardless, explicitly marking join points does not
solve every problem.

For example, the quantification failure problem still exists when explicitly marking
join points. We still had to refactor the code to create the save method in order to
annotate and advise the code.

11

This release also suffers from problems passing context to the advice. The
display field is not available using the standard pointcuts (this, target, args). Instead,
we were forced to access the field through the receiver object (screen), which makes
the aspect coupled to the interface of both FileScreen and Display. The quanti-
fied, typed event release does not suffer from this problem.

3.6 Exception Handling Using Open Modules

Open modules [1] declare which join points are exposed to aspects via a module defini-
tion. This puts the burden onto the module maintainer to maintain relationships between
join points in the base code and pointcuts matching those points.

Ongkingco et al. [26] proposed an extended version of open modules and an im-
plementation for AspectJ [20]. We use their implementation’s syntax for this example.
Figure 6 is an example module for our exception handling requirement. The figure
omits the class FileScreen and aspect ExceptionHandler, as they are identical
to Figure 3.

1 /* class FileScreen and aspect ExceptionHandler same as in Figure 3. */
2 module Exceptions {
3 class FileScreen;
4 expose : ExceptionHandler.savepc(FileScreen);
5 expose : ExceptionHandler.deletepc(FileScreen);
6 }

Fig. 6. Exception handling with open modules [1, 26]

The module Exceptions (lines 2–6) for the class FileScreen (line 3) exposes
two named join points in that class (lines 4–5): the pointcuts savepc and deletepc
defined in the aspect ExceptionHandler. The module states that the aspect is al-
lowed to match these join points.

One maintenance issue occurs if the signature of the pointcuts change in the aspect,
as the maintainer of the module(s) would be required to update the module definition(s)
as well. For example, if the context information passed changes types then both the
pointcut in the aspect and the pointcut in the module would need to update accordingly.

Open modules also suffer from limited availability of context information. Once
again the context made available is the FileScreen and not the actual context needed
(the display). This is similar to the pattern-based and annotation-based approaches.

4 Case Study Overview

To evaluate the proposed AO interfaces studied here, we examined them in the context
of two applications: an existing software product-line application called MobileMe-
dia [13] and an existing web application called Health Watcher [16, 34]. This section

12

describes our experimental setup, the technique used to generate new releases of the
studied applications and the tools developed and used for the study.

In order to perform this case study, we created a total of 51 modified releases of
the MobileMedia and Health Watcher applications, modified 2 compilers to automati-
cally compute various software engineering metrics and created a tool for automatically
measuring change propagation. All artifacts and tools are available for download3. An
important advantage of these tools was that they removed the manual, and often error-
prone, steps from our empirical study.

4.1 New Code Artifacts

The OO and pattern-based pointcut code artifacts for this study were re-used from pre-
vious work [13,16,34]. We created the artifacts using annotation-based pointcuts, open
modules, and quantified, typed events since they did not previously exist for either ap-
plication. When creating these artifacts, our objective was to keep other variables such
as design strategy constant between all versions and only change the crosscutting fea-
ture. Figure 7 gives an overview of the artifacts re-used and created for our study.

OO PCD @PCD OM EVT
MobileMedia Existing [13] Existing [13] New1 New2 New

Health Watcher Existing [16, 34] Existing [16, 34] New1 New2 New

Fig. 7. Overview of all code artifacts studied. Note 1: Based on recommendations of Kiczales and
Mezini [23]. Note 2: Based on recommendations of Ongkingco et al. [26].

For example, starting with release 4 of the Health Watcher releases for AspectJ,
an observer pattern aspect library was used. This library was re-used in the annotation-
based pointcut, open modules and Ptolemy releases despite the fact that Ptolemy’s quan-
tified, typed events actually make this library unnecessary (the events implement the ob-
server pattern directly, so no library is needed). Removing this library however would
change the base and aspect components in the system and introduce extra variables into
the analysis. Leaving it in place meant the only difference between the Ptolemy and
other releases was the quantification mechanism used for implementing crosscutting
behavior.

Creating Annotation-based Pointcut Releases Using the pattern-based pointcut re-
leases as a starting point, we implemented all 7 releases of MobileMedia and all 10
releases of Health Watcher using an annotation-based pointcut syntax [23]. We modi-
fied each pointcut in every aspect to match based on a new annotation and for each join
point in the base code matching the original pointcut, we annotated the method with the
new annotation.

3 Tools/artifacts download:
http://ptolemy.cs.iastate.edu/design-study/

http://ptolemy.cs.iastate.edu/design-study/

13

For example, consider Figure 8 which shows a pattern-based aspect on the left.
For each pointcut pattern, we generate an interface (lines 1 & 2). We then modify the
pointcut to match the annotation (lines 5 & 9) and then annotate the relevant types or
methods so the set of matched points remains the same.

1 aspect A {
2 after() : execution(pcd1) {
3 // advice1
4 }

6 around() : execution(pcd2) {
7 // advice2
8 }
9 }

1 @interface E1 { }
2 @interface E2 { }

4 aspect A {
5 after() : execution(@E1 * *.*(..)) {
6 // advice1
7 }

9 around() : execution(@E2 * *.*(..)) {
10 // advice2
11 }
12 }

Fig. 8. Creating annotated pointcut releases. Points in base code matching the pointcuts pcd1
and pcd2 are annotated with the new annotations E1 and E2.

The names of the annotations were chosen based on properties of the code, follow-
ing the guidelines of Kiczales and Mezini [23]. They state that “[w]hen using named
attributes, choose a name that describes what is true about the points, rather than de-
scribing what a particular advice will do at those points.” [23, p.207] The results were
verified by comparing the weaving logs produced by the standard AspectJ compiler
(ajc) for both the original pattern-based pointcut releases and the new annotation-based
pointcut releases.

1 aspect A {
2 after() : pkg.C.pcd1() {
3 // advice1
4 }

6 around() : pkg.D.pcd2() {
7 // advice2
8 }
9 }

1 module M {
2 class pkg..*;
3 expose : pkg.C.pcd1();
4 expose : pkg.D.pcd2();
5 }

Fig. 9. Creating open modules releases

Creating Open Module Releases To study the effect of open modules [1], we im-
plemented all 7 MobileMedia and all 10 Health Watcher releases using the AspectJ-
based implementation of open modules [26]. Starting with the first release, we made a
copy of the pattern-based pointcut release and then created module definitions. Ongk-
ingco et al. state “the module hierarchy is envisioned to closely follow the package

14

hierarchy.” [26, p.6] We follow this recommendation and created modules to follow the
package structure of the system.

For example, consider the aspect shown on the left side of Figure 9. This aspect
uses pointcuts defined in classes C and D. A module definition is created that includes
all classes in the package pkg. This module exposes the pointcuts defined in the classes
C and D, thus making them available for the aspect to advise.

Since the only difference between the pattern-based and the open modules releases
are the addition of module definitions, for each subsequent release we started by copy-
ing the pattern-based pointcut release. Then we copied the module definition(s) from
the previous open modules release. Modules were then updated to reflect changes in the
base code and, where appropriate, new modules were added.

Creating Quantified, Typed Event Releases For each quantified, typed event [30]
release we started with the pattern-based pointcut release as a template, creating one
handler class for each aspect. For each advice body in an aspect, a new handler method
was added to the handler class. Event types were created and event announcement added
to emulate the pattern-based pointcut-advice semantics.

1 aspect A {

2 after() : pcd1() {
3 // advice1
4 }

5 around() : pcd2() {
6 // advice2
7 }

8 }

1 void event E1 { .. }
2 void event E2 { .. }

4 class A {
5 A() { register (this); }

7 void handler(E1 next) throws Throwable {
8 // advice1
9 }

10 when E1 do handler;

12 void handler(E2 next) throws Throwable {
13 // advice2
14 }
15 when E2 do handler;
16 }

Fig. 10. Creating quantified, typed event releases. Points in base code matching the pointcuts
pcd1 and pcd2 are annotated with event announcements for events E1 and E2.

