
FourD: Do Developers Discuss Design? Revisited

Abbas Shakiba Robert Green Robert Dyer
Bowling Green State University

Bowling Green, OH, USA
{sshakib,greenr,rdyer}@bgsu.edu

ABSTRACT
Software repositories contain a variety of information that
can be mined and utilized to enhance software engineering
processes. Patterns stored in software repository meta-data
can provide useful and informative information about dif-
ferent aspects of a project, particularly those that may not
be obvious for developers. One such aspect is the role of
software design in a project. The messages connected to each
commit in the repository note not only what changes have
been made to project files, but potentially if those changes
have somehow manipulated the design of the software.

In this paper, a sample of commit messages from a random
sample of projects on GitHub and SourceForge are manually
classified as “design” or “non-design” based on a survey. The
resulting data is then used to train multiple machine learning
algorithms in order to determine if it is possible to predict
whether or not a single commit is discussing software design.
Our results show the Random Forest classifier performed
best on our combined data set with a G-mean of 75.01.

CCS Concepts
•Software and its engineering → Software libraries
and repositories;

Keywords
mining; software design; Boa; machine-learning

1. INTRODUCTION
As is well known, software repositories hold a great amount

of information about projects and their structures (meta
data). Some of this information is easily measurable and some
is not, often being hidden in discussions, commit messages,
etc. In particular, commits hold a surprisingly large amount
of information as they often contain discussions between
developers that may contain hidden patterns within a project.
Topics of discussion in these messages can show trends of the

project and which subjects developers are more interested in
or are struggling with.

In this paper, software repositories are mined using mul-
tiple machine learning algorithms to find out how many of
the commits are discussing the design of the software system.
As is noted in many studies [1, 2, 4, 9], various aspects of
design are of significant importance to the software engi-
neering community. To the best of the authors’ knowledge,
this task has only been previously undertaken by a single
work [2]. Though presenting a clear methodology and sig-
nificant results, the work presented multiple opportunities
for extension. First, the study included data from a single
hosting service, GitHub, leaving room for the evaluation of
data from other hosting platforms. Second, the study used
only two classification techniques, leaving room for the appli-
cation of new techniques to achieve improved results. Third,
the study was not truly repeatable as the data set used was
not provided.

Based on this, this work extends the state-of-the-art
through multiple contributions including: 1) the use of
meta-data from multiple software repository hosting plat-
forms (SourceForge and GitHub) and 2) the inclusion of
additional computational intelligence techniques including
random forests (RF), decision trees (DT), naive Bayes classi-
fication (NB), k-nearest neighbor (KNN), multinomial Bayes
classification (MB), and support vector machines (SVMs).

The initial mining to extract commit information is com-
pleted using the Boa language and infrastructure [5]. The
resultant data is then manually classified (by the authors
and through a survey) in order to tag commits as discussing
software design or not. Based on this manually classified
data, machine learning is applied to answer the question,
“can we automate finding commits referencing design?”

Our results show both the SVM and RF classifiers perform
well on this data, while RF has the highest overall Gmean. For
many techniques the accuracy rate was over 80%, indicating
that automatically classifying the commits discussing design
is realistic. Such automation could allow software designers
to quickly see what discussion is occurring and the related
code changes surrounding that discussion.

2. METHODOLOGY
This study uses several platforms and programming lan-

guages to complete the presented research. Boa [5] was used
to extract and collect raw data from two very large scale
software repositories (GitHub and SourceForge). An online
survey tool written in Ruby on Rails was also created to col-
lect data from various contributors who manually classified

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SWAN’16, November 13, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4395-4/16/11...

http://dx.doi.org/10.1145/2989238.2989244

43

1 PROJECTS: output top(5) of string weight float;

2 isempty := function(s: string) : bool {

3 if (match(‘^\s*|no message$‘, s)) return true;

4 if (s == "*** empty log message ***") return true;

5 return false;

6 };

7 count := 0;

8 visit(input, visitor {

9 before CodeRepository -> count = 0;

10 after CodeRepository -> if (count >= 200)

11 PROJECTS << input.id weight rand();

12 before rev: Revision ->

13 if (!isempty(trim(lowercase(rev.log))))

14 count++;

15 });

Figure 1: Boa code to randomly select 5 projects
with at least 200 non-empty commits.

