Software Engineering Collaboratories (SEClabs)
and Collaboratories as a Service (CaaS)

Elena Sherman
Boise State University
Boise, Idaho, USA
elenasherman@boisestate.edu

ABSTRACT

Novel research ideas require strong evaluations. Modern software
engineering research evaluation typically requires a set of bench-
mark programs. Open source software repositories have provided
a great opportunity for researchers to find such programs for use
in their evaluations. Many tools/techniques have been developed
to help automate the curation of open source software. There has
also been encouragement for researchers to provide their research
artifacts so that other researchers can easily reproduce the results.
We argue that these two trends (i.e., curating open source software
for research evaluation and the providing of research artifacts)
drive the need for Software Engineer Collaboratories (SEClabs). We
envision research communities coming together to create SEClab
instances, where research artifacts can be made publicly available
to other researchers. The community can then vet such artifacts and
make them available as a service, thus turning the collaboratory
into a Collaboratory as a Service (CaaS). If our vision is realized,
the speed and transparency of research will drastically increase.

CCS CONCEPTS

« Software and its engineering — Collaboration in software
development;

KEYWORDS

collaboratory, software as a service, research as a service

ACM Reference Format:

Elena Sherman and Robert Dyer. 2018. Software Engineering Collaboratories
(SEClabs) and Collaboratories as a Service (CaaS). In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4—
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3236024.3264839

1 INTRODUCTION

One important criterion for evaluating a novel research idea are
the evidence supporting the idea’s claims. In software engineering,
rigorous empirical evaluations commonly serve as such evidence.
Moreover, empirical evaluations are almost a de facto standard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3264839

760

Robert Dyer
Bowling Green State University
Bowling Green, Ohio, USA
rdyer@bgsu.edu

for scientific contributions in software engineering - it is rare
to encounter a software engineering publication with supporting
evidence other than empirical experiments. This strong emphasis
on evidence-based software engineering research originates from
the initiative taken by researchers in the early 2000’s to address
the concerns of poor reproducibility of empirical experiments, and
the weak representativeness of the experimental results due to the
deficiency of realistic, standardized benchmark programs [2, 3].
With the emergence of software repositories that offer free host-
ing services to open-source projects and the increase in the avail-
ability of open-source programs, by the mid 2000’s researchers
established various real program artifact collections to use in empir-
ical evaluations. Examples include SIR [3], which contains program
versions, test cases, and execution scripts to support controlled ex-
periments in program testing, DaCapo [1] a benchmark suite that
contains realistic object behavior and demanding memory usage,
and Qualitas Corpus [18], which aggregates open-source projects
from different sources to empirically study the code structure.
While still widely used in empirical evaluations, the aforemen-
tioned “static” repositories are becoming exhausted of their rel-
evance since they contain mainly older programs with outdated
programming practices and the types of problems they solve. Most
importantly, the number of programs in those repositories remains
small. For example, SIR, DaCapo, and Qualitas Corpus contain be-
tween 14 and 112 programs and were last revised over 5 years ago.
In order to keep these repositories current, their programs must
be constantly updated and the number of those programs must be
increased by at least an order of magnitude. Unfortunately, because
of their design the upkeep of static repositories demands an enor-
mous manual effort and dedication of the hosting research groups.
Obviously, the fulfillment of such requirements is intractable in the
long term and automating the maintenance tasks such as obtaining
and curating the benchmark programs is the only feasible solution.
Automated retrieval of programs from open-source software
repositories (GitHub, SourceForge, Bitbucket) has been gaining in
popularity and considered the standard in the mining software
repository (MSR) community, where researchers analyze program
structures and metadata directly from the source code locations.
With the support of software mining tools such as Boa [5], MSR
researchers use tens of thousands [6, 16, 19] and even hundreds of
thousands [13] of programs in their empirical studies. Moreover,
researchers in the program analysis community also investigate an
automated program retrieval approach [4], which filters programs
from GitHub based on project tags like web applications, then
downloads the filtered projects and attempts to compile them.
While the process of obtaining programs from open-source repos-
itories has been automated, the most challenging part of automating

