
Modular Reasoning in the Presence of Event Subtyping

Mehdi Bagherzadehα Robert Dyerβ Rex D. Fernandoγ José Sánchezθ Hridesh Rajanα

α Iowa State University, USA β Bowling Green State University, USA γ University of Wisconsin, USA θ University of Central Florida, USA
α {mbagherz,hridesh}@iastate.edu β rdyer@bgsu.edu γ rex@cs.wisc.edu θ sanchez@eecs.ucf.edu

Abstract
Separating crosscutting concerns while preserving modular rea-
soning is challenging. Type-based interfaces (event types) sepa-
rate modularized crosscutting concerns (observers) and traditional
object-oriented concerns (subjects). Event types paired with event
specifications were shown to be effective in enabling modular rea-
soning about subjects and observers. Similar to class subtyping, or-
ganizing event types into subtyping hierarchies is beneficial. How-
ever, unrelated behaviors of observers and their arbitrary execution
orders could cause unique, somewhat counterintuitive, reasoning
challenges in the presence of event subtyping. These challenges
threaten both tractability of reasoning and reuse of event types. This
work makes three contributions. First, we pose and explain these
challenges. Second, we propose an event-based calculus to show
how these challenges can be overcome. Finally, we present mod-
ular reasoning rules of our technique and show its applicability to
other event-based techniques.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract, Assertion checkers; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Asser-
tions, Invariants, Pre- and post-conditions, Specification techniques

General Terms Design, Languages, Verification

Keywords Event subtyping, event type inheritance, modular rea-
soning, event specification refinement, translucid contracts

1. Introduction
Separation of crosscutting concerns has generated significant inter-
est over the past decade or so [1–19]. An interesting challenge in
separation of crosscutting concerns is to preserve modular reason-
ing and its underlying modular type checking. Recently some con-
sensus has been formed that a notion of explicit interfaces between
modularized crosscutting concerns and traditional object-oriented
(OO) concerns enables modular type checking [10–15, 18–20],
modular reasoning [2, 5–14] and design stability [21–23].

Previous work, such as join point types (JPT) [19], join point
interfaces (JPI) [18] and Ptolemy’s typed events [24], just to name
a few, propose a type-based formulation of these interfaces to en-
able modular type checking. These type-based interfaces could be
thought of as event types which are announced, implicitly or ex-
plicitly, by traditional OO concerns, or subjects, where modular-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MODULARITY’15 , March 16–19, 2015, Fort Collins, CO, USA
Copyright c© 2015 ACM 978-1-4503-3249-1/15/03. . . $10.00

ized crosscutting concerns, or observers, register for the events and
run upon their announcement [25, 26]. Announcement of an event
type could cause zero or more of its observers to run in a chain
where observers can invoke each other. This event announcement
and handling model for separation of concerns has been popular-
ized by AspectJ [1] and is different from models in which the sub-
ject is responsible for invoking all of its observers, as in Java’s event
model and the Observer pattern.

Similar to OO subtyping, where a class can subtype another
class, an event type can subtype another event type. Event subtyping
enables structuring of event types and allows for code reuse [18,
19, 24]. Code reuse allows an observer of an event to run upon
announcement of any of its subevents, i.e. observer reuse, and
makes the data attributes of the event accessible in its subevents, i.e.
event inheritance. Modular type checking of subjects and observers
in the presence of event subtyping has been explored [18, 19, 24].

Modular reasoning about subjects and observers, unlike their
modular type checking, is focused on understanding their behav-
iors [5, 27], control effects [7, 9, 28], data effects [2, 29] and ex-
ception flows [8]. In modular reasoning, a system is understood one
module at a time and in isolation using only its implementation and
the interfaces, not implementations, of other modules it references
[12, 13]. Previous work, such as crosscutting programming inter-
faces (XPI) [5], crosscutting programming interfaces with design
rules (XPIDR) [28] and translucid contracts [7–9], enables modular
reasoning about subjects and observers using event specifications,
however, they do not support event subtyping.

Modular reasoning about behaviors of subjects and observers,
using event specifications of event types that can subtype each
other, where announcement of an event allows not only observers of
the event but also observers of all of its superevents, with possibly
unrelated behaviors, run in an arbitrary order, faces the following
unique challenges:

• Problem ¶ – Combinatorial reasoning: unrelated behaviors of
observers may require a factorial number of combinations of
execution orders of observers of the event and observers of all
of its superevents, up to n! for n observers, to be considered in
reasoning about the subject, which makes reasoning intractable;

• Problem · – Behavior invariance: arbitrary execution orders of
observers may force observers of the event and observers of all
of its superevents to satisfy the same behavior, which prevents
reuse of event types, their specifications and observers.

In this work, we solve problem (1) by imposing a novel refin-
ing relation among specifications of an event and its superevents,
such that for each event in a subtyping hierarchy its greybox speci-
fication [30] refines both behaviors and control effects of the grey-
box specification of its superevent. Our refining relation is the in-
verse of the classical refining for blackbox specifications [31] and
extends it to greybox specifications with control effect specifica-
tions. We solve problem (2) by imposing a non-decreasing rela-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MODULARITY’15, March 16–19, 2015, Fort Collins, CO, USA
Copyright 2015 ACM 978-1-4503-3249-1/15/03...$15.00
http://dx.doi.org/10.1145/2724525.2724569

117

tion on execution orders of observers of an event and observers
of its superevents, such that for each event in a subtyping hierar-
chy observers of an event run before observers of its superevents.
With the refining and non-decreasing relations combined, subjects
and observers of an event could be understood modularly and in a
tractable manner using only the specification of their event, inde-
pendent of observers of the event, observers of its superevents and
their execution orders, while allowing reuse. This is only sound
when we impose a conformance relation on subjects and observers
of an event such that each subject and observer of the event respects
behaviors and control effects of their event specifications.

We illustrate problems (1)–(2) in the event-based language
Ptolemy [24] by adding greybox event specifications to it, and pro-
pose our solution in the context of a new language design called
PtolemyS. The language PtolemyS has built-in support for the re-
fining, non-decreasing and conformance relations that together en-
able modular reasoning about behaviors and control effects of sub-
jects and observers. Our proposed solution could be applied to other
event-based systems especially those with event announcement and
handling models similar to AspectJ [1], including join point types
[19] and join point interfaces [18].

Contributions We make the following contributions:

• identification and illustration of problems (1)–(2) of modular
reasoning about subjects and observers, in the presence of event
subtyping (Section 2);

• the refining relation for greybox event specifications, the non-
decreasing relation for execution orders of observers and the
conformance relation for behaviors and control effects of sub-
jects and observers of an event hierarchy, to solve problems (1)–
(2) and enable modular reasoning (Sections 3 and 4);

• PtolemyS’s Hoare logic [32] for modular reasoning (Section 4);
• PtolemyS, a language design and its sound semantics with sup-

port for the refining, non-decreasing and conformance relations;
• applicability of PtolemyS’s reasoning to AspectJ-like event-

based systems including join point types [19] (Section 5) and
understanding control effects and interference (Section 6).

Implementation of PtolemyS’s compiler is publicly avail-
able at http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/

branches/event-inheritance/. Section 7 discusses the imple-
mentation and limitations of our approach. Section 8 presents re-
lated work and Section 9 discusses future work and concludes.

Appendix Sections A and B discuss PtolemyS’s static and dynamic
semantics. Proofs for soundness of PtolemyS’s Hoare logic and type
system along with other details not included in this paper can be
found in our technical report [33].

2. Problems
In this section we illustrate problems (1)–(2), discussed in Section 1,
using the event-based language Ptolemy [24].

As an example of modular reasoning about the behavior of a
subject, consider static verification of the JML-like assertion Φ on
line 8 of Figure 1. The assertion says that the expression e and
its state remain the same after announcement and handling of the
event type AndEv, on lines 4–7, where AndEv is a subevent of BinEv
and ExpEv, in the event subtyping hierarchy of Figure 2. The asser-
tion assumes that e, e.left, and e.right are not null. The method
equals checks for equality of two objects and their states, e.g. two
expressions of type AndExp are equal, if their object references,
parents and their left and right children are equal. The expres-
sion old refers to values of variables at the beginning of method

1 /* subject */
2 class ASTVisitor {
3 void visit(AndExp e) {
4 announce AndEv(e, e.left, e.right) {
5 e.left.accept(this);
6 e.right.accept(this);
7 }

8 assert e.equals(old(e)); Φ

9 }
10 void visit(TrueExp e) { announce TrueEv(e) {} } ..
11 }

Figure 1. Static verification of Φ in subject ASTVisitor.

12 /* event types */
13 void event ExpEv { Exp node; }
14 void event BinEv extends ExpEv {
15 BinExp node; Exp left, right;
16 }
17 void event AndEv extends BinEv { AndExp node; }
18 void event UnEv extends ExpEv { UnExp node; }
19 void event TrueEv extends UnEv { TrueExp node; }
20 /* data types */
21 class Exp {
22 Exp parent;
23 void accept(ASTVisitor v) { v.visit(this); }
24 }
25 class BinExp extends Exp { Exp left, right; .. }
26 class AndExp extends BinExp { .. }
27 class UnExp extends Exp { .. }
28 class TruExp extends UnExp { .. }

Figure 2. Event AndEv and its superevents BinEv and ExpEv.

visit, on line 3. To better understand the problems of modular
reasoning, we first provide a short background on Ptolemy.

2.1 Ptolemy in a Nutshell
Ptolemy [24] is an extension of Java for separation of crosscut-
ting concerns [15]. It has a unified model like Eos [16, 34–37] with
support for event types, event subtyping and explicit announcement
and handling of events. In Ptolemy, a subject announces an event
and observers register for the event and run upon its announcement.
Announcement of an event causes observers of the event and ob-
servers of its superevents to run in a chain according to their dy-
namic registration order, where observers can invoke each other.

Written in Ptolemy, Figures 1, 2 and 3 together show a simple
expression language with a tracer, type checker and evaluator for
boolean expressions such as AndExp, OrExp and numerical expres-
sions. We focus on the code for boolean expressions, but the com-
plete code can be found elsewhere1. A parser generates abstract
syntax trees (AST) for expressions of the language and provides a
visitor to visit these abstract syntax trees.