1 COMMITS: output top(200)[string] of string weight float;

2 ids := {

3 "6176545", "6150849", "209281", "13151128", "1019785"

4 };

5 exists (i: int; input.id == ids[i])

6 visit(input, visitor {

7 before rev: Revision ->

8 if (!isempty(trim(lowercase(rev.log))))

9 COMMITS[input.id] << rev.log weight rand();

10 });

Figure 2: Boa code to randomly select 200 commits
from the 5 randomly selected projects in GitHub.

our data sets. Weka, a machine learning and data analysis
software written in Java [6], was also used to build our pre-
diction models based on different classification algorithms.
The remainder of this section describes each of these steps.

2.1 Step 1: Data Extraction
Boa is a domain specific language for mining large-scale

software repositories. The goal of Boa is to ease testing
hypotheses and questions related to mining software reposi-
tories. This study uses Boa to extract 200 random commits
from five randomly selected projects in multiple software
repository (five from GitHub and five from SourceForge)
resulting in a total sample of 2,000 commits.

Figure 1 shows the Boa query to randomly select 5 projects
from the analyzed data set. Lines 2–6 and 12–13 are sim-
ple pre-processing instructions to check and remove empty
commits. Lines 9–10 ensure only projects with at least 200
non-empty commits are included. A top-5 output aggregator
(line 1) is used to select 5 projects. The project IDs are sent
to the aggregator (line 11) with random weights ensuring a
random sample.

Figure 2 shows the Boa query used to to extract commits
from each software repository. Lines 7–10 ensure the query
only analyzes the randomly selected projects from the previ-
ous query. A top-200 output aggregator (line 1) is used to
select 200 commits from each selected project. The commit
logs are sent to the aggregator (line 14) with random weights

Table 1: WEKA Pre-processing configurations.
StringToWordVector

IDFTransform: true lowerCaseTokens: true
stemmer: IteratedLovinsStemmer
tokenizer: AlphabeticTokenizer

and are indexed by project ID, ensuring a random selection
of 200 commits per project.

2.2 Step 2: Label Collection
In the second step, a website was developed to manually

classify commits as discussing software design or not. The
survey was web-based so that software experts could vote for
each commit and whether or not the commit discusses design
or not. The web application was written in Ruby on Rails,
leveraged MySQL for data storage, and used Bootstrap to
ease the front-end design.

For each commit, three options were presented to each
survey participant: 1) discusses design; 2) does not discuss
design; and 3) can not decide. Based on the majority vote
for each commit (with 2 votes minimum), the commit was
classified as design or non-design. The final results of the
manual classification of the data set showed that only 14%
of commits discuss design including 139 out of 1,000 from
GitHub’s projects (13.9%) and 140 out of 1,000 from Source-
Forge’s projects (14%). This distribution may vary based on
which projects are randomly selected.

2.3 Step 3: Pre-processing
In the last step, the collected data from the online survey

was converted to a Weka input file in the arff format. Weka
is software that contains data analysis, predictive modeling,
and visualization tools to aid in the application of machine
learning techniques [7]. Weka provides a simple graphical
user interface so that users can work with different machine
learning algorithms, filters, and change the configurations
of algorithms easily without having any deep knowledge of
Java programming [7].

The data was pre-processed by removing short and com-
mon words, applying a word-stemming algorithm, alphabeti-
cally tokenizing words, and then ranking all remaining words
(see Table 1 for WEKA settings).

3. EVALUATION
For evaluating the proposed methodology, the data col-

lected was split into three data sets. The first is GitHub-only
data, the second is SourceForge-only data, and the third is
a combination of both data sets. The data sets were split
between GitHub and SourceForge for comparative analysis to
answer the questions, “do GitHub or SourceForge developers
speak about design more often?” Multiple classification algo-
rithms were applied to each data set using 10-fold validation.
Multiple experiments were also run using different weights
to encourage improved results. As was mentioned in Section
2.2, only 14% of all commits discuss design which makes this
data set an imbalanced one, which may degrade performance
of the classifiers [8].