https://doi.org/10.1145/3236024.3264839
https://doi.org/10.1145/3236024.3264839

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

the curation of those programs remains mainly an open problem.
Curation ensures the quality of the obtained programs as well as
providing necessary support for the compilation and execution of
those programs. The curation efforts depend on the type of soft-
ware engineering research the benchmark repository supports. For
example, curation might involve removing duplicate or similar pro-
grams, ensuring that programs can compile, providing a set of test
cases for some adequacy criterion, or creating scripts for running
the experiments. In the literature there are attempts to apply some
level of automated curation: establishing metrics for open-source
program repositories [11], identifying similarities between features
of obtained programs [14], and obtaining missing dependencies
and generating build scripts as in the 50K-C [10] Java project.

After obtaining adequate programs, researchers can perform
their empirical evaluations. However, running experiments with
those programs might require of researchers a substantial effort to
set them up in their experimental environments and to provide suf-
ficient computational power to conduct the experiments. To ensure
the reproducibility of the experiments, researchers should detail all
the parts of the experiment: the benchmark programs, the experi-
mental set up and the execution environment. With limited space
available, researchers might have to sacrifice proper explanation of
a novel research approach in favor of detailing experimental set up
descriptions. Thus, the current process that researchers use to set
up, conduct, and then describe the experiments requires additional
effort that is not directly related to advancing software engineering
research. Providing means for researchers to directly execute their
experiments in a pre-setup, standardized, scalable infrastructure
would eliminate this unnecessary burden on the researchers.

In the next section we present our overall vision for a software
engineering collaboratory, SEClab, where we address the deficien-
cies of the current empirical evaluation approach identified above.
Then, we describe in detail an instance of SEClab, designed for a spe-
cific software engineering task: static program analysis, which we
call SAClab. Finally we describe our vision of how different SEClab
instances could work together to enable new research directions.

2 VISION OF A SOFTWARE ENGINEERING
COLLABORATORY

Unlike a scientific collaboratory that mainly provides instruments
to process and share experimental data, a software engineering
collaboratory should provide data to evaluate a given instrument.
Being conceptually different from existing scientific collaborato-
ries, a different approach is required in its design. We envision that
every software engineering task, T, will have a specialized collabo-
ratory, SEClab[T], that enables researchers working on improving
T to seamlessly conduct an empirical evaluation of T’s advances,
e.g., advances in program maintenance, testing, analysis and so on.
While each T might require specific instantiations of SEClab[T]
components, we present here an overall vision of SEClabs.

Figure 1 depicts the main components of SEClab and its inter-
actions with different stakeholders and resources. The numerical
labels on the arrows indicate the order of SEClab operational flow,
which the researcher initiates. First, SEClab receives from the re-
searcher the task of type T to be evaluated and additional evalua-
tion requirements (1). Then, using program specifications, SEClab

761

Elena Sherman and Robert Dyer

Seftware Repositories

Developers

SEClab

Researcher

High Performanee Cluster

Figure 1: Vision of SEClab

queries open-source repositories and retrieves potentially relevant
software projects (2). Upon receiving those projects (3), SEClab uses
its curation component to further filter appropriate programs and
prepare them for evaluation (4). Given the provided task and the
prepared programs, SEClab then performs an empirical evaluation
using a computer cluster (5). SEClab then collects and processes the
results of the experiments (6) and presents them to the researcher
(7) and software repository developers (7°). Below we describe each
of SEClab[T]’s main functions in detail.

Request. The researcher initiates the process by supplying SEClab
with the task that they want to evaluate. Also, they might provide
additional descriptions for setting up the experiments. For example,
they might define the type of programs the task should be evaluated
on, the Java version, etc. These instructions are expressed in a
domain-specific language describing behavioral, structural, and
other properties of a program. These requirements are later used
for the retrieval and curation of the programs.

Retrieve. The retrieval process uses some experiment set up de-
scriptions to identify potentially suitable projects from software
repositories. Preliminary filtering could be done through repository
tags [4], or through some previously community-accepted metrics
computed from software project metadata [11]. Upon downloading
the potential programs, SEClab also creates unique identifiers that
track the programs to their locations in repositories.