The subject ASTVisitor, in Figure 1, uses announce expressions
to announce event types for each node type in the AST of an ex-
pression, upon its visit. For example, it announces the event type
AndEv for visiting AndExp, on lines 4–7, with its event body on
lines 5–6. Observers Tracer, Checker and Evaluator, in Figure 3,
show interest in events and register to run upon their announce-
ment. For example, Evaluator shows interest in AndEv using a
when− do binding declaration, on line 59, and registers for it using
a register expression, on line 53. Evaluator runs the observer han-
dler method2 evalAndExp, on lines 54–58, upon announcement of
AndEv. The handler pops up values of the left and right children of

1 http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/
event-inheritance/examples/100-Polymorphic-Expressions
2 Phrases ’observer’ and ’observer handler method’ are used interchangably.

118

the visited AndExp node from a value stack, conjoins them together
to evaluate the value of the conjunct expression and pushes the re-
sult back to the stack. For a binary boolean expression, Checker
ensures that its children are boolean expressions by popping and
casting their boolean values from a type stack. Types Type and
Value and their subtypes, e.g. Bool and BoolVal, denote types and
values of boolean and numerical expressions.

29 /* observers */
30 class Tracer {
31 Tracer() { register(this); }
32 void printExp(ExpEv next) {
33 next.invoke();
34 logVisitEnd(next.node()); }
35 when ExpEv do printExp;
36 }
37 class Checker{
38 Stack<Type> typeStack = ..
39 Checker() { register(this); }
40 void checkBinExp (BinEv next) {
41 next.invoke();
42 Bool t1 = (Bool) typeStack.pop();
43 Bool t2 = (Bool) typeStack.pop();
44 typeStack.push(new Bool()); }
45 when BinEv do checkBinExp;
46 void checkUnExp(UnEv next) {
47 next.invoke();
48 typeStack.push(new Bool()); }
49 when UnEv do checkUnExp;
50 }
51 class Evaluator {
52 Stack<Value> valStack = ..
53 Evaluator() { register(this); }
54 void evalAndExp (AndEv next) {
55 next.invoke();
56 BoolVal b1 = (BoolVal) valStack.pop();
57 BoolVal b2 = (BoolVal) valStack.pop();
58 valStack.push(new BoolVal(b1.val && b2.val)); }
59 when AndEv do evalAndExp;
60 void evalTrueExp (TrueEv next) {
61 next.invoke();
62 valStack.push(new BoolVal(true)); }
63 when TrueEv do evalTrueExp; ..
64 }

Figure 3. Observers Tracer, Checker and Evaluator.

Announcement of AndEv, on lines 4–7, could cause the observer
Evaluator of the event and observers Checker and Tracer of
its superevents BinEv and ExpEv to run in a chain, if they are
registered. An observer of an event is bound to the event through
a binding declaration. For example, Evaluator is an observer of
AndEv because of its binding declaration whereas Checker is not,
though it may run upon announcement of AndEv. Observers are
put in a chain of observers as they register for an event with the
event body as the last observer. For example, the event body for
AndEv is the last observer of the event in the chain. The chain of
observers is stored inside an event closure represented by a variable
next and the chain is passed to each observer handler method.
For example, the chain is passed to evalAndExp on line 54. An
observer of an event can invoke the next observer in the chain
using an invoke expression which is similar to AspectJ’s proceed.
Dynamic registration of observers allows observers to register in
any arbitrary order which in turn means that an observer of an
event can invoke another observer of the same event, an observer
of any of its superevents or any of its subevents. For example, the
observer Evaluator for the event AndEv can invoke, on line 55,
another observer of AndEv or any of its superevents or subevents.

Event types must be declared before they are announced by
subjects or handled by observers. An event declaration names a
superevent in its extends clause and a set of context variables in
its body. Context variables are shared data between subjects and
observers of an event. An event inherits contexts of its superevents

via event inheritance, can redeclare contexts of its superevents via
depth subtyping or add to them via width subtyping. For example,
the declaration of AndEv extends BinEv as its superevent, inherits
its context variables left and right and redeclares its context
node. The declaration of BinEv, on lines 14–16, adds contexts left
and right, using width subtyping, to node that it inherits from
its superevent ExpEv. Contexts left and right serve illustration
purposes only, otherwise they could be projected from node. Values
of context variables of an event are set upon its announcement and
stored in its event closure. For example, the contexts node, left
and right of AndEv are set with values e, e.left and e.right

upon announcement of AndEv, on line 4.

2.1.1 Event Type Specifications
To verify Φ in Figure 1, the behavior of the announce expression
for AndEv, on lines 4–7, must be understood, which in turn is de-
pendent on behaviors of observers of AndEv and observers of its su-
perevents, running upon its announcement. For such understanding
to be modular, only the implementation of the subject ASTVisitor,
on lines 2–11, and interfaces of modules it references, including the
event types AndEv and its superevents BinEv and ExpEv, are avail-
able. However, neither ASTVisitor nor AndEv, BinEv or ExpEv

say anything about the behaviors of their observers, which in turn
makes modular verification of Φ difficult.

Previous work [7–9] proposes translucid contracts as event type
specifications to specify behaviors and control effects of subjects
and observers of an event and enables their modular reasoning
in the absence of event subtyping. We add translucid contracts to
Ptolemy’s event types and illustrate how unrelated event specifica-
tions of events in a subtyping hierarchy and arbitrary execution of
their observers could cause problems (1)–(2) in modular reasoning
about subjects and observers in the presence of event subtyping.

In its original form [7], a translucid contract of an event is a
greybox specification [30] that specifies behaviors and control ef-
fects of individual observers of the event, with no relation to be-
haviors and control effects of its superevents or subevents. Figure 4
shows translucid contracts of a few event types of Figure 2. The
translucid contract of AndEv, on lines 20–26, specifies behavior
and control effects of the observer Evaluator of AndEv and es-
pecially its observer handler method evalAndExp. The behavior of
evalAndExp is specified using the precondition requires, on line 20,
and the postcondition ensures, on line 26, which says that the exe-
cution of the observer starts in a state in which the context node,
left and right are not null, i.e. left! = null && right! = null &&
node ! = null, and if the execution terminates it terminates in a
state in which the node is the same as before the start of the ex-
ecution of the observer, i.e. node.equals(old (node)).

Control effects of evalAndExp are specified by the assumes
block, on lines 21–25, that limits its implementation struc-
ture. The assumes block is a combination of program and
specification expressions. The program expression next.invoke(),
on line 22, specifies and exposes control effects of inter-
est, e.g. occurrence of the invoke expression in the im-
plementation of evalAndExp, and the specification expres-
sion requires next.node().left! = null && next.node().right! = null
ensures next.node().parent == old (next.node().parent), on lines
23–24, hides the rest of the implementation of evalAndExp, allow-
ing it to vary as long as it respects the specification. The assumes
block of AndEv says that an observer evalAndExp of AndEv must
invoke the next observer in the chain of observers, line 22, and then
can do anything as long as it does not modify the parent field of the
context variable node, on lines 23–24. The expression next.node()
in the contract retrieves the context node from the event closure
next for AndEv and the expression old refers to values of variables
before event announcement.

119

1 void event ExpEv { ..
2 requires node != null
3 assumes {
4 next.invoke();
5 requires true
6 ensures next.node().parent==old(next.node().parent);
7 }
8 ensures node.equals(old(node))
9 }

10 void event BinEv extends ExpEv { ..
11 requires left != null && right != null && node != null
12 assumes {
13 next.invoke();
14 requires

next.node().left!=null&&next.node().right!=null

15 ensures next.node().parent==old(next.node().parent);

16 }

17 ensures true

18 }
19 void event AndEv extends BinEv { ..

20 requires left != null && right != null && node != null
21 assumes {
22 next.invoke();
23 requires

next.node().left!=null&&next.node().right!=null
24 ensures next.node().parent==old(next.node().parent);
25 }
26 ensures node.equals(old(node))

27 }

Figure 4. Unrelated contracts of subtyping events.

Through the specification of behaviors of observers of an event,
the translucid contract of an event also specifies the behavior of
an invoke expression in the implementation of an observer of the
event. This is true because in the absence of event subtyping the
invoke expression causes the invocation of the next observer of
the same event. For example, the contract of AndEv specifies the
behavior of the invoke expression in the implementation of the
observer handler method evalAndExp to have the precondition
left! = null && right! = null && node! = null and the postcondi-
tion node.equals(old (node)). The precondition of the invoke ex-
pression must hold right before its invocation and its postcondition
must hold right after it.

2.2 Combinatorial Reasoning, Problem (1)
Various execution orders of observers of an event and observers of
its superevents could yield different behaviors, especially if there
is no relation between behaviors of observers of the event and its
superevents and no known order on their execution. Combinatorial
reasoning forces all such variations of execution orders to be con-
sidered in reasoning about a subject of an event, which makes the
reasoning intractable [26].

To illustrate, reconsider static verification of Φ for announce-
ment of AndEv, on lines 4–7 of Figure 1, with an observer in-
stance evaluator registered to handle AndEv and an observer in-
stance checker registered to handle BinEv. Translucid contracts of
AndEv and BinEv in Figure 4 specify the behaviors of evaluator
and checker, respectively. Announcement of AndEv could cause
the observers evaluator and checker to run in two alternative
execution orders χ1: evaluator ⇀ checker or χ2: checker ⇀
evaluator, depending on their dynamic registration order. In χ1,
evaluator runs first, where it invokes checker using its invoke
expression, on line 55 of Figure 3, and the opposite happens in χ2.
Body of AndEv runs as the last observer in χ1 and χ2 (not shown).

For χ1, the assertion Φ could be verified using the contract of
AndEv for evaluator, on lines 20–26 of Figure 4, using its postcon-
dition node.equals(old (node)), on line 26. Recall that the precon-
dition and postcondition of AndEv are the precondition and postcon-

dition of its observer evaluator. To verify Φ, the postcondition of
AndEv is copied right after the announce expression, using the copy
rule [38], and its context variables node, left and right are re-
placed respectively with parameters e, e.left and e.right of the
announce expression [7]. This allows use of the postcondition of
the contract of AndEv in the scope of the method visit. Replacing
the context variables in the postcondition of AndEv produces the
predicate e.equals(old (e)), which is exactly the assertion Φ that
we wanted to prove.

In χ1, the assertion Φ could be verified using the postcondition
of the translucid contract of AndEv alone. An example of a more
subtle interplay of behaviors of evaluator and checker is a sce-
nario in which translucid contracts of AndEv and BinEv look like
requires true assumes { establishes true; next.invoke();} ensures true
and requires true assumes {establishes node.equals (old (node));
next.invoke();} ensures true, respectively. The specification expres-
sion establishes q is a sugar for requires true ensures q. With these
contracts, neither the postcondition of AndEv nor BinEv alone are
enough to verify Φ, but their interplay results in a postcondition
that implies and consequently verifies Φ.