In an imbalanced data set, one approach to increase the
accuracy is to add extra cost to the false negatives of the
minority class [3]. In this paper’s first scenario, all costs
were balanced. In the second scenario, costs were adjusted

44

Table 2: Results for Decision Tree.
Decision Tree

Data Acc. %TP %TN % F-M G-mean
GitHub 86.18 98.3 12.2 82.8 68.50
sForge 87.39 97.6 25 84.7 74.81
Both 86.99 96.5 20.8 85.2 65.82

Increased False Negative Weight
GitHub 82.98 90.2 38.1 82.9 58.94
sForge 82.58 87.3 53.6 83.5 61.26
Both 82.13 87.8 47.3 69.70 59.32

Table 3: Results for Random Forest.
Random Forest

Data Acc. %TP %TN %F-M G-mean
GitHub 86.38 99.0 8.6 86.4 71.14
sForge 86.98 99.8 8.5 82.0 87.23
Both 86.44 99.5 5.7 81.4 75.01

Increased False Negative Weight
GitHub 87.58 96.4 33.1 86.0 73.31
sForge 87.49 95.7 37.1 86.3 72.68
Both 87.78 96.5 34.0 86.3 74.21

Table 4: Results for Naive Bayes.
Naive Bayes

Data Acc. %TP %TN %F-M G-mean
GitHub 75.17 76.2 69 78.6 54.72
sForge 81.48 84.2 65 83.2 61.33
Both 79.63 82.4 62.3 81.4 58.28

Increased False Negative Weight
GitHub 69.70 68.8 74.9 74.2 51.38
sForge 75.18 74.5 79.3 78.6 56.73
Both 67.01 65.3 77.4 72.0 50.17

to encourage learning imbalanced data to decrease the false
negative rate of the minority class.

For each classification algorithm used, the parameters were
set as listed in Table 1. For pre-processing, the StringWord-
toVector pre-filter is used with the the IteratedLovinsStemmer
stemmer and AlphabeticTokenizer. Also, values of IDFTrans-
form, FTRansform, and lowerCaseTokensare are set to true.
The results of this analysis are shown in Tables 2–7 and
Figure 3.

Each table containing results has five columns and two
sections where ACC stands for accuracy, %TP stands for
true positive rate, %TN stands for true negative rate, %F-M
stands for f-measure rate, and G-Mean stands for geometric
mean. As the data is imbalanced, the accuracy of classifica-
tion is not necessarily a proper and accurate way to measure
the performance of the classification. For example, in an
extremely imbalanced data set, a high rate of classification
can occur without classifying the minority class correctly. To
evaluate performance of classification there are other metrics
like True Negative, True Positive, F-Measure, G-mean, etc.
Those metrics can evaluate the performance of learning im-
balanced data [3]. Each result table has two sections. In the
top section, the entire confusion matrix has the same weight,
but in the bottom section the weight of false negative cells
was increased to encourage the classifier to obtain a higher
true positive for the minority class according to Table 8.

Table 5: Results for Multinomial Bayes.
Multinomial Bayes

Data Acc. %TP %TN %F-M G-mean
GitHub 74.27 74.8 71.2 78.0 54.33
sForge 70.57 70.0 73.5 85.5 51.85
Both 4.32 74.7 72.0 87.0 54.57

Increased False Negative Weight
GitHub 81.28 86.7 47.5 82.3 57.74
sForge 78.98 82.9 55.0 80.9 56.23
Both 83.74 86.4 67.4 85.0 64.81

Table 6: Results for Support Vector Machine.
Support Vector Machine

Data Acc. %TP %TN %F-M G-mean
GitHub 85.48 93.7 34.5 84.7 64.95
sForge 86.27 93.7 40.7 85.7 68.21
Both 86.38 95.3 31.2 84.9 68.14

Increased False Negative Weight
GitHub 85.58 92.1 45.3 85.4 66.25
sForge 85.69 92.0 47.1 85.6 72.68
Both 85.34 90.1 50.8 85.5 64.61

Table 7: Results for Support K-Nearest neighbor.
K-nearest neighbor

Data Acc. %TP %TN %F-M G-mean
GitHub 85.89 99.3 2.9 80.3 58.85
sForge 85.99 99.7 2.1 80.1 67.81
Both 86.18 99.9 1.8 80.1 80.16

Increased False Negative Weight
GitHub 82.89 89.9 40.3 83.0 59.50
sForge 83.38 90.3 40.7 83.4 60.59
Both 85.43 95.6 21.9 83.1 62.81

Table 8: Execution configurations (using WEKA de-
faults).