For example, consider the aspect shown in the left side of Figure 10, which contains
2 pieces of advice. This aspect is translated into the class on the right side. For each
piece of advice, an event type declaration is generated (lines 1 & 2). Then at each point
selected by the original pointcut pattern, an event announcement was added for the
event type. Each advice body is translated into a handler method (lines 7 & 12) with a
matching binding declaration (lines 10 & 15).

Note that since the initial work on Ptolemy [30], the language has been extended
to include support for inter-type declarations. The syntax is identical to that of AspectJ
and the implementation was directly borrowed from the ABC AspectJ compiler [2] and

15

added to the Ptolemy compiler, as the research version of the Ptolemy compiler is also
based on the JastAdd [10] extensible compiler framework.

4.2 Automation of Empirical Evaluation

Evaluating the benefits of the studied designs using standard software engineering met-
rics and change propagation by hand can be tedious and error-prone. To solve this
problem, we built several tools to automatically measure these metrics and allow for
consistency. These included several modified compilers and tools for measuring change
propagation. Our tool support builds on the open-source ABC [2] AspectJ compiler.
The ABC compiler was used for two reasons: it has a JastAdd [10] extensible frontend
available which simplifies extensions and it contains support for the only known im-
plementation of open modules. The use of ABC was also driven by the fact that the
research version of the Ptolemy compiler is also JastAdd-based and our tool extensions
could be re-used for both compilers (giving us automated tool support for every studied
language design).

Measuring Change Propagation To measure change propagation, a JastAdd module
was created to serialize the parsed AST into an XML format. Since every compiler used
in our study is based on the JastAdd extensible compiler, the new functionality was
shared as a reusable module between these compilers. This also ensured that change
propagation measurement was done consistently.

A separate tool was created that takes two of these XML files as input, representing
two versions of the same code tree, and compares the two trees to determine which
components are new, were removed, or have changed. We considered a renamed com-
ponent (including moving it to another package) as a change (instead of a remove and
an add) and manually identified such renames in a separate XML file to aid the tool.

The tool is capable of determining changes at the granularity of classes, aspects,
event types, annotations, and pointcuts. The results were then manually verified against
diffs of the MobileMedia code releases for Java and AspectJ to ensure the accuracy of
the tool.

Measuring Software Engineering Metrics To measure the metrics suite proposed by
Chidamber and Kemerer [5] for coupling and cohesion, we created another JastAdd
module which measures and reports these metrics. This module was shared and used in
each compiler in our study.

Chidamber and Kemerer propose that a component is coupled to another component
if it accesses a field or calls a method from the other component. They also propose a
class is cohesive if the operations of the class operate on similar attributes of the class.

We used the previous results from Figueiredo et al. [13] as a guide for our imple-
mentation, comparing the values for the OO and pattern-based pointcut MobileMedia
releases to their previously published results. The formalization of these metrics are
given in the previous works [5, 13].

No extension to the metrics was necessary for the annotation-based pointcuts, as
the existing OO and pattern-based pointcut metrics apply directly. Note that while it

16

is not obvious, the compiler must check the interface of annotations (specifically, the
@Target annotation) in order to verify they can be applied to the specified element.
Thus, this is treated like a field access and any mention of an annotation adds coupling
to that annotation’s type.

The metrics suite was extended to support open modules and quantified, typed
events in a straight-forward manner, similar to the pattern-based pointcut exten-
sions [13]. Five different metrics used in our study were extended: number of com-
ponents (NOC), number of attributes (NOA), number of operations (NOO), coupling
between components (CBC), and lack of cohesion in operations (LCOO).

For open modules releases, modules are treated like classes and join point exposures
treated similar to an aspect pointcut. Thus, the metrics are extended as follows:

– NOC: each module adds 1 to this metric
– NOA: for each module, for each join point exposure, 1 is added to this metric
– NOO, CBC4, LCOO: no extension necessary

For quantified, typed events, event type declarations are treated like a class with con-
text considered a field of the event type. Announcing an event is treated like a method
call. Thus, the metrics are extended as follows:

– NOC: each event type adds 1 to this metric
– NOA: for each event, for each declared context, 1 is added to this metric
– NOO: since handler methods are normal methods, 1 is added to this metric
– CBC: any handler class that mentions an event type and any base class that an-

nounces an event type is coupled to that type and adds 1 to this metric
– LCOO: the metric is computed the same, however since handler methods are nor-

mal methods in a class they are also included in this metric’s computation

4.3 Threats to Validity

In this section we discuss internal and external threats to the validity of our case study.

Internal Validity To reduce the risk of bias when selecting languages for study, we
first decided the focus of the study to be examining the effect of AO interfaces for
minimizing pointcut fragility and change propagation. Then we categorized existing AO
interfaces by how they achieve quantification (see Section 3.1). As one of the selected
languages (Ptolemy) was designed by some of the authors, we also selected a second
candidate (annotated pointcuts) from that category.

The code artifacts created for this study were the MobileMedia and Health Watcher
(releases for annotation-based pointcuts (@PCD), open modules (OM), and quantified,
typed events (EVT). To reduce the risks associated with creating these artifacts, we
attempted to keep other variables constant (such as design strategy used) and only vary
the quantification mechanism used. See Section 4.1 for more details.

4 Note that CBC only measures explicit coupling and thus (similar to pointcuts) the modules’s
join point exposures do not affect this metric.

17

We reduced the risk associated with creating the EVT, @PCD, and OM releases
by first basing them off the existing pattern-based pointcut releases (which were not
created by any of the authors). Next, we used recommendations by experts in each
respective language in their published work [23, 26, 30] to modify the pattern-based
pointcut releases and create the releases for the new AO interfaces.

For example, we followed the guidelines given by the implementers of the open
modules implementation used to create one module definition for each package [26].
We also followed a naming scheme proposed by Kiczales and Mezini [23] when gen-
erating annotations for the @PCD releases, which was shown to offer design stability.
See Section 4.1 for more details.

External Validity Regarding external validity, we identified a threat that the studied
systems may not faithfully represent software in industry. This risk is reduced since
the applications are implemented in both Java and AspectJ, which is a representative
approach in the AO domain. Further, MobileMedia is a software-product line comprised
of 8 releases based on industry-strength technologies for mobile systems, such as the
Java Mobile Information Device Profile (MIDP) and Mobile Media API (MMAPI).
Additionally, this system has been studied extensively [12–14].

Similarly, Health Watcher is a real-world application used for reporting health com-
plaints. This system uses several industrial strength technologies/techniques, such as
persistence mechanisms, remote invocation (RMI), concurrency, JDBC, etc.

Another external threat is regarding the generalizability of our study. The results
shown in our study clearly demonstrate the issues with each language feature studied,
however these results may not generalize to other language features or to languages that
contain more than one of these features.

5 Case Study: MobileMedia

This section contains our first studied project, a software product-line application called
MobileMedia [13].

5.1 MobileMedia Overview

MobileMedia is an extension of MobilePhoto [40], which was developed to study the
effect of AO designs on software product lines (SPL). MobileMedia is an SPL for ap-
plications that manipulate photos, music, and videos on mobile devices. MobileMedia
extends MobilePhoto to add new mandatory, optional and alternative features.

There are a total of 8 releases and descriptions of each are shown in Figure 11. For
example in release 7 (R7) a new feature is added to manage music and a feature added
in a previous release to manage photos is turned into an alternative feature. Note that
release 1 is the same across all languages studied, and thus omitted from discussion in
this paper.

We chose to study MobileMedia for the following reasons.