In contrast, Φ cannot be statically verified for χ2 because neither
the postcondition true of the contract of BinEv, on line 17 of
Figure 4, nor the interplay of behaviors of observers evaluator

and checker in χ2 provides the guarantees required by Φ.
As illustrated, in reasoning about a subject of an event, various

execution orders of its observers and observers of its superevents
must be considered. Generally for n observers of events in a sub-
typing hierarchy there can be up to n! possible execution orders
[8, 26] which in turn makes the reasoning intractable. Also, depen-
dency of the reasoning on execution orders of observers threatens
the modularity of the reasoning. This is because any changes in
execution orders of observers could invalidate any previous reason-
ing. For example, the already verified assertion Φ for the execution
order χ1 is invalidated by changing the execution order to χ2.

2.3 Behavior Invariance, Problem (2)
In reasoning about an observer of an event, arbitrary execution
orders of observers of the event and observers of its superevents in
a chain could force observers of the event and observers of all of its
superevents in a subtyping hierarchy to satisfy the same behavior.
This could prevent reuse of event types, their specifications [39]
and their observers [18, 19].

To illustrate, consider reasoning about the behavior of the in-
voke expression in the observer evaluator, in Figure 3 line 55,
with an observer instance evaluator registered to handle AndEv

and observer instance tracer registered to handle its transitive su-
perevent ExpEv. Translucid contracts of AndEv and ExpEv in Fig-
ure 4 specify behaviors of evaluator and tracer, respectively.
Upon announcement of AndEv, observers evaluator and tracer

could run in two alternative execution orders χ1: evaluator ⇀
tracer or χ2: tracer ⇀ evaluator.

Recall that the translucid contract of an event also specifies be-
haviors of invoke expressions in implementations of its observers.
In other words, the contract of AndEv specifies the behavior of the
invoke expression in its observer evaluator, on line 55. That is,
the precondition left! = null && right! = null && node! = null of
AndEv must hold right before the invoke expression in evaluator

and the postcondition node.equals(old (node)) must hold right after
the invoke expression.

In χ1, for the invoke expression of evaluator to invoke
tracer, its precondition must imply the precondition node! =
null of tracer and the postcondition node.equals(old (node)) of
tracer must imply the postcondition of the invoke expression
in evaluator. In other words, χ1 requires ω1 : P(AndEv) ⇒
P(ExpEv) ∧Q(ExpEv)⇒Q(AndEv) to hold for evaluator to in-

120

voke tracer. Auxiliary functions P and Q return the precondition
and postcondition of an event type, respectively. In contrast, χ2 re-
quires ω2 : P(ExpEv)⇒P(AndEv) ∧ Q(AndEv)⇒ Q(ExpEv) to
hold for tracer to invoke evaluator. To allow both execution or-
ders χ1 and χ2, both conditions ω1 and ω2 must hold which in turn
requires preconditions and postconditions of AndEv and ExpEv and
consequently preconditions and postconditions of their observers
evaluator and tracer to be the same, i.e. invariant.

3. Solution
To solve combinatorial reasoning and behavior invariance problems
we propose to (1) relate behaviors of observers of an event and its
superevent by a refining relation among greybox event specifica-
tions in an event subtyping hierarchy and to (2) limit arbitrary ex-
ecution order of observers by a non-decreasing relation on execu-
tion orders of observers. This proposal constitutes a new language
design called PtolemyS with support for these relations. Figure 5
shows an overview of these relations in PtolemyS.

event

body

subtype

refine

specified

..

..

conform

non-decreasing

non-decreasing

2

event contractsubject observer observer

announce refine

invoke

conform

..

conform

non-decreasing1 2

3

Figure 5. Refining, non-decreasing and conformance relations.

In Figure 5, for an event subtyping hierarchy, the refining rela-
tion guarantees that the specification (contract) of an event refines
the specification of its superevent and the non-decreasing relation
guarantees that upon announcement of an event by a subject, an
observer of the event runs before an observer of its superevent. The
conformance relation guarantees that each subject and observer of
an event conform to and respect their event specification.

Detailed formalization of PtolemyS’s sound static and dynamic
semantics can be found in Sections A and B.

3.1 PtolemyS’s Syntax
Figure 6 shows the expression-based core syntax of PtolemyS with
focus on event types, event subtyping and event specifications.
Hereafter, term∗ means a sequence of zero or more terms and [term]
means zero or one term.

A PtolemyS program is a set of declarations followed by an
expression, which is like a call to the main method in Java. There
are two kinds of declarations: class and event type declarations. A
class can extend another class and it may have zero or more fields,
methods and binding declarations.

Similarly, an event type declaration can extend (subtype) an-
other event type and has a return type, a set of context variable
declarations and an optional translucid contract. The return type of
an event specifies the return type of its observers. An interesting
property of return types of subtyping events is that, because of the
non-decreasing relation, the return type of an event is a supertype
of the return type of the event it extends, see Section B. An event
type declaration inherits context variables of the event types it ex-
tends and can declare more through width subtyping. It can also
redeclare the context variables of the event types it extends through
depth subtyping [24], as long as the type of the redeclaring con-
text is a subtype of the type of the redeclared context. Figure 2
illustrates the declaration of the event type AndEv, on line 17.

prog ::= decl* e
decl ::= class c extends d { form* meth* binding* }
| c event ev extends ev′ { form* [contract] }

meth ::= t m (form*) { e }
binding ::= when ev do m
e, se ::= var | null | new c() | cast c e | if (e) {e} else {e}
| e.m(e*) | e.f | e.f = e | form = e ; e
| announce ev (e*) { e } | e.invoke()
| register(e) | unregister(e)
| refining spec { e } | spec | either {e} or {e}

p, q ::= var | p.f | p == p | p < p | ! p | p && p | old(p)
contract ::= requires p [assumes { se }] ensures q
spec ::= requires p ensures q
t ::= c | thunk ev
form ::= t var

c, d ∈ C ∪{Object} set of class names
ev, ev′ ∈ E ∪{Event} set of event names

f ∈F set of field names
var ∈ V ∪{this,next} set of variable names

Figure 6. PtolemyS’s core syntax, based on [7, 15, 24].

3.2 Refining Relation of Event Specifications
PtolemyS relates behaviors and control effects of observers of
events in a subtyping hierarchy by relating their greybox event
specifications through a refinement relation E. In the refining re-
lation, the specification of an event refines the specification of its
superevent, for both behaviors and control effects. PtolemyS’s re-
finement among greybox event specifications is the inverse of clas-
sical behavioral subtyping for blackbox method specifications [31],
however, blackbox specifications do not specify control effects.

In PtolemyS, a translucid contract [7, 8] of an event is a greybox
specification that, in relation to its superevents, specifies behaviors
and control effects of individual observers of the event and their
invoke expressions. A translucid contract of an event specifies
behaviors using the precondition requires and the postcondition
ensures. The behavior requires p ensures q says that if the execution
of an observer of the event starts in state σ satisfying p, written as
σ |= p, and it terminates normally, it terminates in a state σ ′ that
satisfies q, i.e. σ ′ |= q.

A translucid contract specifies control effects of its individual
observers using its assumes block. An assumes block is a combina-
tion of program and specification expressions. A program expres-
sion exposes control effects of interest, e.g. invoke expressions, in
the implementation of an observer whereas a specification expres-
sion spec hides the rest of its implementation allowing it to vary
as long it respects its specification. The contract of an event only
names the context variables of the event and must expose invoke ex-
pressions in the implementation of its observers. Figure 4 illustrates
the translucid contract of AndEv, on lines 20–26, with its precondi-
tion, on line 20, postcondition, on line 26, program expression, on
line 22 and specification expression, on lines 23–24. PtolemyS re-
lates translucid contracts of an event and its superevents through
the refining relation E.

DEFINITION 3.1. (refining translucid contracts). For event types
ev and ev′, where ev is a subevent of ev′, written as ev�: ev′3, and
their respective translucid contracts G = (requires p assumes {se}
ensures q) and G ′ = (requires p′ assumes {se′} ensures q′), G ′ is
refined by G , written as G ′EG , if and only if:

(i). requires p′ ensures q′ E requires p ensures q
(ii). se′E se

Figure 7 defines the refinement relation E for PtolemyS expressions.

3 The class subtyping relation 4 is different from PtolemyS’s event subtyp-
ing relation�:, as discussed in Section B.

121

Event specification refinement relation: Γ ` se′E se

(R-SPEC)
spec = requires p ensures q

spec′ = requires p′ ensures q′ p⇒ p′ q′⇒ q
Γ ` spec′ E spec

(R-INVOKE)
Γ ` se′E se

Γ ` se′.invoke() E se.invoke()

(R-VAR)
textualMatch(var′,var)

Γ ` var′ E var

(R-DEFINE)
Γ ` se′1 E se1 Γ, t : var ` se′2 E se2

Γ ` t var = se′1;se′2 E t var = se1;se2

(R-IF)
Γ ` sp′E sp Γ ` se′1 E se1 Γ ` se′2 E se2

Γ ` if(sp′){se′1} else{se′2} E if(sp){se1} else{se2}

Figure 7. Select rules for the refining relation E.

In Definition 3.1, for a translucid contract of an event to refine
the contract of its superevent, (i) its behavior must refine the behav-
ior of the contract of the superevent and (ii) its assumes block must
refine the assumes block of the translucid contract of its superevent.

In Figure 7, the rule (R-SPEC) shows the refinement of the
behavior spec′ = requires p′ ensures q′ by the behavior spec =
requires p ensures q. For the behavior spec to refine spec′, its pre-
condition p must imply the precondition p′, i.e. p⇒ p′, and the
opposite must be true for their postconditions, i.e. q′ ⇒ q. That is
the subevent can strengthen the precondition of its superevent and
weaken its postcondition which is the inverse of classical refine-
ment in class subtyping [31] where a subclass weakens the precon-
dition of its superclass and strengthens its postcondition. Such in-
verse relation of behaviors is necessary in PtolemyS to allow an ob-
server of a superevent to run upon announcement of its subevents.
Also unlike PtolemyS’s refining, the classical refining is for black-
box contracts and does not directly apply to greybox translucid con-
tracts [30] and especially their assumes block [40] with control ef-
fect specifications.

