
Mining Source Code Repositories with Boa

Robert Dyer Hoan Anh Nguyen Hridesh Rajan Tien N. Nguyen
Iowa State University

{rdyer,hoan,hridesh,tien}@iastate.edu

Abstract
Mining source code has become a common task for re-
searchers and yielded significant benefits for the software
engineering community. Mining source code however is a
very difficult and time consuming task. The Boa language
and infrastructure was designed to ease mining of project
and revision metadata. Recently Boa was extended to sup-
port mining source code and currently contains source code
for over 23k Java projects, including full revision histories.

In this demonstration we pose source code mining tasks
and give solutions using Boa. We then execute these pro-
grams via our web-based infrastructure and show how to
easily make the results available for future researchers.

Categories and Subject Descriptors D.3.3 [PROGRAM-
MING LANGUAGES]: Language Constructs and Features

Keywords MapReduce; software repository mining

1. Background
Source code repositories such as SourceForge, GitHub, and
Google Code contain a vast wealth of information. Re-
searchers are interested in mining this source code to gain in-
sights into problems and test hypotheses. Mining this source
code is a difficult task requiring, at a minimum: 1) substan-
tial knowledge about how to access the source code data;
2) knowledge about how to mine the source code data, in-
cluding parsing; and 3) analyzing a large quantity of data,
typically requiring additional complexity and knowledge of
how to parallelize the mining task.

Consider a relatively simple example that wishes to an-
swer the question “how many null checks are there in Java
programs?” A typical approach to solve this task would write
a program that does (at a minimum) the following: down-
loads/scrapes project metadata from the repository, parses

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514570

this metadata, determines which projects are Java projects,
accesses the source code repository to download the source
code, parses the source code, mines the parsed code for null
checks, and accumulates the results into a final answer. Such
a solution would require using several libraries (e.g. to parse
the metadata, access the repository, parse the code). This
analysis would also take a significant amount of time as it
runs sequentially and accesses thousands of remote reposi-
tories. Minimizing this time would require additional com-
plexity and knowledge of distributed programming.

2. Boa
To solve these issues, we present the Boa language and sup-
porting infrastructure [3, 4]. Boa provides several domain-
specific types to ease software mining tasks. These types
abstract the details of how to mine repositories and repre-
sent the data from the repository. Boa also abstracts away the
details of its underlying MapReduce framework [2], allow-
ing Boa programs to run efficiently in a distributed environ-
ment without requiring users to explicitly define parallelism
in their code.

1 p: Project = input;
2 NullChecks: output sum of int;

3 nullVisitor := visitor {
4 before node: Expression ->
5 if ((node.kind == ExpressionKind.EQ ||

node.kind == ExpressionKind.NEQ)
6 && (isliteral(node.expressions[0], "null") ||

isliteral(node.expressions[1], "null")))
7 NullChecks << 1;
8 };

9 ifVisitor := visitor {
10 before node: Statement ->
11 if (node.kind == StatementKind.IF)
12 visit(node.expression, nullVisitor);
13 };

14 exists (i: int; p.programming_languages[i] == "Java")
15 visit(p, ifVisitor);

Figure 1. Program in Boa answering “How many null
checks are there in Java programs?”

An example program is shown in Figure 1 which answers
the previous question of how many null checks are there in
Java programs. Note how simple this code is - it is only 15
lines of code! There is also no notion of mining the software



repository or parallelizing the code, as these are completely
abstracted from the user.

To run such programs, our infrastructure builds on the
Sizzle compiler [5], which generates programs that run on
the Hadoop MapReduce framework [1]. We add support
for our domain-specific types as well as several language
features not previously implemented, such as quantifiers.
These statements allow easily filtering, e.g. Figure 1 on line
14 for selecting only Java projects.

The language also provides syntax based on the object-
oriented visitor pattern to ease source code mining tasks.
This allows easily querying for if statements (lines 9–13)
that contain a comparison to null (lines 3–8).

Output is then sent to a table (line 7). The table provides
an aggregation function (several are built into the language,
such as sum, mean, min/max, etc.) to collect the results and
reduce them to a final answer.

3. Benefits of Boa
Boa aims to lower the barrier to entry for researchers wishing
to perform software mining tasks. It also aims to provide
efficient support for performing these tasks on a very large
scale. In summary, Boa provides the following key benefits:

• Simple programs,
• details of repository mining abstracted away,
• no libraries needed to perform repository mining,
• extremely efficient and scalable - automatically runs in a

fraction of the time of standard approaches, and
• queries a very large set of data (project and revision

metadata for all projects on SourceForge and all Java
source code with full histories).

4. Demonstration Overview
This demonstration gives several simple mining tasks and
uses the Boa language to solve those tasks. These Boa pro-
grams are then submitted to the web-based infrastructure [4]
(see Figure 2) for execution and the query output down-
loaded. Additionally, we demonstrate how researchers can
use Boa to answer their hypotheses and then publish their
results to allow easy reproduction by other researchers.

5. Presenter Biographies
Robert Dyer and Hridesh Rajan have prior experience in
developing new programming languages. Rajan developed
the Ptolemy event-based language as well as the aspect-
oriented language Eos. Dyer worked on the implementations
and evaluation of the Ptolemy language. They have success-
fully given previous demonstrations at AOSD’10, FSE’10,
ECOOP’11, SPLASH’11, and SPLASH’12.

Hoan Nguyen and Tien Nguyen are experts in software
evolution and mining software repositories. Their work in-
cludes mining research in clone and API usage evolution,

Figure 2. Boa’s web-based interface [4] for submitting and
executing programs and retrieving their results

bug prediction and localization, and traceability link recov-
ery. They are also experts in version control systems with
work on novel infrastructures for semantics-based version
control and configuration management.

All four authors worked on the design of the Boa lan-
guage and infrastructure. Robert Dyer and Hoan Nguyen
also developed the supporting infrastructure. Robert Dyer
has previously given a demo of an early version of Boa at
SPLASH’12 and a demo during the ICSE’13 presentation.

Acknowledgments
Dyer and Rajan are funded in part by NSF grants CCF-10-
17334, CCF-11-17937, and CCF-08-46059. Tien Nguyen
and Hoan Nguyen are funded in part by NSF grants CCF-
10-18600 and CNS-12-23828.

References
[1] Apache Software Foundation. Hadoop: Open source im-

plementation of MapReduce. http://hadoop.apache.
org/.

[2] J. Dean and S. Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. In Proceedings of the Symposium
on Opearting Systems Design & Implementation - Volume 6,
OSDI’04, 2004.

[3] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In Proceedings of the International Confer-
ence on Software Engineering, ICSE’13, pages 422–431, 2013.

[4] H. Rajan, T. N. Nguyen, R. Dyer, and H. A. Nguyen. Boa
website. http://boa.cs.iastate.edu/, 2012.

[5] A. Urso. Sizzle: A compiler and runtime for Sawzall, opti-
mized for Hadoop. https://github.com/anthonyu/
Sizzle.

http://hadoop.apache.org/
http://hadoop.apache.org/
http://boa.cs.iastate.edu/
https://github.com/anthonyu/Sizzle
https://github.com/anthonyu/Sizzle

	Background
	Boa
	Benefits of Boa
	Demonstration Overview
	Presenter Biographies