1. It was successfully used in several previous AO studies [12–14].

18

Release Description Type of Change
R1 MobilePhoto core
R2 Exception handling included (in the aspect-oriented

and Ptolemy releases, exception handling was imple-
mented according to [14])

Inclusion of non-functional
concern

R3 New feature added to count the number of times a photo
has been viewed and sorting photos by highest viewing
frequency. New feature added to edit the photo’s label

Inclusion of optional and
mandatory features

R4 New feature added to allow users to specify and view
their favorite photos.

Inclusion of optional feature

R5 New feature added to allow users to keep multiple
copies of photos

Inclusion of optional feature

R6 New feature added to send photo to other users by SMS Inclusion of optional feature
R7 New feature added to store, play, and organize music.

The management of photo (e.g. create, delete and la-
bel) was turned into an alternative feature. All extended
functionalities (e.g. sorting, favorites and SMS transfer)
were also provided

Changing of one mandatory
feature into two alternatives

R8 New feature added to manage videos Inclusion of alternative fea-
ture

Fig. 11. Summary of change scenarios in the MobileMedia SPL (based on [13, Tab.1])

2. As an SPL, it contains a large, rich set of varying (mandatory, optional and alterna-
tive) features which provides a wide set of representative aspects for study.

3. The original Java and AspectJ releases are available and were not written by us.

5.2 Change Propagation Analysis

A key benefit of a modular software design is in its ability to hide design decisions that
are likely to change [27]. Thus, we consider the number of changed components as a
result of a changed design decision to be an important comparator for a software design.
To quantify this, similar to Figueiredo et al. [13], we measured the number of added,
removed, and changed components in each system for each release.

Component Changes The changes to base components are shown in Figure 12. This
table includes the pure Java releases (OO), pattern-based pointcut releases (PCD),
annotation-based pointcut releases (@PCD), open modules releases (OM), and the
quantified, typed event releases (EVT). This table considers Java classes and interfaces,
aspects, and open modules.

Note that the declarations of annotations and event types are not included in the
counts for this table, as they are measured separately and considered in the next section
to give a direct comparison to pointcuts.

Components Added For all releases, new components added in the pattern-based point-
cut (PCD) releases were also added to the annotation-based pointcut (@PCD), open

19

R2 R3 R4 R5 R6 R7 R8 Total

C
om

po
ne

nt
s

A
dd

ed

OO 9 1 0 5 7 10 6 38
OM 17 2 3 6 11 17 22 78
PCD 13 2 3 6 8 14 16 62

@PCD 13 2 3 6 8 14 16 62
EVT 13 2 2 6 8 14 16 61

Differences to PCD marked in BOLD blue

R
em

ov
ed

OO 0 0 0 0 0 1 1 2
OM 1 0 0 0 0 1 0 2
PCD 1 0 0 0 0 1 0 2

@PCD 1 0 0 0 0 1 0 2
EVT 1 0 0 0 0 1 0 2

C
ha

ng
ed

OO 5 8 5 8 6 19 17 68
OM 5 14 6 13 6 34 26 104
PCD 5 10 2 10 5 27 18 77

@PCD 5 8 2 11 7 27 20 80
EVT 5 9 1 8 5 25 20 73

Fig. 12. Base components change propagation in MobileMedia for each release

modules (OM), and quantified, typed event (EVT) releases. Note that the @PCD values
are identical to the PCD values.

In R2, R6, R7, and R8, the number of added components differs for the open mod-
ules (OM) releases compared to PCD (marked in bold) due to the addition of modules in
each of those releases. All aspects and base components in the OM releases are identical
to the PCD releases.

In R4, the releases with pointcuts (PCD, @PCD, and OM) added an aspect that only
handles precedence. This aspect was not added in the quantified, typed event release, as
precedence in that release is controlled by the order of registering handler classes. This
registration occurs inside the main class.

Components Removed In all 7 changed releases (R2–R8), the AO releases all have the
same components removed. In R2, the PCD release removed a class BaseThread and
in R8 the OO release removed the class SplashScreen. Since we did not implement
either of the OO or PCD releases, we simply mimicked these changes in the @PCD,
OM, and EVT releases.

Components Changed The difference between the components changed for the
pattern-based pointcuts (PCD) and open modules (OM) releases is due entirely to
changes in the modules, as once again all aspects and base components in the OM
releases are identical to the PCD releases. Starting with R3, each release modified mod-
ules from the prior release due to changes in the aspects.

In R3, the PCD release changes two more components (UtilAspectEH and
ControllerAspectEH) than the @PCD release due to the fragility of the pointcuts
in those components. However, in R5, R6, and R8 the @PCD releases change more
base components than the PCD releases, despite avoiding the fragile pointcut problem

20

with existing pointcuts. This is due to the need to annotate the base code with new
annotations.

The difference in changes for R3 between @PCD and EVT was due to a changed
event type requiring a change in the signature of the handler method.

For R4 however, the difference in values represents two important differences in the
AO interfaces. First, the changed component in EVT was due to adding a precedence
declaration to a handler (in @PCD this was a new aspect, not a changed aspect). Second,
the two changed components in PCD and @PCD were from refactoring base code to
expose join points. EVT did not need to perform such refactorings as it allows arbitrary
statements as event announcements.

Of the remaining 7 changes that occurred in @PCD and not EVT, 3 were due to
updating the precedence aspect, 1 was due to exposing join points and the remaining 3
were from changes in context (which for EVT shows up as changes in the event types).

Quantification Mechanism Changes The change propagation results are shown in
Figure 13. The table lists the number of pointcuts added, changed, or removed for the
open modules (OM), annotation-based pointcut (@PCD), and pattern-based pointcut
(PCD) releases. The number of annotations added, changed or removed are shown for
the @PCD releases and the number of event types added, changed, or removed are
shown for the EVT releases.

R2 R3 R4 R5 R6 R7 R8 Total

A
dd

OM 87 19 18 6 21 53 58 262
PCD 64 12 13 4 15 39 43 190

@PCD 64 12 13 4 15 39 43 190

R
em

ov
e Differences to PCD marked in BOLD blue

OM 0 0 0 0 2 12 11 25
PCD 0 0 0 0 1 6 8 15

@PCD 0 0 0 0 1 6 8 15

C
ha

ng
e

OM 0 10 0 29 2 104 9 154
PCD 0 9 0 18 2 74 4 107

@PCD 0 4 0 13 2 65 4 88

R2 R3 R4 R5 R6 R7 R8 Total

A
dd

@PCD 24 7 1 2 6 11 5 56
EVT 16 4 0 2 6 5 3 36
Differences to EVT marked in BOLD red

R
em

@PCD 0 0 0 0 1 0 0 1
EVT 0 0 0 0 0 0 0 0

C
h @PCD 0 1 0 0 0 0 0 1

EVT 0 2 0 1 0 12 1 16

Pointcuts

Events/Anns

Fig. 13. AO interfaces change propagation in MobileMedia for each release

21

Pointcuts The pointcuts added, removed, and changed were measured for all releases
with pointcuts (PCD, @PCD, and OM) and there are two sets of comparisons to note.
First, the OM releases have more pointcuts added and changed in almost every release
(marked in bold) when compared to the PCD releases. This is due to the additional
pointcuts contained in the module definitions.

The second comparison is between the PCD and @PCD releases. In three releases,
the @PCD releases have fewer changed pointcuts. This occurred due to the gained sta-
bility from using the annotation-matching pointcut syntax. In total, the @PCD releases
have almost 18% fewer changed pointcuts compared to the PCD releases.

Annotations and Events The annotations for the @PCD releases and the event types
for the EVT releases are similar in that both mark join points in the base code for aspect
code to advise. The change propagation of these two mechanisms is also similar. The
differences between them (marked in bold) occur for several reasons.