The assumes block se of the translucid contract of an event re-
fines the assumes block se′ of the contract of its superevent, i.e.
se′E se, if: (a) each specification expression in se refines its cor-
responding specification expression in se′ and (b) each program
expression in se refines its corresponding program expression in
se. The rule (R-SPEC) for refinement of behaviors also applies for
refinement of specification expressions since they similarly are be-
havior specifications with a precondition and postcondition [40].
A specification expression in a subevent can strengthen the pre-
condition of its corresponding specification expression in its su-
perevent and weaken its postcondition. For a program expression
to refine another program expression, they must textually match.
The rule (R-VAR) checks for textual matching of variable names us-
ing the auxiliary function textualMatch. For other program expres-
sions, such as invoke and conditional, their refinement boils down
to the refinement of their subexpressions, as in rules (R-INVOKE),
(R-DEFINE) and (R-IF).

To illustrate, the translucid contract of AndEv, on lines 20–
26 in Figure 4, refines the contract of ExpEv, on lines 2–8. This
is because (i) the precondition left! = null && right! = null &&
node! = null of AndEv implies the precondition node! = null of
ExpEv and the postcondition node.equals(old (node)) of ExpEv

implies the same postcondition of AndEv, and thus using the
rule (R-SPEC) the behavior of AndEv refines the behavior of
ExpEv; (ii) the program expression next.invoke() of AndEv, on
line 22, refines its corresponding program expression of ExpEv,
on line 4, using (R-INVOKE) and (R-VAR), and specification

expression requires next.node().left ==old (next.node().left) &&
next.node().right == old (next.node().right) ensures
next.node().parent == old (next.node().parent) of AndEv, on lines
23–24, refines its corresponding specification expression requires
true ensures next.node().parent ==old (next.node().parent) in
ExpEv, on lines 5–6, using (R-SPEC).

However, the translucid contract of AndEv does not re-
fine the contract of BinEv, on lines 11–17, because the
postcondition true of BinEv does not imply the postcon-
dition of AndEv. Changing the postcondition of BinEv to
next.node().parent ==old (next.node().parent) makes the contract
of BinEv refine the contract of ExpEv.

Textual matching of program expressions is a simpler alterna-
tive to complex higher order logic or trace verification techniques
with its tradeoffs [40]. Textual matching works because PtolemyS’s
semantics enforces depth subtyping, ensuring that a redeclaring
context variable in an event is a subtype of the redeclared context
in its superevents and a next variable in the contract of an event is a
subtype of the next variable in the contract of its superevent.

The refining relation E defines the refinement for corresponding
program and specification expressions. That is, only structurally
similar contracts may refine each other. Two translucid contracts
are structurally similar if for each specification (program) expres-
sion in the assumes block of one, a possibly different specification
(program) expression exists in the assumes block of the other at the
same location. PtolemyS’s structural similarity for the refining rela-
tion allows definition of PtolemyS’s event specification inheritance,
see our technical report [33], such that it statically guarantees the
refining relation by combining translucid contracts of an event and
its superevents in a subtyping hierarchy.

3.3 Non-Decreasing Relation of Observers’ Execution
PtolemyS limits the arbitrary execution order of observers of an
event and its superevents by enforcing a non-decreasing relation
on execution orders of observers. In the non-decreasing order , an
observer of an event runs before an observer of its superevent.
PtolemyS’s semantics for announce, invoke, register and unregister
expressions and the relation of return types of events in an event
hierarchy guarantee the non-decreasing order.

In PtolemyS, a subject announces an event ev using the announce
expression announce ev(e*){e′}. The announce expression evalu-
ates parameters e* to values v*, creates an event closure for the
event ev and binds values v* to context variables of ev in the clo-
sure. The announce expression also creates, in the event closure, a
chain containing registered observers of ev and observers of all its
superevents and runs the first observer in the chain. To construct
the chain, the announce expression adds observers of the event ev
to an empty chain followed by adding observers of the direct su-
perevent of ev and recursively continues until it reaches the root
event Event4. The event body e′ is added to the end of the chain.

By construction, the announce expression ensures that an ob-
server of an event shows up before an observer of its superevent in
the chain, which basically is the non-decreasing order of observers.
Observers of the same event in the chain maintain among them-
selves the same order as their dynamic registration order, i.e. an
observer registered earlier shows up in the chain before the ones
registered later. This makes PtolemyS backward compatible with its
earlier versions [7, 8, 15] that do not support event subtyping. The
expression next is a placeholder for an event closure and the type
thunk ev is the type of the event closure of an event ev.

4 Event is not accessible to programmers and does not have observers, as
a simple design choice, to not allow programmers to affect behaviors of
events of a system by defining a specification for Event.

122

After construction of the chain and running the first observer
in the chain, by the announce expression, observers in the chain
can invoke each other using an invoke expression e.invoke(). The
invoke expression evaluates e to an event closure containing the
chain of observers and runs the next observer in the chain, which is
according to the non-decreasing order. For observers to run in the
non-decreasing order, the return type of an observer of an event
must be a supertype of the return type of the observers of its
superevent. PtolemyS’s static semantics, in Section B, guarantees
this by ensuring that the return type of an event is a supertype of
the return type of its superevent.

Upon announcement of an event, only registered observers of
the event and its superevents run. In PtolemyS, observers show in-
terest in events through binding declarations and register to handle
the events. A binding declaration when ev do m in an observer says
to run the observer handler method m when an event of type ev is
announced. The expression register(e) evaluates e to an object and
adds it to the list of observers A[ev] for each event type ev that is
named in binding declarations of the observer, and unregister(e) re-
moves the object e from the list of observers of those events. The
announce expression for an event ev recursively concatenates the
list of observers A[ev] of the event ev and the list of observers of its
superevents to construct the chain of observers.

3.4 Refining + Non-decreasing Relations
Any of refining or non-decreasing relations alone cannot solve both
combinatorial reasoning and behavior invariance problems. With
the refining relation alone, because of the arbitrary execution order
of observers, still up to n! possible execution orders of n observers
of the event and observers of its superevents should be considered
in reasoning, which threatens its tractability; changes in execution
orders of observers of the event or observers of its superevents can
still invalidate any previous reasoning, which threatens modularity
of reasoning; and observers of events in a subtyping hierarchy
still could be forced to satisfy the same behavior, which threatens
reuse. A trivial refining relation in which events of a hierarchy
satisfy the same behavior enables modular reasoning, however, it is
undesirable as it prevents reuse of event types, their specifications
[39] and observers [18, 19].

With the non-decreasing relation alone, because of unrelated
behaviors of observers, observers of events in a subtyping hierarchy
may still be forced to satisfy the same behavior and any changes in
behaviors of superevents of an event could invalidate any previous
reasoning about subjects and observers of the event.

Interestingly, reversing both refining and non-decreasing rela-
tions still allows modular reasoning. To reverse these relations,
the translucid contract of a superevent refines the contract of its
subevent and an observer of a superevent runs before any observer
of its subevent. We chose the current design, as it seemed more
natural, to us, for observers of an already announced event to run
before observers of its superevents.

4. Modular Reasoning
This section formalizes PtolemyS’s Hoare logic for modular reason-
ing, its conformance relation for subjects and observers and sound-
ness of its reasoning technique.

PtolemyS’s refining and non-decreasing relations enable its
modular reasoning about subjects and observers of an event, as
shown in Figure 8. The main idea is to use the translucid contract of
an event as a sound approximation of the behaviors of its observers
and observers of its superevents to reason about:

(1) a subject of the event, especially its announce expression, in-
dependent of its observers and observers of its superevents and
their execution orders; and

(2) an observer of the event, especially its invoke expressions, inde-
pendent of its subjects as well as observers it may invoke and
their execution orders.

reasoning judgement: Γ ` {p} e {q}

(V-ANNOUNCE)
(c event ev extends ev′{(t var)* contract}) ∈ CT

contract = requires p assumes {se} ensures q
topContract(ev) = requires p′ assumes {se′} ensures q′

Γ ` {p′[e*/var*]} e′ {q′[e*/var*]}
Γ ` {p[e*/var*]} announce ev(e*){e′} {q[e*/var*]}

(V-INVOKE)
thunk ev = Γ(next)

(c event ev extends ev′{ f orm* contract}) ∈ CT
contract = requires p assumes {se} ensures q

Γ ` {p} next.invoke() {q}

(V-REFINING)
Γ ` {p} e {q}

Γ ` {p} (refining requires p ensures q { e }) {q}

(V-SPEC)
Γ ` {p} requires p ensures q {q}

(V-CONSEQ)
p⇒ p′ q′⇒ q {p′} e {q′}

Γ ` {p} e {q}

Figure 8. Select reasoning rules in PtolemyS’s Hoare [32] logic,
inspired by [9, 40].

Figure 8 shows PtolemyS’s Hoare logic [32] for modular reason-
ing about behaviors of subjects and observers. PtolemyS’s reasoning
rules use a reasoning judgement of the form Γ ` {p} e {q} that says
the Hoare triple {p} e {q} is provable using the variable typing en-
vironment Γ, which maps variables to their types. The judgement
Γ ` {p} e {q} is valid, written as Γ |= {p} e {q}, if for every state
σ that agrees with type environment Γ, if p is true in σ , i.e. σ |= p,
and if the execution of e terminates in a state σ ′, then σ ′ |= q. This
definition of validity is for partial correctness where termination is
not guaranteed. PtolemyS’s reasoning rules use a fixed class table
CT , which is a set of the program’s class and event type declara-
tions. The notation ep[e*/var*] denotes replacing variables var*
with e* in the expression ep. PtolemyS’s rules for reasoning about
standard object-oriented expressions remain the same as in previ-
ous work [32, 40–42] and are omitted.

In Figure 8, the rule (V-ANNOUNCE) reasons about the behavior
of an announce expression in a subject. The rule says that the
behavior of an announce expression announcing an event ev is the
behavior requires p ensures q of the translucid contract of the event
ev. To use the precondition p of the contract and its postcondition
q in the scope of the announce expression, their context variables
var* are replaced by arguments e* of the announce expression [38].
The rule (V-ANNOUNCE) does not require and is independent of
any knowledge of individual observers of ev or observers of its
superevents, their implementations or execution orders which in
turn makes it modular and tractable.

To illustrate (V-ANNOUNCE), reconsider verification of the asser-
tion Φ for the announce expression of AndEv, on lines 4–7 of Fig-
ure 1. Using the translucid contract of AndEv, on lines 20–26, the
conclusion of (V-ANNOUNCE) replaces parameters e, e.left and
e.right of the announce expression for context variables of node,
left and right of AndEv in the precondition and postcondition of
the contract of AndEv and yields the Hoare triple:

Γ ` {e.left! = null && e.right! = null && e! = null}
announce AndEv(e, e.left, e.right)
{e.left.accept(this); e.right.accept(this);}

{e.equals(old (e))}

123

The above judgement says, if e, e.left and e.right are not null,
the expression e and its state remain the same after announcement
and handling of AndEv, i.e. e.equals(old (e)), which is exactly the
assertion Φ we wanted to verify.