Curate. The implementation of the curation component is specific
to T. Some tasks require no further pre-processing of the retrieved
programs or generation of additional supporting artifacts. For ex-
ample, software engineering tasks used in MSR research require
little or no curation, i.e., every potential program retrieved from
repositories is adequate. This low level of curation allows MSR
researchers to evaluate their hypotheses on hundreds of thousands
of programs. Other software engineering tasks demand extensive
curation of programs. Compiler optimization tasks require suitable
programs to compile. If a potential program cannot be compiled,
then the curation process removes such program from further con-
sideration. Besides being compilable, some testing tasks require

SEClabs and Caa$S

programs with test suites. Other examples of curation efforts for
different tasks are: program transformation, generating mutants for
programs, and producing programs with a certain type of defects.
Curation is the most challenging component of SEClab and it is
also task dependent, so describing its vision in general terms might
be insufficient. Thus, in Subsection 2.1 we describe in detail the
required curation effort for static program analysis.

Execute. SEClab performs empirical evaluations according to the
researcher’s requirements and the practices established by other
researchers working on the same software engineering task. For
example, the responsibilities of this component might include cor-
rectly setting environment, enabling efficient memory profiling,
repeating experiments appropriate to ensure a desired confidence
level, and resolving abnormal terminations. In order to conduct
large scale evaluations, it is imperative that SEClab has access to a
high performance cluster.

Report. Reporting completes the researcher’s request by providing
them with results of the empirical evaluations and also with the
description of the evaluations themselves. Later during the results’
dissemination, instead of spending time describing the evaluation
set up, the researcher can provide the summary and a link to the
experiment’s detailed description.

SEClab provides useful feedback to the developers whose pro-
grams are used in the experiments. For example, if the software
engineering task found a program defect, SEClab can report it back
to the developers. We hope that by allowing such feedback some
developers would allow SEClab to access to their private projects.

2.1 Software Analysis Collaboratory

In this section we describe an instance of SEClab for a Static Anal-
ysis task, or SEClab[SA] (aka, SAClab). Research on static pro-
gram analysis encompasses several types of static analysis. In this
presentation we focus on heavy-weight analyses that interpret a
program’s semantics at the highest level. Symbolic Execution, Predi-
cate Abstraction, and Abstract Interpretation are primary examples
of such analyses since they reason about possible values of pro-
gram variables. These static analysis techniques play an important
role in providing the highest software quality assurance and are
commonly used to find defects in safety-critical applications. More-
over, researchers from software engineering and programming
languages make use of heavy-weight static analysis to advance
research in their domains. For example, program optimization re-
searchers use heavy-weight static analysis techniques to improve
precision of their medium-weight static analysis [17]. Software
testing researchers use symbolic execution to generate an optimal
test suite [15] or repair program defects [8, 9].

The challenge with heavy-weight static analysis tools is that
they pose additional requirements on a program’s structure, such
as focusing only on a particular data type, or allowing only intra-
procedural analysis. Thus, a researcher might request SAClab to
perform evaluations on specific programs. Finding a large quantity
of real-world programs that completely match the evaluation re-
quirements might be challenging. The curation component should
transform promising potential programs to suitable ones.

In this vision of SAClab we illustrate how program analysis re-
searchers in the programming language and software engineering

762

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

communities would use the automated services SAClab will provide,
and a description of the instances of the components corresponding
to the ones in Figure 1. Due to space limitations we focus on thee
key functionalities of SAClab: a project discovery subcomponent
together with a repository acquisition subcomponent (Retrieve),
a program transformation component (Curate), and an analysis
execution component (Execute). Each component provides an in-
dependent service that researchers can choose to utilize together
or use separately. Below, we describe the steps of a typical SAClab
session and detail the services each subcomponent provides.