The event types in EVT contain typed context declarations, while annotations do not
contain any context. As such, when types in the base code (used as context) change, any
event type referencing those types must also be updated. This is why the annotations
have no changes in any @PCD release (the change in R3 was a renamed annotation)
and the EVT releases have several changes.

In R2, the difference in the number of added event types and annotations is due
to EVT’s lack of quantification failure. For example, the @PCD release had to create
an annotation to mark a join point for use in a within pointcut due to quantification
failure. The EVT release was also able to re-use more event types than the @PCD
release, saving the addition of 7 event types.

Pointcuts vs Annotations/Events In R7 a mandatory feature was turned into two al-
ternative features, leading to changes in the base components which propagated to the
event types and event handlers for the EVT release. 10 of the 12 resulting event type
changes were due to the renaming of base components passed as context in those events
types. Consider on the other hand the PCD release which required changing 38 of the
74 pointcuts due to the fragility of those pointcuts.

In R8, several new alternate features were added to the system. The EVT release was
able to re-use several existing event types, leading to the addition of only 3 new event
types. Similarly, the @PCD release only required the addition of 5 new annotations.
The PCD release however required adding 43 new pointcuts to the system.

In general, note that the total number of added event types and annotations are
81% and 70% fewer, respectively, than the total number of added pointcuts for PCD
releases. Also note that the total number of changed event types is 85% fewer than the
total number of changed pointcuts in the PCD releases and 82% fewer than the total
pointcuts changed in the @PCD releases.

Summary In summary, for some releases quantified, typed events showed an improved
ability to withstand changes in components. In particular, for releases where significant
refactoring in the base components took place, the EVT designs were able to reduce the
impact of these changes in the base code from the handlers. Additionally,

22

– the total number of added event types and annotations are less than a third the
number of pointcuts added in the PCD releases, showing that event types and an-
notations are re-used by multiple pointcuts,

– the total number of changed event types is 85% fewer than the total number of
changed pointcuts in the PCD releases and 82% fewer than the total pointcuts
changed in the @PCD releases,

– the @PCD releases have almost 18% fewer changed pointcuts compared to the
PCD releases due to the lack of fragile pointcuts, and

– the EVT and @PCD releases were both able to efficiently re-use events/annotations
leading to fewer additions in releases adding alternate features.

5.3 Software Engineering Metrics

As previously discussed, the main difference between most AO interfaces and quan-
tified, typed events is that the dependency between components that announce events
is explicitly stated using announce expressions that name event types. With most AO
interfaces, this dependency is implicitly defined by the language semantics. Explicitly
naming event types or annotations introduces coupling. The main goal of this section
is to study the change in coupling between components. In order to perform this eval-
uation, we used a subset of the metrics suite proposed by Chidamber and Kemerer [5],
Fenton and Pfleeger [11], and subsequently refined by Garcia et al. [13, 15].

R2 R3 R4 R5 R6 R7 R8

C
B

C

OO 32 40 40 65 80 103 131
OM 35 50 59 94 121 159 217
PCD 35 50 59 94 121 159 217

@PCD 82 106 122 161 200 255 332
EVT 74 100 120 159 203 271 371

LC
O

O

OO 123 194 224 241 296 311 365
OM 147 244 266 259 369 502 534
PCD 147 244 266 259 369 502 534

@PCD 147 244 266 259 369 502 534
EVT 123 162 171 257 365 426 539

Fig. 14. Coupling and Cohesion for MobileMedia

Coupling Coupling between components (CBC) [5] is a measurement of coupling. A
component is coupled to another component if it accesses a field or calls a method on
it. Figure 14 shows the results of our measurements.

The @PCD and EVT releases all have upwards of twice as much explicit coupling
in the system compared to the PCD and OM releases. This is due to the explicit marking
of join points (with annotations and event type announcements). However, realize that
the added coupling is not coupling between aspects and base code but rather aspects to
event types and base code to event types. Thus, this coupling only creates a maintenance

23

issue if an event type changes (such as in R7). This added coupling however is what
allows the EVT releases to avoid other maintenance issues, such as pointcut fragility
and limited access to context.

Cohesion Lack of cohesion in operations [5] (LCOO) is a measurement of cohesion of
the classes in the system, based on how similar operations use attributes of the class. If
methods of a class operate on the same attributes, the class is said to be cohesive and has
a lower LCOO value. LCOO for all releases was measured and is shown in Figure 14.
Note that the PCD, @PCD, and OM releases all have the same values due to having the
same methods/fields in classes and ITDs/advice in aspects.

In general, quantified, typed events have more cohesion (indicated by lower LCOO)
than the pointcut-based approaches. This is mostly due to the lack of needing to refactor
the base code to expose join points to the aspect code. Such refactored code often only
works on a small sub-set of the fields in the class, making the class less cohesive.

R2 R3 R4 R5 R6 R7 R8

LO
C

OO 1159 1314 1363 1555 2051 2523 3016
OM 1337 1570 1700 1928 2474 3207 3999
PCD 1276 1494 1613 1834 2364 3068 3806

@PCD 1452 1723 1852 2094 2664 3461 4257
EVT 1427 1669 1781 2050 2646 3398 4254

N
O

C

OO 24 25 25 30 37 46 51
OM 31 33 36 42 53 69 91
PCD 27 29 32 38 46 59 75

@PCD 51 60 64 72 85 109 130
EVT 47 53 56 64 78 96 115

N
O

A

OO 62 71 74 75 106 132 165
OM 82 99 108 112 149 187 237
PCD 62 72 76 77 110 139 177

@PCD 62 72 76 77 110 139 177
EVT 71 92 96 101 144 175 217

N
O

O

OO 124 140 143 160 200 239 271
OM 143 169 179 197 247 308 369
PCD 143 169 179 197 247 308 369

@PCD 143 169 179 197 247 308 369
EVT 142 167 177 196 245 302 378

Fig. 15. The measured size metrics for MobileMedia

Size Metrics Figure 15 shows the number of components (NOC) and total lines of code
(LOC) for each release. The number of components includes classes and interfaces for
all releases. For the PCD, @PCD, and OM releases it also includes aspects. For OM it
includes modules, @PCD includes annotations and EVT includes event types.

Lines of code were measured using a tool5 that ignores comment and whitespace
lines. All other lines were included and every component from NOC was included.

5 Retrieved from: http://reasoning.com/downloads.html

http://reasoning.com/downloads.html

24

Number of operations (NOO) was measured as the total number of methods in
classes, introduced methods in aspects, advice bodies in aspects and handler methods in
event handlers. Number of attributes (NOA) was measured as the total number of fields
in classes or aspects (including inter-type declared fields) and the number of context
variables in quantified, typed events.

As one would expect from creating so many events and annotations, the lines of
code and number of components is higher for both @PCD and EVT. The number of at-
tributes is also higher for EVT due to counting event type context variables as attributes.

Summary In summary, our results show the total explicit coupling is higher in the
annotation-based pointcut and quantified, typed event releases due to the interface
added between base components and aspects. The increased coupling is a trade-off
for the stability gained by the interface between aspect and base code, as the previous
section clearly demonstrates.

6 Case Study: Health Watcher

This section contains our second studied project, a web-based application called Health
Watcher [16, 24, 34].

6.1 Health Watcher Overview

Health Watcher is an application for users to file health complaints. The system was
initially developed in 2001 and has undergone 9 releases to add new features and fix
previous bugs. The 10 releases and their descriptions are shown in Figure 16.

Release Description
R1 Health Watcher base
R2 Applied Command pattern to remove dependency on Servlets
R3 Applied State pattern to keep from updating Complaints after they are closed
R4 Applied Observer pattern for calls to Update method
R5 Applied Adapter pattern to the distribution behavior
R6 Applied Abstract Factory pattern for repositories and data structures
R7 Applied Adapter pattern to remove dependency on Servlets
R8 Applied Abstract Factory pattern to generalize distribution types
R9 Added new functionality

R10 Improved exception handling

Fig. 16. Summary of change scenarios in Health Watcher

We chose to study Health Watcher for the following reasons.