The rule (V-INVOKE) reasons about the behavior of an invoke
expression, in an observer. The rule says that the behavior of an
invoke expression in an observer of the event ev, is the behavior
of the translucid contract of ev. The type of the event that the
observer handles, i.e. ev, is part of the type of the event closure next.
The function Γ(next) returns the type of the next expression in the
typing environment Γ. Recall that the event closure next is passed
as a parameter to each observer handler method. Again, the rule
(V-INVOKE) does not require and is independent of any knowledge
about subjects of the event ev or observers it may invoke in the
chain of observer next and thus is modular and tractable.

The rule (V-REFINING) says that the behavior of the body e of
a refining expression is the behavior of its specification expression
requires p ensures q. This is true, because the body of the refining
expression claims to refine its specification. The rule (V-SPEC) is
straightforward [40] and the rule (V-CONSEQ) is standard [32].

4.1 Soundness of Reasoning
In PtolemyS’s the translucid contract of an event is a sound approx-
imation of behaviors of its subjects and observers independent of
observers of the event, observers of its superevents and their execu-
tion orders. This is sound because of the following:

1. conformance of each observer and subject of an event to the
translucid contract of the event; and

2. refining relation among specifications of the event and its su-
perevents; and

3. non-decreasing relation on execution orders of observers of the
event and observers of its superevents.

For a greybox translucid contract of an event, all subjects and
observers of the event must conform to the contract of the event.
This is different from a blackbox method specification, e.g. in JML,
in which only a single method has to respect a contract [8, 31].
PtolemyS’s semantics, in Sections A and B, guarantees the confor-
mance using a combination of type checking and runtime assertion
checking. PtolemyS’s event specification inheritance [33], statically
guarantees the refining relation and PtolemyS’s dynamic semantics
guarantees the non-decreasing relation. Figure 5 shows the inter-
play of conformance, refining and non-decreasing relations.

4.1.1 Conforming Observers
DEFINITION 4.1. (Conforming observer) For an event type ev with
a translucid contract G = (requires p assumes {se} ensures q), its
observer handler method m with its implementation e is conforming
if and only if there exists a typing environment Γ such that:

(i). Γ |= {p} e {q}
(ii). sevs e

where Figure 9 defines the structural refinement relation vs be-
tween the assumes block se and the body e of its observer.

Definition 4.1 says that for an observer handler method of an
event ev to be conforming, its implementation e must satisfy the
precondition p and postcondition q of the translucid contract of the
event, i.e. requirement (i). An expression e satisfies a precondition
p and a postcondition q in a typing environment Γ, written as
Γ |= {p} e {q}, if and only if for every program state σ that
agrees with the type environment Γ, if the precondition p is true
in σ , and if the execution of e terminates in a state σ ′, then q is
true in σ ′. Currently PtolemyS uses runtime assertions to check for
satisfaction of preconditions and postconditions of a contract by

its observers. Static verification techniques could also be used to
check for such satisfaction [9]. Figure 10 shows the conforming
observer Evaluator and its observer handler method evalAndExp,
on lines 21–32. In evalAndExp, assertions on lines 22 and 31 check
for preconditions and postconditions of the contract of AndEv on
lines 2 and 8.

Structural refinement relation: Γ ` sevs e

(S-REFINING)
Γ ` spec vs refining spec {e}

(S-INVOKE)
Γ ` sevs e

Γ ` se.invoke()vs e.invoke()

(S-VAR)
textualMatch(var′,var)

Γ ` var′ vs var

(S-ANNOUNCE)
Γ ` se*vs e* Γ ` sevs e

Γ ` announce ev(se*){se} vs announce ev(e*){e}

(S-EITHEROR)
Γ ` se1 vs e∨Γ ` se2 vs e

Γ ` either {se1} or {se2} vs e

(S-DEFINE)
Γ ` se1 vs e1 Γ,var : t ` se2 vs e2

Γ ` t var = se1;se2 vs t var = e1;e2

(S-IF)
Γ ` spvs ep Γ ` se1 vs e1 Γ ` se2 vs e2

Γ ` if(sp){se1} else{se2} vs if(ep){e1} else{e2}

Figure 9. Select rules for structural refinement vs [7, 40].

Definition 4.1 also requires the implementation e of a con-
forming observer to structurally refine the assumes block se of its
translucid contract, i.e. requirement (ii). The structural refinement
vs guarantees that an observer of an event, in its implementation
has the control effects exposed in its translucid contract [7, 8] using
its program expressions. Figure 9 shows select rules for PtolemyS’s
structural refinement.

The implementation e of an observer handler method struc-
turally refines the assumes block se of its translucid contract if: (a)
for each specification expression spec in se there is a correspond-
ing refining expression in e with the same specification and (b) for
each program expression in se, there is a corresponding textually
matching program expression in e. The rule (S-REFINING) checks
for structural refinement of a specification expression by a refining
expression. (S-VAR) checks for textual matching of variable names
using the auxiliary function textualMatch. For other program ex-
pressions, structural refinement boils down to structural refinement
of their subexpressions. The rule (S-EITHEROR) allows an observer
to choose between behaviors in its either-branch or its or-branch.
Similar to the refining relation, structural refinement requires struc-
tural similarity between the implementation of a conforming ob-
server and the assumes block of its contract.

In Figure 10, the assumes block, on lines 3–7, is struc-
turally refined by the implementation of the conforming observer
evalAndExp, on lines 22–31 (ignoring runtime assertion checks),
because the program expression next.invoke() on line 4 is struc-
turally refined by the program expression in the implementation
on line 23 and the specification expression on lines 5–6 is refined
by a refining expression with the same specification on lines 25–
29. Structural refinement guarantees that the implementation of
evalAndExp has a next.invoke() expression as its control effect, as
specified by the program expression next.invoke() in its contract.

124

A refining expression claims that its body satisfies its specifica-
tion. PtolemyS uses runtime assertions to check this claim. In Fig-
ure 10, runtime checks on lines 24 and 30 check that the body of
the refining expression satisfies its precondition and postcondition
on lines 26 and 27.

Though similar, in the structural refinement vs the implemen-
tation of an observer refines the assumes block of the translucid
contract of its event, whereas in the refining relation E the contract
of an event refines the contract of its superevent. A specification
expression in a contract is structurally refined by a refining expres-
sion in vs whereas it is refined by another specification expression
in E.

4.1.2 Conforming Subjects
DEFINITION 4.2. (Conforming subject) For an event type ev with
a translucid contract G = (requires p assumes {se} ensures q), its
subject with an announce expression announce ev(e*){e′} in its im-
plementation, is conforming if and only if:
Γ |= {p′} e′ {q′} where requires p′ assumes {se′} ensures q′ =
topContract(ev)

The definition says that for a subject of ev to be conforming its
event body e′ must satisfy the precondition p′ and postcondition
q′ of the translucid contract of the event on top of the subtyping
hierarchy of ev, right before the root event Event. The auxiliary
function topContract returns the translucid contract of this event.
As shown in Figure 5, this is necessary for the non-decreasing rela-
tion in which observers of the event and observers of its superevent
run before the event body e′ in the chain of observers. Figure 10
shows the conforming subject ASTVisitor, on lines 10–19. Run-
time assertions on lines 13 and 16 check for satisfaction of the pre-
condition and postcondition of the top contract of AndEv, i.e. the
translucid contract of ExpEv, by the event body.

4.1.3 Soundness Theorem
Theorem 4.3 formalizes soundness of PtolemyS’s Hoare logic.

THEOREM 4.3. (Soundness of PtolemyS’s Hoare logic) PtolemyS’s
Hoare logic, in Figure 8, is sound for conforming PtolemyS pro-
grams. In other words, any Hoare triple provable using PtolemyS’s
logic, i.e. Γ ` {p} e {q}, is a valid triple, i.e. Γ |= {p} e {q}.

The proof is based on induction on the number of events in a
subtyping hierarchy and the number of their observers and uses
conformance, refining and non-decreasing relations. Full proof of
the theorem can be found in our technical report [33] .

4.2 Revisiting Reasoning about Announce and Invoke
PtolemyS’s reasoning rules (V-ANNOUNCE) and (V-INVOKE) are
sound because the conformance, refining and non-decreasing re-
lations allow, in any chain of observers, the implementation of an
invoked observer to be inlined in place of invoke expressions of
its invoking observer without violating the precondition and post-
condition of the invoking observer. This in turn allows the chain
of observers of an event and observers of its superevents, starting
from the event body at the end of the chain back to its beginning, to
be recursively inlined in an announce expression without violating
the precondition and postcondition of the contract of the event.

To illustrate, reconsider reasoning about the behavior of
announce AndEv(e, e.left, e.right), in Figure 1. Upon announce-
ment of AndEv, if there are no observers of AndEv or observers
of its superevents BinEv or ExpEv in the chain of observers,
then the event body e.left.accept(this); e.right.accept(this) exe-
cutes. The subject ASTVisitor of AndEv is conforming and thus
the event body satisfies the behavior of the contract of ExpEv,
which is the top event in the hierarchy of AndEv. That is, the event

1 void event AndEv extends BinEv { ..
2 requires left != null && right != null && node != null
3 assumes {
4 next.invoke();
5 requires

next.node().left!=null&&next.node().right!=null
6 ensures next.node().parent==old(next.node().parent);
7 }
8 ensures node.equals(old(node))
9 }

10 class ASTVisitor {
11 void visit(AndExp e) {
12 announce AndEv(e, e.left, e.right) {

13 assert(e != null);

14 e.left.accept(this);
15 e.right.accept(this);

16 assert(node.equals(old(node)));

17 }
18 } ..
19 }
20 class Evaluator { ..
21 void evalAndExp (AndEv next) {

22 assert(next.node().left!=null&&next.node().right!=null
&&next.node()!=null);

23 next.invoke();

24 assert(next.node().left!=null&&next.node().right!=null);

25 refining
26 requires

next.node().left!=null&&next.node().right!=null
27 ensures next.node().parent==old(next.node().parent){
28 BoolVal b1 = (BoolVal) valStack.pop();
29 }

30 assert(next.node().parent==old(next.node().parent));
31 assert(next.node().equals(old(next.node())));

32 }
33 when AndEv do evalAndExp; ..
34 }

Figure 10. Conforming Evaluator and ASTVisitor.

body satisfies the precondition node ! = null and the postcondition
node.equals(old (node)) of ExpEv after the context node is replaced
with parameter e of the announce expression:

(H-BODY)
Γ |= {e ! = null}

e.left.accept(this); e.right.accept(this);
{e.equals(old (e))}

The refining relation guarantees that the behavior of AndEv re-
fines the behavior of ExpEv. That is, the precondition of AndEv im-
plies the precondition
of ExpEv, i.e. left! = null && right! = null && node! = null ⇒
node ! = null, and the opposite is true for their postconditions, i.e.
node.equals(old (node))⇒ node.equals(old (node)). Using these
implications, the rule (V-CONSEQ) and after replacing the context
node with e, one can conclude that the event body satisfies the be-
havior of AndEv:

Γ |= {e.left! = null && e.right! = null && e! = null}
e.left.accept(this); e.right.accept(this);
{e.equals(old (e))}

Since the event body is the only observer that executes upon
announcement of AndEv, the announce expression can be replaced
with the event body:

(H-ANNOUNCE-BODY)
Γ |= {e.left! = null && e.right! = null && e! = null}

announce AndEv(e, e.left, e.right)
{e.left.accept(this); e.right.accept(this);}
{e.equals(old (e))}

125

The judgement (H-ANNOUNCE-BODY) says the announce ex-
pression of AndEv with event body as its only observer satisfies
the behavior of the translucid contract of AndEv.