Algorithm Confusion Matrix
Decision Tree NA

Decision Tree w/ CS [[0, 1], [10, 1]]
Random Forest NA

Random Forest w/ CS [[0, 1], [8, 1]]
Naive Bayes NA

Naive Bayes w/ CS [[0, 1], [8, 1]]
M-Bayes NA

M-Bayes w/ CS [[0, 1], [4, 0]]
SVN NA

SVN w/ CS [[0, 1], [12, 0]]
KNN NA

KNN w/ CS (with K = 2) [[0, 1], [17, 0]]

4. DISCUSSION
In evaluating the performance of these methods, it is im-

portant to decide what criteria is the most important. For
example, if only the overall accuracy rate is important, K-
Nearest Neighbor would be a quick solution to answer the
question. Although the accuracy rate of this algorithm is the
highest among others, this algorithm misclassified almost all
of those commits referring to design. At the other end of
the spectrum, the Naive Bayes method shows a reasonable

45

0

25

50

75

100

Accuracy % TP % TN % FM G-Mean

DT RF NB MB SVM KNN
DT w/ CS RF w/ CS NB w/ CS MB w/ CS SVM w/ CS KNN w/ CS

(a) GitHub data set.

0

25

50

75

100

Accuracy % TP % TN % FM G-Mean
(b) SourceForge data set.

Figure 3: The results of all classification algorithms.

balance between accuracy and false-positive rate, suggesting
it is the superior method.

One solution to evaluate these methods more thoroughly
and fairly is to use a statistical solution. As this study
deals with imbalanced data, metrics like F-measure, G-mean,
etc. are most applicable. Kim et al. [8] came up with
some approaches to resolve problems caused by imbalanced
data. One of these approaches is using Gmean as a statistical
variable to help select between results. The calculation of
Gmean is shown in (1).

Gmean =

√
TP

TP + FN
∗ TN

TP + FP
(1)

A higher value of Gmean suggests a superior result. Using
this statistic, the best performing algorithms were SVM for
GitHub, Random Forest for SourceForge, and again Random
Forest for the complete data set. Thus overall, Random
Forest performs the best.

5. CONCLUSIONS AND FUTURE WORK
This paper revisited the question of“Do Developers Discuss

Design?” using data mined via Boa to expand the analysis
of this key question to repository meta-data across multiple
repository sites. Further, new sets of classification methods
have also been explored. Results using the Gmean statistic
demonstrate that both SVM and Random Forest methods
work well, but the Random Forest method appears to be
superior with an overall Gmean of 75.01.

We are currently working to integrate the machine learn-
ing techniques into Boa. This would allow us to train the
classifiers inside Boa and then easily use those classifiers on
a large set of data, thus proving the feasibility of automati-
cally detecting commits discussing design. In the future, this
work may also be extended to include larger data sets, more
classification methods, ensemble based-methods.

6. ACKNOWLEDGMENTS
This work was supported in part by the US National

Science Foundation under CCF-15-18776 and CNS-15-12947.

7. REFERENCES
[1] S. Amann, S. Beyer, K. Kevic, and H. Gall. Software

Engineering: International Summer Schools, LASER
2013-2014, Revised Tutorial Lectures, chapter Software
Mining Studies: Goals, Approaches, Artifacts, and
Replicability, pages 121–158. Springer International
Publishing, Cham, 2015.

[2] J. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and
D. Serey. Do developers discuss design? In 11th Working
Conference on Mining Software Repositories, MSR,
pages 340–343, 2014.

[3] C. Chen, A. Liaw, and L. Breiman. Using random forest
to learn imbalanced data. University of California,
Berkeley, 2004.

[4] W. Ding, P. Liang, A. Tang, H. Van Vliet, and
M. Shahin. How do open source communities document
software architecture: An exploratory survey. In
International Conference on Engineering of Complex
Computer Systems, pages 136–145, Aug. 2014.

[5] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In 35th
International Conference on Software Engineering, ICSE,
pages 422–431, 2013.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, November 2009.

[7] G. Holmes, A. Donkin, and I. H. Witten. WEKA: A
machine learning workbench. In 2nd Australian and New
Zealand Conference on Intelligent Information Systems,
pages 357–361. IEEE, 1994.

[8] M.-J. Kim, D.-K. Kang, and H. B. Kim. Geometric
mean based boosting algorithm with over-sampling to
resolve data imbalance problem for bankruptcy
prediction. Expert Systems with Applications,
42(3):1074–1082, 2015.

[9] H. Unphon and Y. Dittrich. Software architecture
awareness in long-term software product evolution. J.
Syst. Softw., 83(11):2211–2226, November 2010.

46

