
Consensus-Based Mining of API Preconditions in Big Code ∗

Hoan Anh Nguyen
Iowa State University, USA

hoan@iastate.edu

Robert Dyer
Bowling Green State University, USA

rdyer@bgsu.edu

Tien N. Nguyen Hridesh Rajan
Iowa State University, USA

{tien,hridesh}@iastate.edu

Abstract
Formal specifications for APIs help developers correctly use them
and enable checker tools automatically verify their uses. However,
formal specifications are not always available with released APIs.
In this work, we demonstrate an approach for mining API precondi-
tions from a large-scale corpus of open-source software. It consid-
ers conditions guarding API calls in client code as potential precon-
ditions of the corresponding APIs. Then it uses consensus among a
large number of API usages to keep the ones appearing in the ma-
jority. Finally, the mined preconditions are ranked based on their
frequencies and reported to users.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications.

Keywords API Preconditions, Software Mining, JML, Big Code.

1. Introduction
Modern software is usually developed using frameworks and li-
braries via invoking and extending their application programming
interface (API) classes and methods. Developers must respect API
specifications in order to use them correctly in their code. For an
API method, one part of its specification is the set of conditions
that must hold before it is invoked. These conditions are called
preconditions of the API. For example, in the standard Java De-
velopment Kit (JDK) library, API method substring(begin, end) in
package java.lang requires three preconditions: (1) begin ≥ 0, (2)
end ≤ this.length() and (3) begin ≤ end.

Misunderstanding API preconditions could lead to bugs in soft-
ware. For example, when migrating code from C# to Java, de-
velopers in project MSSCodeFactory1 assumed that, in the above
substring API, the second argument is the length of the substring,
which is the case in the corresponding API in C#. Thus, in many
calls to this API in their code, they passed value 1 to this second ar-
gument without checking if it satisfied the preconditions regarding
the length of original string and the begin index in the first argu-
ment or not. Those calls caused IndexOutofBounds exceptions and
were later fixed in revision 2463.

∗ The full paper has been published in FSE ’14 [3].
1 http://msscodefactory.sourceforge.net/

We have conducted a large-scale study [3] on the bug fixing
histories of 3,413 Java projects on SourceForge and found more
than 4 thousand potential bugs related to checking preconditions.
Manual checking on 100 randomly-sampled ones confirmed that
80% of samples are actual precondition violation bugs.

Ideally, the preconditions should be manually specified by the
API designer(s). One could also read the documentation of the
APIs and even the source code to derive preconditions and convert
them to the suitable formats. However, this manual process is time-
consuming, tedious and error-prone leading to the practice that not
many APIs are released with formal specifications or even informal
specifications (such as Javadoc).

This work introduces an approach that puts forth the idea of
mining API specifications that combines both static analysis and
source code mining from a very large code corpus in open-source
repositories to derive the preconditions of APIs in libraries and
frameworks. Our approach is based on the observation that de-
velopers commonly check preconditions of methods before calling
them. This style of programming makes the software more resilient
to the unexpected inputs, thus, avoids unexpected program behav-
iors and bugs. We expect that the APIs’ preconditions would ap-
pear frequently in a large corpus of open-source projects that
contain a very large number of the usages of those APIs, while
project-specific conditions will occur less frequently. We com-
bine the strength of both static analysis approaches (via control
dependency analysis) and mining software repositories (MSR) ap-
proaches (via mining) to make it scale to large corpus. Importantly,
we can derive preconditions for a large number of APIs or entire
library at the same time.

2. Consensus-Based Mining Approach
Figure 1 shows our approach overview. It takes as input a set A of
API methods under analysis and client projects P in the code cor-
pus and mines the preconditions for all APIs in the following steps.

First, we scan for all methods that call at least one API in A.
We parse all projects in P and resolve types for all expressions to
find API calls. Since most projects in P are not compilable due to
missing dependencies, we use several heuristics for partial parsing
to resolve types as much as possible. Then, for each (calling)
method, we build its control flow graph (CFG) and use CFG to
analyze the control dependence relation for all API calls in the
method. For each called API, we extract Ω(p) containing all API
call sites having p as the guard condition.

Since the preconditions are collected from multiple call sites
and projects written by different developers and in different styles,
the same precondition could be expressed in different forms, e.g.,
a>b, b<a and (a−b)>0. Thus, after extracting, we normalize
them so that they are comparable between call sites. We also an-
alyze the preconditions to infer additional ones which are not di-
rectly present in the client code. For example, a non-strict inequal-
ity (a≥b or a≤b) might not be checked directly but in the forms of

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3722-9/15/10...

http://dx.doi.org/10.1145/2814189.2816271

5

pn

Control
Dependence

Analysis

FilteringInferenceNormalization
APIs

Projects

conf(p)

confpr(p) ≥ σ
confm(p) ≥ σnormalize(p)

p = (a == b) ^ q = (a < b)
→ t = (a ≤ b)

p→q ^ |Ω(p)| ≤ |Ω(q)|

Mined
conditions

Ω(p)

Calling
Methods

API Use
Scanning

IF

Entry

a1() a2()

CFG
Building

IF

Entry

a1() a2()

IF

Entry

a1() a2()

p1
p2
...