However, the event body may not be the only observer of
AndEv. Consider observers evaluator and tracer of event AndEv
and ExpEv and the event body of AndEv, shown as B(AndEv),
run in a chain χ1 : evaluator ⇀ tracer ⇀ B(AndEv). Again,
conformance of ASTVisitor means that the event body satisfies
the behavior of the contract of ExpEv, i.e. (H-BODY). Recall that
an observer of an event and the invoke expressions in its imple-
mentation have the precondition and postcondition of the contract
of the event. The precondition of the invoke expression in the
implementation of tracer implies the precondition of the event
body, i.e. node! = null⇒ node! = null and the postcondition of the
event body implies the postcondition of the invoke expression, i.e.
node.equals(old (node))⇒ node.equals(old (node)). This in turn
allows the event body, in grey, to be inlined in the place of the
invoke expression in the implementation of tracer, in Figure 3,
without violating the precondition and postcondition of tracer:

(H-TRACER)
Γ |= {e ! = null}

e.left.accept(this); e.right.accept(this);
refining requires true
ensures e.parent == old (e.parent){..}
{e.equals(old (e))}

Using the refining relation, the precondition of AndEv implies
the precondition of ExpEv and the opposite is true for their post-
conditions. This means the precondition of the invoke expres-
sion in the implementation of evaluator implies the precondi-
tion of tracer, i.e. left! = null && right! = null && node! =
null ⇒ node ! = null, and the postcondition of tracer implies
the postcondition of the invoke expression in evaluator, i.e.
node.equals(old (node))⇒ node.equals(old (node)). This allows
the implementation of tracer in (H-TRACER) to be inlined, in grey,
in place of the invoke expression in evaluator without violating
its precondition and postcondition of evaluator:

(H-EVALUATOR)
Γ |= {e.left! = null && e.right! = null && e! = null}

e.left.accept(this); e.right.accept(this);

refining requires true

ensures e.parent == old (e.parent){..};
refining
requires e.left! = null && e.right! = null
ensures e.parent == old (e.parent){..};
{e.equals(old (e))}

Since the announcement of AndEv causes the chain χ1 to run,
the inlined chain of observers in (H-EVALUATOR) can be replaced
with the announce expression:

(H-ANNOUNCE-χ1)
Γ |= {e.left! = null && e.right! = null && e! = null}

announce AndEv(e, e.left, e.right)
{e.left.accept(this); e.right.accept(this);}
{e.equals(old (e))}

The judgement (H-ANNOUNCE-χ1) says that the behavior of
the announce expression of AndEv with the chain of observers χ1
satisfies the behavior of the contract of AndEv.

(H-ANNOUNCE-BODY) and (H-ANNOUNCE-χ1) say the behavior
a chain of observers of AndEv and observers of its superevents,
can be approximated with the precondition and postcondition
of the translucid contract of the AndEv which is what the rule

(V-ANNOUNCE) in PtolemyS’s reasoning logic says. A similar jus-
tification holds for the rule (V-INVOKE).

5. Applicability
Our proposed modular reasoning technique is not exclusive to
PtolemyS and could be adapted to similar AspectJ-like [1] event-
based systems such as join point types (JPT) [19] and join point
interfaces (JPI) [18]. Application of our reasoning technique to join
point interfaces could be found in our technical report [33].

With join point types, a subject (base) exhibits a join point
type (event) using an exhibits statement and aspects (observers)
advise the event and handle it using advises statements. A join
point type can extend another join point type, inherit its context
variables and add to them through width subtyping. Exhibiting a
join point type causes its aspects and aspects of its super join point
types to run in a chain where aspects can invoke each other, using
proceed statements. The execution order of aspects is specified
using precedence declarations. Join point types do not support
depth subtyping, however, this does not affect the applicability of
PtolemyS’s reasoning technique to them.

1 joinpointtype AndEv extends BinEv {

2 /*@ requires node!=null && left!=null &&right!=null;
3 @ model_program {
4 @ proceed(next);
5 @ requires node.left!=null && node.right!=null;
6 @ ensures node.parent == old(node.parent);
7 @ }
8 @ ensures node.equals(old(node)); */

9 }
10 class ASTVisitor exhibits AndEv,.. {
11 void visit(AndExp e) {
12 exhibits new AndEv(e, e.left, e.right) {
13 e.left.accept(this);
14 e.right.accept(this);
15 }; ..
16 } ..
17 }
18 aspect Evaluator advises AndEv,.. { ..
19 void around(AndEv jp) {
20 proceed(jp);
21 refining
22 requires node.left!=null && node.right!=null;
23 ensures node.parent == old(node.parent){
24 .. //same as before
25 }
26 } ..
27 }

Figure 11. Join point type AndEv and its translucid contract.

Figure 11 shows parts of the expression language example
rewritten using join point types where the subject ASTVisitor ex-
hibits a join point instance AndEv, on lines 12–15, and the observer
Evaluator advises the join point, on lines 19–26. Evaluator in-
vokes the next observer in the chain of observers using a proceed
statement on line 20, which takes as argument a join point instance
jp of join point type AndEv. The join point type AndEv is declared
on lines 1–9 and extends the join point type BinEv.

Figure 11 shows the syntactic adaptation of the translucid con-
tract of the join point type AndEv, on lines 2–8, using a JML-like
syntax. JML syntax is specifically chosen to minimize required
syntactic changes. In a contract of a join point type, a JML model
program [40] is similar to an assumes block and a proceed state-
ment is equivalent to an invoke expression [7]. A variable next in
the contract of a join point type is a placeholder for join point in-
stances of that type, which contains values of its contexts.

Although, a translucid contract of a join point type uses JML’s
syntax, its verification is completely different from JML. This is
because a JML contract specifies the behavior and structure of only

126

a single method whereas a translucid contract of a join point type
specifies all bases and aspects of the join point type. Consequently,
for the conformance relation, for each join point type, all of its
bases and aspects must conform to the translucid contract of their
join point type, i.e. structurally refine the contract and satisfy its
preconditions and postconditions. Type checking rules of join point
types could be augmented to check for structural refinement and
runtime assertions could be added to bases and aspects to check
for their satisfaction of preconditions and postconditions of their
contract and their specification expressions. In addition to syntactic
adaptations of structural refinement, the rule (S-VAR) should be
slightly modified to allow for structural refinement of placeholder
variables next by join point instance variables. Unlike PtolemyS in
which a variable next is structurally refined by a textually matching
variable next, in join point types a variable next in a contract of
a join point type is structurally refined by a join point instance
variable in the implementation of an observer if their types are the
same. For example, in Figure 11, the variable next in the translucid
contract of AndEv, on line 4, is structurally refined by the join point
instance variable jp in the observer Evaluator, on line 20, because
they both are of the same type AndEv.

Another difference between translucid contracts and JML con-
tracts is that JML requires model programs of a type and its su-
pertype to be the same [40], whereas in translucid contracts the as-
sumes block of an event refines the assumes block of its superevent.
Consequently, for the refining relation, PtolemyS’s specification in-
heritance [33] could be adapted to join point types, mostly through
syntactic adaptations, to statically guarantee the refining relation
between translucid contracts of a join point type and its super type.

For the non-decreasing relation, precedence declarations of as-
pects could be statically checked to ensure that an aspect of a join
point type runs before aspects of its super join point type or execu-
tion of aspects can be reordered dynamically at runtime to guaran-
tee the non-decreasing relation.

A similar technique, with several adaptations, could be applied
to join point interfaces due to similarities of event announcement,
handling and subtyping models of join point types and join point
interfaces [33].

6. Modular Reasoning about Control Effects
PtolemyS not only enables modular reasoning about behaviors of
observers of an event but also their control effects [7, 28] in the
presence of event subtyping. In PtolemyS, similar to Aspect-like [1]
languages, observers run in a chain and invoke each other using an
invoke expression. This in turn means an observer of an event can
skip the execution of other observers of the event or observers of its
superevents, including the event body, by not executing its invoke
expression. Understanding the invocations among observers of an
event and its superevents in a chain of observers falls under the
category of modular reasoning about control effects of observers.

As an example of modular reasoning about control effects of
observers consider static verification of the control effect assertion
Ψ that says upon announcement and handling of AndEv, its event
body, on lines 5–6 of Figure 1 will be executed and will not be
skipped5. This is important because if the execution of the event
body of AndEv is skipped, the right and left children of an AndExp

expression and subtrees recursively rooted in these children are not
going to be visited. The execution of the body of AndEv, shown
as B(AndEv), could be skipped in a chain of observers if any
of observers of AndEv or observers of its superevents BinEv or
ExpEv, which run before the event body, skip the execution of their
invoke expression and break the invocation chain. For example,
in chain χ2: evaluator ⇀ tracer ⇀ B(AndEv), the execution

5 PtolemyS’ core does not support throwing or handling of exceptions [8].

of B(AndEv) is skipped if any or both invoke expressions in the
implementations of evaluator, on line 55 of Figure 3, or tracer,
on line 41, goes missing.

To reason about the control effects of an announcement of an
event, the control effects of all of its observers and observers of its
superevents for their various execution orders must be understood,
especially regarding the execution of their invoke expressions. Such
reasoning is dependent on control effects of individual observers
of the event and observers of its superevents and any changes in
these control effects can invalidate any previous reasoning, which
threatens its modularity.