1. It was successfully used in several previous AO studies [16, 24, 34].

25

2. As a real-world system, there are 10 different releases available. This represents a
real-world evolution of the application and provides a wide set of varying aspectual
features.

3. The original Java and AspectJ releases are available and were not written by us.

6.2 Change Propagation Analysis

As stated in the previous case study, we consider the number of changed components as
a result of a change in a design decision to be an important comparator for a software
design. This section performs our analysis on Health Watcher.

Component Changes The changes to base components are shown in Figure 17.
This table includes the Java releases (OO), pattern-based pointcut releases (PCD),
annotation-based pointcut releases (@PCD), open modules releases (OM), and the
quantified, typed event releases (EVT). This table considers Java classes/interfaces, as-
pects, and open modules.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total

C
om

po
ne

nt
s

A
dd

ed

OO 88 4 12 2 3 4 4 4 12 5 138
OM 106 12 16 4 0 4 4 2 12 6 166
PCD 101 11 16 3 0 4 4 2 12 6 159

@PCD 101 11 16 3 0 4 4 2 12 6 159
EVT 100 10 16 3 0 4 4 2 12 6 157

Differences to PCD marked in BOLD blue

R
em

ov
ed

OO 0 0 0 0 1 0 0 0 0 2 3
OM 0 0 0 0 0 0 0 0 0 1 1
PCD 0 0 0 0 0 0 0 0 0 1 1

@PCD 0 0 0 0 0 0 0 0 0 1 1
EVT 0 0 0 0 0 0 0 0 0 1 1

C
ha

ng
ed

OO 0 22 6 15 16 2 27 3 23 48 162
OM 0 27 9 9 1 3 27 5 23 55 159
PCD 0 25 8 7 1 2 27 3 22 52 147

@PCD 0 26 8 29 1 2 27 3 23 55 174
EVT 0 26 8 32 1 2 27 3 23 54 176

Fig. 17. Base components change propagation in Health Watcher for each release

Components Added For all releases, new components added in the pattern-based point-
cut (PCD) releases were also added to the annotation-based pointcut (@PCD), open
modules (OM), and quantified, typed event (EVT) releases. Note that the @PCD values
are identical to the PCD values (as annotations are considered separately in Figure 18).

In R1, R2, and R4, the number of added components differs for the open modules
(OM) releases compared to PCD (marked in bold) due to the addition of modules in

26

each of those releases. All aspects and base components in the OM releases are identical
to the PCD releases.

In R1, an aspect that only contains a declare parents statement was not added in the
EVT release. This statement failed to compile with the abc based intertype declarations
implementation. Instead, we manually modified the base classes to add the Serializable
interface to the 2 types. This particular aspect did not change in the PCD releases, thus
our work-around did not cause problems in later EVT releases.

In R2, the releases with pointcuts (PCD, @PCD, and OM) added an aspect that only
handles precedence. This aspect was not added in the quantified, typed event release, as
precedence in that release is controlled by the order of registering handler classes. This
registration occurs inside the main class or using annotations in the handler classes.

Components Removed Similar to MobileMedia, in all 9 changed Health Watcher
releases (R2–R10), the AO releases all have the same components removed.

Components Changed Unlike MobileMedia where the difference between the compo-
nents changed for the pattern-based pointcuts (PCD) and open modules (OM) releases
was due entirely to changes in the modules, in Health Watcher some of the aspects
also were modified in order to give anonymous pointcuts names (for the modules to
reference).

Also unlike MobileMedia, the components changed for @PCD and EVT are more
in Health Watcher for R4 than the PCD release due to needing to add annotations and
event announcements in base code. This was because fewer base components changed
in the PCD release but over 20 had to be modified to add annotations and event an-
nouncement.

Quantification Mechanism Changes The change propagation results in terms of mod-
ularization techniques are shown in Figure 18. The table lists the number of pointcuts
added, changed, or removed for the open modules (OM), annotation-based pointcut
(@PCD), and pattern-based pointcut (PCD) releases. The number of annotations added,
changed or removed are shown for the @PCD releases. It also lists the number of event
types added, changed, or removed for EVT.

Pointcuts Again, the pointcuts added, removed, and changed were measured for all re-
leases with pointcuts (PCD, @PCD, and OM). Once again, the OM releases have more
pointcuts added and changed compared to the PCD releases, as the module definitions
also contain named pointcuts.

Unlike the MobileMedia case study, Health Watcher had relatively stable pointcuts.
As such, the only benefit observed in the @PCD releases occurred in R2, where 3 fewer
pointcuts were changed.

Annotations and Events Unlike the MobileMedia case study, annotations and event
types in Health Watcher perform roughly the same in all releases, with the exception of
R3. In this release, there were several (4) events that had to be duplicated: once with a
void return type and once with a non-void return type. This was due to the advice being
applied to multiple methods (with differing return types). The PCD releases simply
marked all methods with the same annotation and the aspect was able to advise them

27

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total

A
dd

OM 57 16 36 16 0 0 0 6 0 30 161
PCD 28 11 12 10 0 0 0 6 0 20 87

@PCD 28 11 12 10 0 0 0 6 0 20 87

R
em

ov
e Differences to PCD marked in BOLD blue

OM 0 0 0 0 0 0 0 6 6 0 12
PCD 0 0 0 0 0 0 0 4 4 0 8

@PCD 0 0 0 0 0 0 0 4 4 0 8
C

ha
ng

e

OM 0 4 0 0 0 0 1 2 6 3 16
PCD 0 4 0 0 0 0 1 0 5 3 13

@PCD 0 1 0 0 0 0 1 0 5 3 10

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total

A
dd

@PCD 13 2 2 4 0 0 1 0 0 6 28
EVT 14 4 9 5 0 0 0 0 0 10 42

Differences to EVT marked in BOLD red

R
em

@PCD 0 0 0 0 0 0 0 0 0 0 0
EVT 0 0 0 0 0 0 0 0 0 0 0

C
h @PCD 0 0 0 0 0 0 0 0 0 0 0

EVT 0 1 0 0 0 0 0 0 0 0 1

Pointcuts

Events/Anns

Fig. 18. AO interfaces change propagation in Health Watcher for each release

all, without regard to the return type. This problem also accounts for the extra events in
R1 and R2.

Pointcuts vs Annotations/Events In general, note that the total number of added event
types and annotations are 52% and 68% fewer, respectively, than the total number of
added pointcuts for PCD releases. This result is similar to the MobileMedia results.

Summary In summary, the Health Watcher case study showed similar results to the
MobileMedia case study. The noticeable differences between the studies were due to the
fact that the Health Watcher study tended to simply add new aspects and avoid changing
existing aspects and base code as much as possible while the MobileMedia study made
significant modifications (in order to change mandatory features into optional ones).

– the total number of changed event types and annotations is significantly lower than
the total pointcuts changed in the PCD releases,

– the total number of added event types and annotations are 52% and 68% fewer,
respectively, than the total number of added pointcuts for PCD releases,

– the aspects were fairly stable and there were few pointcuts changed in the PCD
releases, unlike in MobileMedia, leading to very little benefit seen for the @PCD
releases.

28

6.3 Software Engineering Metrics

Similar to the MobileMedia study, in this section we examine the coupling between
components in the system. Again, we use a subset of the metrics suite proposed by
Chidamber and Kemerer [5] and Fenton and Pfleeger [11] and subsequently refined by
Garcia et al. [15].