Figure 1. Approach Overview: Consensus-based Mining of Preconditions.

strict inequality (a>b or a<b) and equality (a==b) conditions at
different call sites. If there are sufficient occurrences of those two
preconditions, we create the corresponding non-strict inequality
precondition with the set of call sites derived from their two sets.

Finally we filter out non-frequent preconditions and rank the
remaining ones in our final result. Filtering and ranking is based on
the confidence of a precondition p for an API a which is measured
as the ratio between the number of code locations checking p before
calling a over the total number of locations calling a.

3. Precondition Mining Tool
We implemented our approach as a plug-in to Eclipse IDE. A user
can activate the plug-in by showing its view in Eclipse. Currently,
the tool provides four functions via four corresponding buttons
in its view: selecting client code corpus, selecting library to be
analyzed, showing statistics on the use of the library in the code
corpus and starting precondition mining.

A user can select a code corpus by entering the path to a
folder containing all projects and specifying if the projects’ folders
contain snapshots or repositories of the projects. Currently, we
support Subversion (SVN) and Git repositories.

For selecting a library, a user can choose a project or jar file
already loaded in the current workspace, or an external jar file.
When a user selects to show the statistics, the tool will parse the
library to get all API classes and methods and execute the scanning
step in our approach to find all uses of these APIs in the code
corpus. The result will be shown in the content of the tool’s view.
For example, JDK 6 has more than 11 thousand public methods,
63% of which are called at least once in our SourceForge projects
and 25% of method calls in SourceForge are to JDK APIs.

When a user starts mining, he/she will be able to customize dif-
ferent parameters in our approach. He/she can choose the value for
k of the top-k mined preconditions, the percentage of the dataset to
be used or options for including/excluding different components in
our approach. The larger k or the percentage is, the more precondi-
tions are mined. There are two options for the output format: XML
and Java project. In both cases, the output will be a folder with the
same file structure as the library. For the second format, the output
is a Java project with the same package/file/class/method structure
with the library where methods do not have body and are annotated
with mined preconditions in JML syntax. The user can also request
to show preconditions of a selected method using context menu.

4. Demonstration Overview
This demonstration shows how to use our tool to mine API precon-
ditions from our datasets of thousands of open-source projects.

• background and introduction to our tool,
• instructions on how to install our tool,
• showing an example use of our tool to mine a popular JDK API,
• explaining the format of the mined preconditions,
• demonstrating what to do with the mining results, and
• pointers on where to find help.

5. Presenter Biographies
Hoan Anh Nguyen is a post-doctoral researcher at Iowa State Uni-
versity. His expertise is in software evolution and mining software
repositories. Robert Dyer has helped design and implement several
programming languages. Currently his research is focused on min-
ing software repositories with the Boa project. Tien N. Nguyen is a
faculty of the Electrical and Computer Engineering and Computer
Science departments at Iowa State University. His research focus is
on software evolution, software mining and analysis. Hridesh Ra-
jan is a computer science faculty at Iowa State University, where he
works on the Boa infrastructure, and the Panini language.

6. Related Work
Our approach is closely related to the precondition mining work
from Ramanathan, Grama, and Jagannathan (RGJ) [5] which also
integrates static program analysis with data mining. The key dif-
ference is that our approach operates on a large-scale corpus of
client programs that contain API calls and mine preconditions from
predicates across projects. In contrast, RGJ is designed to perform
within an individual client program containing the APIs’ call sites.

There are several approaches for mining specifications using
dynamic analysis. Daikon [1] automatically detects invariants in a
program via running test cases. Wei et al. [7] infer complex post-
conditions from simple programmer-written contracts in C# code.

Our work is also related to static approaches for mining tempo-
ral specifications among program elements [2, 4, 6, 8]. The mined
specifications from those approaches express the orders among
method calls (and control structures) rather than preconditions.

Acknowledgments
This work was supported in part by the US NSF under grants CCF-
15-18897, CCF-15-18776, CNS-15-13263, CNS-15-12947, CCF-
14-23370, CCF-13-49153, CCF-13-20578, TWC-12-23828, CCF-
11-17937, CCF-10-17334, and CCF-10-18600.

References
[1] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically

discovering likely program invariants to support program evolution.
ICSE ’99.

[2] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000
projects: Lightweight cross-project anomaly detection. ISSTA ’10.

[3] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining
preconditions of apis in large-scale code corpus. FSE ’14.

[4] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen. Graph-based mining of multiple object usage patterns.
ESEC/FSE ’09.

[5] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification
inference using predicate mining. PLDI ’07.

[6] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage
anomalies. ESEC-FSE ’07.

[7] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring better
contracts. ICSE’11.

[8] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and
recommending API usage patterns. ECOOP ’09.

6