(1) Researcher provides requirement specifications. Researchers use a
web-based interface to access the infrastructure and specify selec-
tion criteria for benchmark programs they seek, along with a de-
scription of all required program transformations. Each researcher
also has the option to upload the analysis tool under development
as a Docker image [7], a framework for light-weight virtualization.
(2) System searches and locates program candidates. Project Discov-
ery: using provided program specifications as input, SAClab con-
nects to remote software repositories, such as GitHub, GHTorrent,
50K-C or services such as Boa or RepoReaper, to locate potential
candidate projects. SAClab provides predefined selection criteria
or allows the researcher to express it through a domain specific
language. SAClab can utilize the search options that source loca-
tions provide to further narrow the selection process. For example,
GitHub allows a user to search by project category, programming
language, etc. The output of this step is a list of URLs of candidate
projects containing potential benchmark programs.

(3) System clones and retrieves program candidates. Repository Ac-
quisition: each time the infrastructure locates potential benchmark
program candidates, it connects to the remote repositories to clone
the candidate projects, maintaining a local cache for efficiency.
The acquisition subcomponent processes the URL list, which could
also be supplied by researchers directly. For each URL the sub-
component clones and arranges the source code of the referenced
project. After processing the list it produces a directory structure of
cloned code and a log file of successfully and unsuccessfully cloned
programs. The infrastructure will allow the user to browse through
the obtained code and the log file. Optionally, researchers can also
upload their own programs as archives, which the component will
copy to SAClab’s storage space.

(4) System modifies programs and documents updates to meet re-
quirements. Program Transformation: should candidate programs
require changes, the system will apply the program transformations
that the researcher uploaded, resulting in a set of program variants
tailored to meet the benchmarking needs of the researcher’s par-
ticular analysis tool. To make it easier to reproduce results in the
future, the system also maintains a transformation log.

The program transformation component takes as input the path
to the candidate benchmark programs directory and transforma-
tion specifications. It will serve as a clear, consistent and traceable
program transformation instrument. As with program specifica-
tions, initially SAClab can allow a researcher to select from a list of
predefined transformation specifications or provide additional flex-
ibility in transformation specifications through a domain specific
language. The output of the component is a directory with program
variants and a log file describing the source of the original program,
the transformation applied and the location of the variant.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Control-flow Analysis

e

SEClab[SA] SEClab[T]

Static Analysis e " Testing
<<CaaS>> Pointslo Analysis <<Caa$>>

—O

\|/ Concolic

Testing

SECIlab[NEW]
New Research Area
<<CaaS>>

Figure 2: An example of new research built on top of CaaS.

(5) System makes benchmark programs available for download. Anal-
ysis Execution: Finally, SAClab makes benchmark programs (pro-
grams or their variants) available for download; if the researcher
provided a Docker image, the system runs the benchmark programs
as inputs to the analyzer in a container. To facilitate performance
benchmarking, SAClab will provision a dedicated machine to run
analyzers and capture CPU/memory/disk statistics.
(6),(7) Researcher receives results and chooses dissemination options
The researcher downloads results with options to make data associ-
ated with their analysis tool public: the selection criteria, program
transformation, benchmark programs, Docker image, output/results
of the analysis, etc. Doing so enables researchers to share analy-
sis tool details, benchmark results, and transformation techniques,
leading to a faster pace of research and easily reproducible results.
Our example shows how a general functionality of SEClab nat-
urally maps onto its SAClab instance. Moreover, SEClab can be
instantiated for managing diversity in SE research [12]. In this
instance the collaboratory obtains a definition of the program uni-
verse, dimensions, and similarity functions from the users; uses the
universe definition to obtain suitable programs, and the curation
component using the dimensions and similarity functions to obtain
a diverse set of programs. Thus, we believe that the proposed vision
of SEClab provides core necessary capabilities that satisfy the needs
of the SE research community.