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

C
B

C

OO 281 318 352 365 369 375 417 424 571 586
OM 262 300 326 327 327 330 373 374 486 502
PCD 262 300 326 327 327 330 373 374 486 502

@PCD 279 321 352 382 382 385 430 432 561 593
EVT 333 379 437 476 476 479 521 525 649 688

LC
O

O

OO 791 802 519 568 624 604 604 604 779 827
OM 764 779 588 599 599 599 599 597 730 809
PCD 764 792 601 612 612 612 612 610 730 809

@PCD 764 792 601 612 612 612 612 610 730 809
EVT 767 803 612 633 633 633 633 630 745 804

Fig. 19. Coupling and Cohesion for Health Watcher

Coupling The @PCD and EVT releases have upwards of 18–33% as much explicit
coupling in the system compared to the PCD and OM releases. Again, this is due to the
explicit marking of join points (with annotations and event type announcements).

Cohesion Lack of cohesion in operations [5] (LCOO) for all releases was measured
and is shown in Figure 19. Note that the PCD, @PCD and OM releases all have similar
values due to having the same methods/fields in classes and ITDs/advice in aspects.

In this particular study, for the PCD releases base code was not refactored to expose
join points as all pointcuts target existing methods or classes. Thus, the EVT releases
do not have more cohesion than the pointcut-based approaches. This differs from the
results shown for MobileMedia.

Size Metrics Figure 20 shows the number of components (NOC) and total lines of
code (LOC) for each release. As before, the number of components includes classes and
interfaces for all releases. For PCD, @PCD and OM releases it also includes aspects.
For OM it includes modules, @PCD includes annotations, and EVT includes event
types.

Similar to the MobileMedia study, the lines of code and number of components
is higher for both @PCD and EVT due to adding annotations and event types. The
number of attributes is also higher for EVT due to counting event type context variables
as attributes.

The results for the size metrics follow the same general trends as the MobileMedia
study. Note however that in this study, due to the lower number of lines of code for the

29

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

LO
C

OO 5990 6371 6896 7048 7233 7296 7318 7357 8800 8697
OM 5777 6202 6840 6944 6944 6994 7019 7027 7980 7937
PCD 5712 6116 6718 6807 6807 6856 6881 6890 7853 7791

@PCD 5851 6262 6891 7077 7077 7126 7161 7170 8167 8159
EVT 5948 6369 7128 7371 7371 7422 7450 7464 8485 8551

N
O

C
OO 88 92 104 106 108 112 116 120 132 135
OM 108 120 136 142 142 146 150 152 164 169
PCD 103 114 130 135 135 139 143 145 157 162

@PCD 116 129 147 155 155 159 164 166 178 190
EVT 118 133 158 168 168 172 176 178 190 205

N
O

A

OO 187 215 218 221 223 225 227 228 248 256
OM 205 236 252 256 256 258 260 260 278 296
PCD 187 216 220 221 221 223 225 225 243 252

@PCD 187 216 220 221 221 223 225 225 243 252
EVT 199 233 305 311 311 313 315 315 333 347

N
O

O

OO 527 557 701 715 750 766 782 787 881 894
OM 556 574 724 733 733 745 761 761 821 847
PCD 556 574 724 733 733 745 761 761 821 847

@PCD 556 574 724 733 733 745 761 761 821 847
EVT 556 574 724 734 734 746 762 762 822 845

Fig. 20. The measured size metrics for Health Watcher

PCD releases compared to the OO releases, most aspect releases have fewer lines of
code than the same OO release.

Summary Once again, the annotation-based pointcut and quantified, typed event re-
leases showed higher coupling than the PCD and OM releases. These results are similar
to the MobileMedia study.

7 Key Observations

We observed several key benefits to the studied designs. These benefits are outlined in
Figure 21 and described in detail in this section.

Inter-type Type-hierarchy Exception Quantification Non-Fragile Context
Declarations Modification Softening Support Information

OM Yes Yes Yes Limited Yes Limited
PCD Yes Yes Yes Limited No Limited

@PCD Yes Yes Yes Limited Yes Limited
EVT Yes No No Full Yes Full

Pointcuts

Fig. 21. Observations across all studied AO interfaces

30

7.1 Inter-Type Declarations

A static feature of AspectJ that allows adding fields/methods to other classes is inter-
type declarations (ITDs) [20]. This feature was recently added to the Ptolemy language
(with the same syntax as AspectJ) and thus available for all studied AO interfaces.

In MobileMedia, ITDs are used mostly for two purposes: to add additional data
(fields) to existing types (and manipulate that new data) and to provide alternate imple-
mentations of features. ITDs first show up in R3 and are heavily used in later releases
which contain alternate features. For example in R8, ITDs are defined in 12 out of the
22 aspects (54%).

In Health Watcher, ITDs are used to add methods for timestamping complaints,
starting the remote server for RMI and to implement a singleton pattern. In the system,
a total of 3 out of 26 aspects (11.5%) contain ITDs.

7.2 Declare Parents

Similar to ITDs, type hierarchies in the base components can be extended in a modular
manner using AspectJ’s declare parents. This feature seems well suited to help handle
alternate features in a system, but was not heavily used by the current design of the
MobileMedia product-line.

In MobileMedia, only R8 contains declare parents statements to extend two type
hierarchies by adding a new super-class to the base components. For the PCD, @PCD,
and OM releases these effects were modular. For the EVT releases, the base components
had to be modified (due to a compiler bug) and these changes were non-modular, but
not invasive.

In Health Watcher, declare parents statements appear in 6 out of 26 (23%) aspects.
The statements are used in several places to place marker interfaces onto a set of types,
which are then advised by the pointcut patterns. This was a useful pattern in this system
and while Ptolemy supports declare parents statements, the lack of a pattern form of
quantification meant that these marker interfaces were not useful in those releases.

7.3 Softened Exceptions

AspectJ also has the ability to soften exceptions thrown in the base components [20]
using declare soft statements. This was used in MobileMedia to help modularize the ex-
ception handling feature in R2 and in Health Watcher for the exception handling feature
in R1 and R10, allowing the base components to no longer declare they throw checked
exceptions handled by the aspects. The releases for @PCD and OM also contained such
modularizations.

Currently Ptolemy does not have any similar constructs and thus the base compo-
nents must still declare that these checked exceptions are thrown. There are both pros
and cons of these declarations. The con is that a programmer must write these additional
annotations. On the positive side, having these annotations makes the features in EVT
releases completely (un)pluggable. In the PCD-based releases, if a feature that provides
exception softening is unplugged, the compilation of the base components fails.

31

7.4 Quantification Support

Quantified, typed events give the programmer the ability to add event announcement
for any arbitrary statement in the base components. The pattern and annotation-based
pointcut approaches can only advise join points available in the provided pointcut lan-
guage, such as method executions or calls. This often results in what Sullivan et al.
called quantification failure [39] and is caused by incompleteness in the language’s
event model. Quantification failure occurs when the event model does not implicitly
announce some kinds of events and hence does not provide pointcut definitions that
select such events [39].

In MobileMedia, we observed several instances of quantification failure. For exam-
ple, in R2 the aspects needed to advise a while loop and similarly in R3 the aspects
needed to advise a for loop. To accommodate this, all pointcut-based releases (PCD,
@PCD, OM) refactor the base components, for example moving these loops into newly
added methods. By R8, a total of 5 refactorings were made to expose join points. This
accounts for approximately 5% of the advised join points. The EVT releases did not
suffer from this problem and thus these refactorings were not necessary.

In Health Watcher, we observed a different form of quantification failure. However,
this time the failure was in the EVT releases and related to the handling of design rules
that encapsulate entire types. As previously mentioned, the PCD releases used declare
parents statements to add marker interfaces to several types. The aspects then used
pattern pointcuts to target all method executions in sub-types of that marker interface.
This was used for things such as making all methods in a class synchronized. Figure 22
shows the implementation for this design rule in PCD, which uses the marker interface
SynchronizedClasses on two types and around advice to wrap the execution of
all methods in those types in a synchronized statement.