PtolemyS’s translucid contracts enable modular reasoning about
control effects of observers of an event and observers of its su-
perevents, independent of observers and their execution orders.
This is sound because each conforming observer of an event has
the same control effects as the translucid contract of the event and
PtolemyS’s refining relation ensures that the contract of an event
refines the control effects of the contract of its superevent. Control
effects are specified by program expressions in translucid contracts.

In PtolemyS, the assertion Ψ could be verified using the translu-
cid contract of AndEv and especially its assumes block, on lines
21–25 of Figure 4. The program expression next.invoke(), on line
22, guarantees that each observer of AndEv includes the invoke ex-
pression in their implementations and the refining relation ensures
that each observer of superevents of AndEv contain the invoke ex-
pression in their implementations too. This means that the invoke
expression in the implementation of evaluator or tracer in χ2
cannot go missing or otherwise these observers will not be con-
forming to their translucid contracts. This in turn means that all the
observers in the chain χ2, including the event body at the end of the
chain, are invoked and executed.

6.1 Control Interference of Subjects and Observers
Rinard et al. [43] classify the control interactions of a subject and
observer of an event into four categories: (i) augmentation, (ii) nar-
rowing, (iii) replacement and (iv) combination. These categories are
concerned about the number of invoke expressions and their exe-
cutions in an implementation of an observer. An augmentation ob-
server executes its invoke expression exactly once, a narrowing ob-
server executes it at most once, a replacement observer does not ex-
ecute any invoke expressions and a combination observer executes
its invoke expression zero or more times in its implementation.

PtolemyS’s translucid contracts allow modular reasoning about
the control interference category of interactions of subjects and ob-
servers of an event, independent of observers of the event and ob-
servers of its superevents. To reason about the control interference
of subjects and observers of an event, one uses the translucid con-
tract of the event to decide about the the number of times invoke
expressions of the translucid contract may execute. An invoke ex-
pression surrounded by an if conditional executes at most once,
whereas an invoke expression surrounded by a loop may execute
zero times or more. Otherwise, an invoke expression executes ex-
actly once. This is sound because the structural refinement of the
conformance relation requires each observer of an event to have the
same control effects as its translucid contracts, especially regarding
the number of invoke expressions in its implementation. Also, the
refining relation ensures that the control effects of observers of an
event refine the control effects of observers of its superevents.

Augementation interactions and observers To illustrate the aug-
mentation interaction, consider the observer Evaluator and sub-
ject ASTVisitor of the event AndEv. Using only the translucid
contract of AndEv, on lines 20–26 of Figure 4, one can conclude
that subjects and observers of AndEv have an augmentation inter-
action, in which Evaluator augments the behavior of its subject,
i.e. Evaluator is an augmentation observer. This is because the

127

assumes block of the contract of AndEv contains an invoke expres-
sion, on line 22, which is not surrounded by any conditionals or
loops. This in turn means that the conforming observer Evaluator
has only one invoke expression in its implementation which ex-
ecutes exactly once. For observers Checker and Tracer of su-
perevents BinEv and ExpEv of AndEv, the refining relation ensures
that they also have only one invoke expressions in their implemen-
tations and thus they are augmentation observers too.

For an event with augmentation interactions and observers, one
can conclude that upon announcement of the event all observers of
the event and observers of its superevent including the event body
execute and no execution is skipped, similar to assertion Ψ.

Replacement interactions and observers To illustrate the replace-
ment interaction, consider the event AndEv with its translucid con-
tract in Figure 4, but without its invoke expression. Using this con-
tract one can conclude that subjects and observers of AndEv have
a replacement interaction, in which Evaluator replaces the body
of its announce expression in a subject, i.e. Evaluator is a replace-
ment observer. To structurally refine its contract, Evaluator cannot
have any invoke expression in its implementation. The refining rela-
tion ensures that superevents BinEv and ExpEv cannot have invoke
expressions in their contracts either and thus observers Checker

and Tracer are replacement observers too.
For an event with replacement observers, one can conclude that

upon announcement of the event the first observer of the event or
its superevents executes and executions of the rest of the observers
including the event body are skipped. This is because none of the
observers have an invoke expression in their implementations.

7. Discussion

Implementation To prove the feasibility of our proposed language,
we implemented PtolemyS’s compiler on top of Ptolemy’s com-
piler [24], which itself is an extension of the OpenJDK Java com-
piler. To the previous compiler, we added translucid contracts, static
structural refinement, static event specification inheritance, runtime
assertion checking of preconditions and postconditions of contracts
and their specification expressions and a non-decreasing execution
order of observers of an event and its superevents. Compared to
Ptolemy’s compiler, maintaining separate lists for observers of sep-
arate events, rather than a single global list, simplified implementa-
tion of event announcement and handling especially with dynamic
(un)registration of observers.

Limitation A non-decreasing relation among observers of an event
and its superevent(s) limits execution order of observers and could
require a programmer to co-design the event subtyping hierarchy
of a program and execution order of their observers. Without such
a co-design there could be some execution orders of observers that
may not be allowed by a specific event subtyping hierarchy. For ex-
ample, with the event hierarchy in our expression language exam-
ple, observer evaluator always runs before checker. Placement
of invoke expressions in observers play an important role in the
functionality of a system. For example, although evaluator runs
before checker, an expression is not evaluated unless it is first type
checked. This is enforced because evaluator invokes the handler
chain before evaluating an expression.

8. Related Work

Modular type checking Previous work on join point types
(JPT) [19], join point interfaces (JPI) [18] and Ptolemy’s typed
events [24] enables modular type checking of subjects and ob-
servers of subtyping event types. EventJava [11] extends Java
with events and event correlation in distributed settings and Es-

cala [6] extends Scala with explicitly declared events as members
of classes. However, previous works are not concerned with mod-
ular reasoning about behaviors and control effects of subjects and
observers of events using specification of subtyping event types.

Modular reasoning Previous work on MAO [29], EffectiveAd-
vice [44], MRI [45] and the work of Khatchadourian et al. [27]
enables modular reasoning, however, it does not use explicit inter-
faces among subjects and observers and thus is not concerned about
their subtyping. Previous work on crosscutting programming inter-
faces (XPI) [5], crosscutting programming interfaces with design
rules (XPIDR) [28] and open modules [2] enables modular reason-
ing using explicit interfaces, however, it is not concerned about sub-
typing of these interfaces. Translucid contracts [7–9, 46] proposes
event type specifications to enable modular reasoning, however, it
is not concerned with event subtyping.

Modular reasoning about dynamic dispatch Supertype abstrac-
tion [47] enables modular reasoning about invocation of a dynami-
cally dispatched method in the presence of class subtyping [47], re-
lying on a refinement relation among blackbox contracts of a super-
type and its subtypes [31, 48]. PtolemyS’s refining of event contracts
is the inverse of the refinement in supertype abstraction and extends
it to greybox contracts with control effects. Refinement in super-
type abstraction relies on known links among method invocations
and method names, whereas in PtolemyS there is no link among
subjects and observers of an event [8, 26]. Subjects and observers
do not know about each other and only know their event. Unlike
a method invocation which invokes exactly one method, announce-
ment of an event in PtolemyS by a subject could invoke zero or more
observers of the event and observers of its superevents where all
these observers and the subject must conform to their event specifi-
cations. The challenge in supertype abstraction is modular reason-
ing about a method invocation independent of the dynamic types
of its receiver, whereas in PtolemyS the challenge is tractable rea-
soning about announcement and handling of an event, independent
of its observers, observers of its superevents and their execution
orders, while allowing reuse of events.

9. Conclusion and Future Work
In this work we identified combinatorial reasoning and behavior
invariance as two problems of modular reasoning about subjects
and observers in the presence of event subtyping. We proposed a
refining relation among greybox event specifications of events in a
subtyping hierarchy, a non-decreasing relation on execution orders
of their observers and a conformance relation among subjects and
observers of an event and their translucid contract to solve these
problems in the context of a new language design called PtolemyS.
We showed applicability of PtolemyS’s modular reasoning to other
AspectJ-like [1] event-based systems such as join point types [19]
and its use in modular reasoning about control interference.

Future work includes performing a large experimental study
similar to [21–23] to further investigate benefits of PtolemyS’s event
model and its modular reasoning. It would also be interesting to
examine the interplay between semantics of invoke and execution
order of observers. Recent work has explored asynchronous execu-
tion of observers [49]. Examining the interplay of concurrency and
event inheritance will also be interesting.

Acknowledgements
We thank Modularity’15 reviewers. Bagherzadeh, Dyer and Rajan
were partly supported by the NSF grant CCF-10-17334. Fernando
and Rajan were partly supported by the NSF grant CCF-08-46059.
Rajan was also partly supported by the NSF grant CCF-11-17937.
Sanchez was partly supported by NSF grant CCF-1017334.

128

References
[1] Kiczales, G., Hilsdale, E., Hugunin, M., Kersten, M., Palm, J., Gris-

wold, W.G.: An overview of AspectJ. In: ECOOP’01

[2] Aldrich, J.: Open Modules: Modular reasoning about advice. In:
ECOOP’05

[3] Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N.,
Rajan, H.: Information hiding interfaces for aspect-oriented design.
In: ESEC/FSE’05

[4] Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai,
Y., Rajan, H.: Modular software design with crosscutting interfaces.
IEEE Softw.’06 23(1)

[5] Sullivan, K.J., Griswold, W.G., Rajan, H., Song, Y., Cai, Y.,
Shonle, M., Tewari, N.: Modular aspect-oriented design with XPIs.
TOSEM’11 20(2)

[6] Gasiunas, V., Satabin, L., Mezini, M., nez, A.N., Noyé, J.: EScala:
modular event-driven object interactions in Scala. In: AOSD’11

[7] Bagherzadeh, M., Rajan, H., Leavens, G.T., Mooney, S.: Translu-
cid contracts: Expressive specification and modular verification for
aspect-oriented interfaces. In: AOSD’11

[8] Bagherzadeh, M., Rajan, H., Darvish, A.: On exceptions, events and
observer chains. In: AOSD’13

[9] Sánchez, J., Leavens, G.: Separating obligations of subjects and
handlers for more flexible event type verification. In: SC’13

[10] Hoffman, K., Eugster, P.: Bridging Java and AspectJ through explicit
join points. In: PPPJ’07

[11] Eugster, P., Jayaram, K.R.: EventJava: An extension of Java for event
correlation. In: ECOOP’09