3 COLLABORATORIES AS A SERVICE (CAAS)

With establishing specific SEClabs and the advent of cloud com-
puting, infrastructures as a service, etc, in the upcoming decades
our vision could take us to a state where researchers will utilize
established Collaboratories as a Service (CaaS). We envision a CaaS
as a collaboratory that also operates as Software as a Service (SaaS).
SaasS is a cloud-based system that provides applications, APIs, and
other building blocks to facilitate easily building applications, for
example as done with Dropbox, Salesforce, and Google Apps.
Many top SE and PL conferences have added an artifact evalu-
ation process to the research tracks. Being optional, its results do
not change the status of accepted papers (other than awarding an
artifact badge). Some conferences, such as ECOOP, then publish
the artifacts, helping ensure their availability to other researchers
in the hopes of improving transparency and providing a basis for
future research. Our vision is to help facilitate the adoption and use
of vetted research artifacts by providing those artifacts as a software
service available to the public at large.
Community Vetting of Provided Services. While there are
many alternatives to structuring how research hosted on a col-
laboratory gets elevated to the status of being provided as a service,

763

Elena Sherman and Robert Dyer

we propose that each research community utilizing the collabora-
tory develop their own guidelines. Such guidelines might include
any of the following: require a peer-reviewed paper describing the
research approach be published in certain conferences or journals;
evaluations with given acceptance criteria; or meeting minimum
performance guarantees for a provided benchmark.
Accelerating Research Using CaaS. Consider the diagram in
Figure 2. In this figure, we show three different collaboratories: one
for static analysis (SEClab[SA]), one for testing (SEClab[T]), and a
new collaboratory for some future research area (SEClab[NEW]). In
this figure, the first two also act as collaboratories as a service. Some
examples of services provided might be computing control-flow, or
advanced pointer analysis.

Notice the testing collaboratory makes use of some static analy-
sis services, in addition to providing its own service for running
concolic tests. The idea is to not just provide common functionality
such as control-flow analysis as a library, but provide it as an on-
going service where the relevant research community can ensure
the service is using the latest approved techniques. Thus, anyone
using the service, such as the testing collaboratory, benefits from
having the most state-of-the-art techniques available. They also
can feel confident using them, knowing the SEClab[SA] has vetted
(and continues to vet) the techniques.

Now when new researchers join the field, they have a plethora
of available techniques to choose from. If this hypothetical new
research area requires running concolic testing to identify particular
inputs that cause a test suite to fail and then using pointer analysis
to help localize the root cause, researchers only need to utilize
available services, drastically increasing the speed of research.

4 CONCLUSION

In this paper we described our vision of software engineering re-
search embracing the notion of shared collaboratories (SEClabs).
The hope is SEClabs will help provide researchers the resources
necessary to easily evaluate their own research. We also envision a
future where research hosted at SEClabs is vetted by the community
and made available as a Collaboratory as a Service (CaaS). This
would further enable rapid advancement of research by providing
community vetted resources for use in prototyping research ideas.

Undoubtedly our vision brings many challenges associated with
its materialization and adaptation. Those challenges include con-
verging on a set of common requirements for users of a specific
collaboratory, organizing a self-sustainable collaboratory operation,
and provide exceptional support for the users. With overcoming
those challenges we believe researchers will have a great incen-
tive to make use of and/or contribute to a SEClab, since it will
provide them with a comprehensive state-of-the art experimental
environment to perform empirical evaluations.

ACKNOWLEDGMENTS

This work supported by the US National Science Foundation under
CNS-18-23357, CNS-18-23294, CCF-15-18776, and CNS-15-12947.

SEClabs and Caa$S

REFERENCES

[1] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.

[9

=

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovi¢, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA '06). ACM, New York, NY, USA, 169-190.
https://doi.org/10.1145/1167473.1167488

Sylvia Dieckmann and Urs Hélzle. 1999. A study of the Allocation Behavior of the
SPECjvm98 Java Benchmarks. In Proceedings of the 13th European Conference on
Object-Oriented Programming (ECOOP 1999). Springer Berlin Heidelberg, Berlin,
Heidelberg, 92-115. https://doi.org/10.1007/3-540-48743-3_5

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting Con-
trolled Experimentation with Testing Techniques: An Infrastructure and Its
Potential Impact. Empirical Softw. Engg. 10, 4 (Oct. 2005), 405-435. https:
//doi.org/10.1007/510664-005-3861-2

Lisa Nguyen Quang Do, Michael Eichberg, and Eric Bodden. 2016. Toward
an Automated Benchmark Management System. In Proceedings of the 5th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis (SOAP
2016). ACM, New York, NY, USA, 13-17. https://doi.org/10.1145/2931021.2931023
Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-Large-Scale Software
Repositories. In Proceedings of the 35th International Conference on Software
Engineering (ICSE’13). 422-431.

Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014.
Mining Billions of AST Nodes to Study Actual and Potential Usage of Java
Language Features. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). ACM, New York, NY, USA, 779-790. https://doi.org/10.
1145/2568225.2568295

Docker Inc. 2018. Docker. https://www.docker.com/.

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFIX: Semantics-based Repair of Java Programs via Symbolic PathFinder.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 376-379. https:
//doi.org/10.1145/3092703.3098225

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-guided Repair Synthesis via Programming by
Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 593-604. https://doi.

764

[11

[12

[14

[15

(17

(18

[19

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

]

0rg/10.1145/3106237.3106309

Pedro Martins, Rohan Achar, and Cristina V. Lopes. 2018. 50K-C: A Dataset of
Compilable, and Compiled, Java Projects. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR’18). ACM, 1-5.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (01 Dec 2017), 3219-3253. https://doi.org/10.1007/s10664-017-9512-6
Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in Software Engineering Research. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA,
466-476. https://doi.org/10.1145/2491411.2491415

Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. 2016. Analysis of Excep-
tion Handling Patterns in Java Projects: An Empirical Study. In Proceedings of the
13th International Conference on Mining Software Repositories (MSR ’16). ACM,
New York, NY, USA, 500-503. https://doi.org/10.1145/2901739.2903499
Michael Reif, Michael Eichberg, Ben Hermann, and Mira Mezini. 2017. Hermes:
Assessment and Creation of Effective Test Corpora. In Proceedings of the 6th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis (SOAP
2017). ACM, New York, NY, USA, 43-48. https://doi.org/10.1145/3088515.3088523
Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,
263-272. https://doi.org/10.1145/1081706.1081750

Vinayak Sinha, Alina Lazar, and Bonita Sharif. 2016. Analyzing Developer Sen-
timent in Commit Logs. In Proceedings of the 13th International Conference on
Mining Software Repositories (MSR ’16). ACM, New York, NY, USA, 520-523.
https://doi.org/10.1145/2901739.2903501

Manu Sridharan and Rastislav Bodik. 2006. Refinement-based Context-sensitive
Points-to Analysis for Java. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM, New
York, NY, USA, 387-400. https://doi.org/10.1145/1133981.1134027

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. 2010. The Qualitas Corpus: A Curated Collection of Java Code for
Empirical Studies. In 2010 Asia Pacific Software Engineering Conference. 336-345.
https://doi.org/10.1109/APSEC.2010.46

Christopher Vendome, Mario Linares-Vasquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel German, and Denys Poshyvanyk. 2015. License Usage and
Changes: A Large-scale Study of Java Projects on GitHub. In Proceedings of the
2015 IEEE 23rd International Conference on Program Comprehension (ICPC ’15).
IEEE Press, Piscataway, NJ, USA, 218-228. http://dl.acm.org/citation.cfm?id=
2820282.2820314

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1007/3-540-48743-3_5
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1145/2931021.2931023
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1145/2568225.2568295
https://www.docker.com/
https://doi.org/10.1145/3092703.3098225
https://doi.org/10.1145/3092703.3098225
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/2901739.2903499
https://doi.org/10.1145/3088515.3088523
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2901739.2903501
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1109/APSEC.2010.46
http://dl.acm.org/citation.cfm?id=2820282.2820314
http://dl.acm.org/citation.cfm?id=2820282.2820314

	Abstract
	1 Introduction
	2 Vision of a Software Engineering Collaboratory
	2.1 Software Analysis Collaboratory

	3 Collaboratories as a Service (CaaS)
	4 Conclusion
	Acknowledgments
	References