1 private interface SynchronizedClasses {}

3 declare parents: EmployeeRepositoryArray || ComplaintRepositoryArray
4 implements SynchronizedClasses;

6 Object around(Object o): this(o) && execution(* SynchronizedClasses+.*(..)) {
7 synchronized(o) { return proceed(o); }
8 }

Fig. 22. Pattern-based pointcut version of a design rule to encapsulate 2 types and make all their
methods synchronized

For the EVT releases, we had to manually track this design rule across the releases.
This meant that if the types involved added new methods we would need to remember
the design rule and ensure those new methods also announced the proper event. For the
Health Watcher example, this maintenance scenario did not occur (as the types involved
did not evolve across releases) but it is important to note that we still had to be aware of
the design rules and check them in each release - something the PCD releases did not
require.

32

7.5 Fragile Pointcut Problem
As mentioned by Figueiredo et al. [13], the pattern-based pointcut releases of Mobile-
Media suffer from a fragile pointcut problem [13,30,37]. This could be observed in R7,
where a mandatory feature PHOTO is generalized into two alternative features PHOTO
or MUSIC. This required modifying many pointcuts previously relying on an implicit
matching of signatures in the base components.

The renaming of the base components itself is not a problem in the EVT releases
and in fact requires no modification of events or handlers; the handlers will match on
the event type which remains unchanged. If the event type is renamed (for example,
to remain consistently named to the base components) then all handlers and events for
that event type must be updated accordingly. The key difference in these two scenarios
is that in the PCD case, the developer must be aware of which pointcuts matched the
given join point (which can be aided with tools such as AJDT) while in the EVT case,
the compiler will specify type errors for every publisher and subscriber for that event
type, eliminating fragile pointcuts.

Since @PCD releases are structurally similar to the EVT releases, they also bene-
fited from a lack of fragile pointcuts. Similarly, the OM releases also benefited from a
lack of fragile pointcuts.

Fragile pointcuts were observed in releases 3, 5, and 7. In total, 19 out of the 107
pointcuts changed (18%) across all releases were due to fragile pointcuts. This problem
has already been demonstrated in small examples, however, its appearance in PCD re-
leases of MobileMedia presents real evidence that it could affect maintenance of PCD
systems. The ability of EVT, @PCD, and OM to mitigate these risks shows that such
problems, when they occur in practice, can be solved using these different AO inter-
faces.

7.6 Access to Context Information
AspectJ provides means to access context information from advised join points [20].
The type of information available to advice however is limited by the language, such
as the receiver object, method arguments, etc. In MobileMedia and Health Watcher,
there were several instances where this lack of flexible availability to context added
complexity to the system. For example, the exception handling aspects needed access
to a field in the controller class being advised. Thus, the field needed marked public, a
getter method added, or the aspect marked as privileged. Either way, the aspect becomes
coupled to the interface of the advised class. This was a problem for all pointcut-based
releases (PCD, @PCD, OM).

This was also a key difference between the @PCD and EVT releases. While the
@PCD releases provided similar benefits in terms of preventing fragile pointcuts, in
terms of context exposure the annotations were not a sufficiently expressive quantifica-
tion mechanism when compared to EVT.

8 Comparing the Studies

The two studies shown in this paper represent over 400k lines of code in total. Mobile-
Media is a software product line with 8 different releases. Health Watcher is a system

33

with 10 different versions, representing a single system evolving over time. Both sys-
tems make heavy use of aspects for modularization. In this section, we examine what
some of the similarities and differences are between these two case studies.

Several similarities arose from the data collected on these two case studies.

– Both systems show an increase in explicit coupling for the @PCD and EVT re-
leases. This is due to making previously implicit coupling (from pointcut patterns)
into explicit coupling. This new explicit coupling however provides maintenance
benefits such as non-fragile pointcuts and improved access to context information.

– Both systems showed problems accessing context information in the pointcut-based
releases (PCD, @PCD, and OM). The EVT releases did not suffer from this prob-
lem.

– As one might expect, both systems showed additional overhead in terms of creat-
ing annotations and event types and explicitly marking the base code with those
annotations or announcing those event types.

– Both systems showed a large number of pointcuts for the PCD releases were fragile,
while the OM, @PCD, and EVT releases avoided this issue.

There were some differences between the two case studies as well.

– Health Watcher gave a compelling example of where an implicit style pattern ac-
tually avoids pointcut fragility and provides for easier maintenance (e.g., see Fig-
ure 22). Such examples did not show in the MobileMedia study but help provide
evidence of potential maintenance issues that can arise when using an explicit quan-
tification mechanism.

– MobileMedia had 5% of its pointcuts targeting points not available in the pointcut
language (called quantification failure). This problem did not appear at all in Health
Watcher.

– The aspects in Health Watcher were relatively stable compared to those in Mobile-
Media. This was due mostly to the types of changes occuring in the system. Mo-
bileMedia had a lot of renamed components as it evolved whereas Health Watcher
was generally adding new features that did not impact existing code.

9 Discussion

It is important to note that our measurements of the open module releases are all based
on the AspectJ-based implementation of open modules [26] (which to our knowledge
is the only open modules implementation available). Thus, some of the measured dif-
ferences we see are due not necessarily to open modules as an AO interface but instead
due to this specific implementation.

For example, any aspect containing an inter-type declaration was required by the
compiler to have a friend declaration in the module for the class(es) being extended.
This declaration has the effect of exposing every join point in the class to the aspect and
significantly affected our design of the modules.

Also, the use of named pointcuts in this implementation required copying the full
pointcut signature to the module definition. This has the effect of requiring updating two

34

locations (the original pointcut definition and the module) if that signature changes. The
pointcut signatures change any time the exposed context types changed or the pointcut
is renamed. Any difference in the number of changed pointcuts between the PCD and
OM releases of Figure 13 and Figure 18 are a result of this problem.

Specifically, for MobileMedia this was a large problem in two releases (5 and 7) as
a number of base components were renamed. This renaming caused multiple pointcuts
to change and that effect was duplicated in the module definitions. This problem does
not necessarily manifest itself in Open Modules, as originally defined by Aldrich [1],
but is an artifact of this specific implementation.

Earlier in the paper we claimed that the OM releases did not suffer from fragile
pointcuts. While this was the case for our particular study, this specific implementation
of open modules does allow writing code which would suffer from this problem. To
avoid this issue however, two things must be done. First, the aspects and modules must
use the named pointcuts defined by the base code. Second, the person maintaining the
base code (or the module containing it) must ensure that any changes to that code are
reflected in the pointcuts contained in that module.

While open modules does allow assignment of blame (to the module maintainer)
when the pointcuts no longer match the intended set of points in the program, the @PCD
and EVT approaches studied go a step further and provide compiler detection and re-
porting of this problem. Thus the @PCD and EVT approaches provide an automated
solution (for all systems) to the problem while the general usage of this implementation
of open modules does not.

10 Conclusion and Future Work

Finding a good separation of concerns is an important problem. It is vital for improv-
ing the reliability and evolution of software systems. New modularization techniques
enable improved separation of concerns. Their invention and refinement is thus equally
important for maintaining intellectual control on the growing complexity of software
systems. Pattern-based [20] and annotation-based [23] pointcuts, open modules [1,26],
and quantified, typed events [30] are examples of such modularization mechanisms.

In this paper, we presented a rigorous evaluation of these AO interfaces on two
already well-substantiated case studies [13, 34]. The results of our change propaga-
tion and analysis using standard design metrics [5, 11, 15] show that annotation-based
pointcuts and quantified, typed events help limit the impact of change, at the cost of
increased explicit coupling. This coupling however is generally not a problem as it is
to interface-like entities (annotations and event types), not between base components
and/or aspects.

– The annotation-based releases have 18% fewer changed pointcuts than the PCD
releases, due to a lack of fragile pointcuts.

– The total number of changed event types in MobileMedia is 74% fewer than the
total number of changed pointcuts in the pattern-based releases and 66% fewer
than the total pointcuts changed in the annotation-based releases.

Despite the similarites, quantified, typed events have several benefits over
annotation-based pointcuts.

35

– Event types are flexible and do not suffer from quantification failure.
– The uniform access to context information avoided the need to break encapsulation

by exposing fields to make them available to the aspects.

The pattern- and annotation-based releases also showed benefit over quantified,
typed events for certain design rules.

– For the quantified, typed event releases, we had to be aware of and manually main-
tain design rules related to encapsulating entire types (e.g. to make an entire class
synchronized).

– The pattern- and annotation-based pointcut releases and open modules releases
used pointcuts to automatically maintain such design rules.

– Such design rules show cases where patterns do not exhibit fragile pointcut behav-
ior, as the pointcuts are expected to capture all methods in the advised types.

The results of our study point out that no language feature was immune to all prob-
lems. There appears to be a need for a future language design that incorporates several
of the language features studied here. We hope that this study serves as a guide when
designing these future languages.

In the future we plan to perform a net options value analysis [3, 38] to investigate
the trade-off between the higher coupling observed in the annotation-based pointcut and
quantified, typed event releases and the stability gained by providing interfaces between
aspects and base code.

As different join point models provide different types of expressiveness, additional
interesting future work might explore how these different join point models impact
change. Similarly, all features in this study used static deployment. A lot of work has
been done on dynamically deploying aspects [4, 7, 8, 17, 28, 29, 31, 32], which may
provide additional interesting results in future studies.

Acknowledgments

This work was supported in part by the NSF grant CCF-10-17334 and NSF grant
CCF-11-17937. The anonymous reviewers of AOSD’12 and ESCOT’10 provided use-
ful comments and suggestions on earlier versions of this paper. Mehdi Bagherzadeh,
Youssef Hanna, and Gary T. Leavens also provided useful comments and discussion.

References

1. Aldrich, J.: Open Modules: Modular reasoning about advice. In: ECOOP ’05. pp. 144–168
(2005)

2. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak, J., Lhotak, O., de Moor,
O., Sereni, D., Sittampalam, G., Tibble, J.: abc: an extensible AspectJ compiler. In: AOSD.
pp. 87–98 (2005)

3. Baldwin, C.Y., Clark, K.B.: Design Rules, Vol. 1: The Power of Modularity. MIT Press
(2000)

36

4. Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual machine support for dynamic
join points. In: AOSD ’04. pp. 83–92 (2004)

5. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE TSE 20(6),
476–493 (1994)

6. Dyer, R., Bagherzadeh, M., Rajan, H., Cai, Y.: A preliminary study of quantified, typed
events. In: ESCOT ’10 (2010)

7. Dyer, R., Rajan, H.: Nu: a dynamic aspect-oriented intermediate language model and virtual
machine for flexible runtime adaptation. In: AOSD ’08. pp. 191–202 (2008)

8. Dyer, R., Rajan, H.: Supporting dynamic aspect-oriented features. ACM Transactions on
Software Engineering and Methodology (TOSEM) 20(2) (2010)

9. Dyer, R., Rajan, H., Cai, Y.: An exploratory study of the design impact of language features
for aspect-oriented interfaces. In: AOSD ’12. pp. 143–154 (2012)

10. Ekman, T., Hedin, G.: The JastAdd system — modular extensible compiler construction. Sci.
Comput. Program. 69(1-3), 14–26 (2007)

11. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. Course
Technology (1998)

12. Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Figueiredo, E., Cacho, N., Lopes, F., Temudo,
N., Silva, L., Soares, S., Rashid, A., Masiero, P., Batista, T., Maldonado, J.: An exploratory
study of fault-proneness in evolving aspect-oriented programs. In: ICSE’10. pp. 65–74
(2010)

13. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Castor Filho, F., Dantas, F.: Evolving software product lines with
aspects: an empirical study on design stability. In: ICSE (2008)

14. Filho, F.C., Cacho, N., Figueiredo, E., Maranhāo, R., Garcia, A., Rubira, C.M.F.: Exceptions
and aspects: The devil is in the details. In: FSE (2006)

15. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.: Modular-
izing design patterns with aspects: a quantitative study. In: AOSD. pp. 3–14 (2005)

16. Greenwood, P., Bartolomei, T.T., Figueiredo, E., Dósea, M., Garcia, A.F., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the impact of aspectual
decompositions on design stability: An empirical study. In: ECOOP. pp. 176–200 (2007)

17. Hirschfeld, R.: Aspect-oriented programming with AspectS. In: Net.Object Days ’02 (2002)
18. Hoffman, K.J., Eugster, P.: Towards reusable components with aspects: an empirical study

on modularity and obliviousness. In: 30th International Conference on Software Engineering
(ICSE). pp. 91–100 (2008)

19. Inostroza, M., Tanter, E., Bodden, E.: Join point interfaces for modular reasoning in aspect-
oriented programs. In: ESEC/FSE. pp. 508–511 (2011)

20. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In: ECOOP (2001)

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: ECOOP (1997)

22. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In: 27th
international conference on Software engineering (ICSE). pp. 49–58 (2005)

23. Kiczales, G., Mezini, M.: Separation of concerns with procedures, annotations, advice and
pointcuts. In: ECOOP ’05. pp. 195–213 (2005)

24. Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von Staa, A., Lucena, C.: Quantifying the
effects of aspect-oriented programming: A maintenance study. In: International Conference
on Software Maintenance (ICSM). pp. 223–233 (2006)

25. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms. In:
ECOOP. pp. 2–28 (2003)

26. Ongkingco, N., Avgustinov, P., Tibble, J., Hendren, L., de Moor, O., Sittampalam, G.:
Adding Open Modules to AspectJ. In: AOSD ’06. pp. 39–50 (2006)

37

27. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM 15(12), 1053–8 (December 1972)

28. Popovici, A., Alonso, G., Gross, T.: Just-in-time aspects: efficient dynamic weaving for Java.
In: AOSD ’03. pp. 100–109 (2003)

29. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented programming. In:
AOSD ’02. pp. 141–147 (2002)

30. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified, typed events. In: ECOOP
(2008)

31. Rajan, H., Sullivan, K.J.: Eos: instance-level aspects for integrated system design. In: ES-
EC/FSE, pp. 297–306 (2003)

32. Rajan, H., Sullivan, K.J.: Classpects: unifying aspect- and object-oriented language design.
In: ICSE, pp. 59–68 (2005)

33. Rashid, A., Moreira, A.: Domain models are not aspect free. In: MODELS ’06 (2006)
34. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence aspects with

AspectJ. In: 17th conference on Object-oriented programming, systems, languages, and ap-
plications (OOPSLA). pp. 174–190 (2002)

35. Steimann, F.: Domain models are aspect free. In: MODELS/UML ’05 (2005)
36. Steimann, F., Pawlitzki, T., Apel, S., Kastner, C.: Types and modularity for implicit invoca-

tion with implicit announcement. TOSEM ’10 20(1) (2007)
37. Störzer, M., Koppen, C.: PCDiff: Attacking the fragile pointcut problem. In: European Inter-

active Workshop on Aspects in Software (September 2004)
38. Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of modularity in

software design. In: ESEC/FSE (2001)
39. Sullivan, K.J., Griswold, W.G., Rajan, H., Song, Y., Cai, Y., Shonle, M., Tewari, N.: Modular

aspect-oriented design with XPIs. ACM TOSEM 20(2) (2009)
40. Young, T.: Using AspectJ to Build a Software Product Line for Mobile Devices. Master’s

thesis, UBC (2005)

	Language Features for Software Evolution and Aspect-oriented Interfaces: An Exploratory Study