[12] Clifton, C., Leavens, G.T.: Obliviousness, modular reasoning, and the
behavioral subtyping analogy. In: SPLAT’03

[13] Kiczales, G., Mezini, M.: Aspect-oriented programming and modular
reasoning. ICSE’05

[14] Clifton, C., Leavens, G.T.: A design discipline and language features
for modular reasoning in aspect-oriented programs. Technical Report
05-23, Iowa State University (2005)

[15] Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified, typed
events. In: ECOOP’08

[16] Rajan, H., Sullivan, K.J.: Unifying aspect- and object-oriented design.
TOSEM’09 19(1)

[17] Rajan, H., Leavens, G.T.: Quantified, typed events for improved
separation of concerns. Technical Report 07-14, Iowa State University
(2007)

[18] Bodden, E., Tanter, E., Inostroza, M.: Joint point interfaces for safe
and flexible decoupling of aspects. TOSEM’14 23(1)

[19] Steimann, F., Pawlitzki, T., Apel, S., Kästner, C.: Types and modu-
larity for implicit invocation with implicit announcement. TOSEM’10
20(1)

[20] Rajan, H., Dyer, R., Hanna, Y.W., Narayanappa, H.: Preserving sepa-
ration of concerns through compilation. In: SPLAT’06

[21] Dyer, R., Rajan, H., Cai, Y.: An exploratory study of the design impact
of language features for aspect-oriented interfaces. In: AOSD’12

[22] Dyer, R., Rajan, H., Cai, Y.: Language features for software evolution
and aspect-oriented interfaces: An exploratory study. TAOSD’10 10

[23] Dyer, R., Bagherzadeh, M., Rajan, H., Cai, Y.: A preliminary study of
quantified, typed events. In: ESCOT’10

[24] Fernando, R., Dyer, R., Rajan, H.: Event type polymorhphism. In:
FOAL’12

[25] Xu, J., Rajan, H., Sullivan, K.: Understanding aspects via implicit
invocation. In: ASE’04

[26] Dingel, J., Garlan, D., Jha, S., Notkin, D.: Towards a formal treatment
of implicit invocation using rely/guarantee reasoning. Formal Asp.
Comput.’98 10(3)

[27] Khatchadourian, R., Dovland, J., Soundarajan, N.: Enforcing behav-
ioral constraints in evolving aspect-oriented programs. In: FOAL’08

[28] Rebelo, H., Leavens, G.T., Lima, R.M.F., Borba, P., Ribeiro, M.:
Modular aspect-oriented design rule enforcement with XPIDRs. In:
FOAL’13

[29] Clifton, C., Leavens, G., Noble, J.: MAO: Ownership and effects for
more effective reasoning about aspects. In: ECOOP’07

[30] Büchi, M., Weck, W.: The greybox approach: When blackbox specifi-
cations hide too much. Technical Report 297, Turku Center for Com-
puter Science (1999)

[31] Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification
inheritance, and modular reasoning. Technical Report CS-TR-13-03,
University of Central Florida (2013)

[32] Hoare, C.A.R.: An axiomatic basis for computer programming. Com-
mun. ACM’83 26(1)

[33] Bagherzadeh, M., Dyer, R., Fernando, R.D., Sánchez, J., Rajan, H.:
Modular reasoning in the presence of event subtyping. Technical
Report 14-02b, Iowa State University (2015)

[34] Rajan, H.: Unifying Aspect- and Object-Oriented Program Design.
PhD thesis, The University of Virginia (2005)

[35] Rajan, H.: Design pattern implementations in Eos. In: PLoP’07

[36] Rajan, H., Sullivan, K.J.: Classpects: Unifying aspect- and object-
oriented language design. In: ICSE’05

[37] Rajan, H., Sullivan, K.: Eos: instance-level aspects for integrated
system design. In: ESEC/FSE’03

[38] Morgan, C.: Procedures, parameters, and abstraction: separate con-
cerns. SCP’88 11(1)

[39] Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through
specification inheritance. In: ICSE’97

[40] Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification
of higher-order methods with mandatory calls specified by model
programs. In: OOPSLA’07

[41] Abadi, M., Leino, K.: A logic of object-oriented programs. In:
TAPSOFT’97

[42] Boer, F.: A WP-calculus for OO. In: Foundations of Software Science
and Computation Structures’99

[43] Rinard, M., Salcianu, A., Bugrara, S.: A classification system and
analysis for aspect-oriented programs. In: FSE’04

[44] Oliveira, B.C.d.S., Schrijvers, T., Cook, W.R.: EffectiveAdvice: Dis-
ciplined advice with explicit effects. In: AOSD’10

[45] Oliveira, B.c.d.s., Schrijvers, T., Cook, W.r.: MRI: Modular reasoning
about interference in incremental programming. JFP’12 22(6)

[46] Bagherzadeh, M., Rajan, H., Leavens, G.T., Mooney, S.: Translucid
contracts for aspect-oriented interfaces. In: FOAL’10

[47] Leavens, G.T., Weihl, W.E.: Specification and verification of object-
oriented programs using supertype abstraction. Acta Informatica’95

[48] Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping.
TOPLAS’94 16(6)

[49] Long, Y., Mooney, S.L., Sondag, T., Rajan, H.: Implicit invocation
meets safe, implicit concurrency. In: GPCE’10

[50] Wright, A.K., Felleisen, M.: A syntactic approach to type soundness.
Information and Computation ’94 115(1)

A. Dynamic Semantics
In this section, we present a substitution-based small-step opera-
tional semantics for PtolemyS with special focus on announcing
and handling of events in an event inheritance hierarchy and the
non-decreasing relation on execution order of their observers.

A.1 Dynamic Semantic Objects
PtolemyS’s operational semantics relies on few additional expres-
sions that are not part of its surface syntax, as shown in Figure 12,
including loc to represent the locations in the store and evalpost e q
to check that the expression e satisfies the postcondition q. PtolemyS

129

also uses three exceptions to represent dereferencing null refer-
ences, i.e. NPE, runtime cast exceptions, i.e. CCE, and violations of
translucid contracts, i.e. TCE. In PtolemyS’s core semantics, excep-
tions are terminal states [15]. Figure 12 also shows the evaluation
contexts used in PtolemyS’s dynamic semantics. An evaluation con-
text E specifies the evaluation order and the position in an expres-
sion where the evaluation is happening. PtolemyS uses a left-most
inner-most call-by-value evaluation policy.

Added syntax:
e ::= loc | evalpost e q

| NPE | CCE | TCE
loc ∈L , a set of locations

Evaluation contexts:
E ::= − | E.m(e . . .) | v.m(v . . .Ee . . .) | E . f | E. f=e

| if (E) { e } else { e } | cast c E | t var=E; e
| announce(v . . .Ee . . .){e} | invoke(E)
| register(E) | unregister(E)
| refining requires E ensures q

Evaluation relation: ↪→: 〈e,S,Π,A〉 → 〈e′,S′,Π′,A′〉

Domains:
Σ ::= 〈e,S,Π,A〉 configurations
S ::= {lock 7→ svk} stores
v ::= null| loc values
sv ::= or | ec storable values
or ::= [c.F] object records
F ::= { fk 7→ vk} field maps
ρ ::= {var 7→ vk} environments
ec ::= eClosure(H,e,ρ) event closure
H ::= h+H | • handler records list
h ::= 〈loc,m〉 handler record
A ::= {evk 7→ Ok} active objects map
O ::= loc+O | • active objects list

k ∈K , is finite

Figure 12. Added syntax, evaluation contexts and configuration.

PtolemyS’s operational semantics transitions from one config-
uration to another. A configuration Σ, in Figure 12, contains an
expression e, store S, store typing Π and a mapping A from
events ev to their ordered list of observers O. A store maps lo-
cations to storable values sv which themselves are either an ob-
ject record or or an event closure ec. An object record has a class
name c and a map F from fields to their values. An event closure
eClosure(H,e,ρ) contains an ordered list of observer handlers H,
an expression e and an environment ρ for running e. An observer
handler method h contains a location loc that points to its observer
object and a handler method name m. A value v is either a loca-
tion loc or null. A store typing is maintained and updated by the
dynamic rules only to be used in the soundness proof.

A.2 Dynamic Semantic Rules
Figure 13 shows dynamic semantic of PtolemyS-specific expres-
sions. In PtolemyS, a subject announces an event using an announce
expression, observers (un)register for the event using (un)register
expressions and invoke each other using invoke expressions.

The rule (ANNOUNCE) says that upon announcement of an event
ev an event closure eClosure(H,e,ρ) is constructed that contains
the list (chain) of observer handler methods of the event and the
observer handler methods of its superevent, in H, the event body e
and an environment mapping context variables var* of the event to
their values v*, in ρ . The list H is constructed using the auxiliary
function handlersOf , in Figure 14. The function handlersOf first
computes the list of observer handler methods of the event ev,

using hbind, and concatenates it to the handlers of the superevents
ev′ until the event Event is reached. This in turn ensures that the
observer handler methods of the event ev appear before the observer
handler methods of its superevent ev′ in the list of observer handler
methods H, according to the non-decreasing relation. The event
Event has no observers since is not part of PtolemyS’s surface syntax
and observers can not register for or handle it. The concatenate
operator ⊕ ignores empty • elements. The function hbind binds
the observer loc, in the beginning of the A[ev], to observer handler
method m, using the auxiliary function match and concatenates
it to the bindings for the rest of A[ev]. After construction, the
event closure is mapped to a fresh location loc and the execution
of the chain of observer handler methods starts using the invoke
expression, i.e. loc.invoke().

Evaluation relation: ↪→: 〈e,S,Π,A〉 → 〈e′,S′,Π′,A′〉

(ANNOUNCE)
(c event ev extends ev′{(t var)* contractev}) ∈CT loc 6∈ dom(S)

H = handlersOf (ev) ρ = {vari 7→ vi | vari ∈ var*∧ vi ∈ v*}
S′ = S] (loc 7→ eClosure(H,e,ρ)) Π

′ = Π] (loc : thunk ev)
〈E[announce ev (v*) {e}],S,Π,A〉 ↪→

〈
E[loc.invoke()],S′,Π′,A

〉
(INVOKEDONE)

eClosure(•,e,ρ) = S(loc)
〈E[loc.invoke()],S,Π,A〉 ↪→ 〈E[e],S,A,Π〉

(INVOKE)
eClosure(〈loc′,m〉+H,e,ρ) = S(loc)

[c.F ′] = S(loc′) (c2, t m(t1 var1){e′}) = methodBody(c,m)
e′′ = [loc1/var1, loc′/this]e′ loc1 6∈ dom(S)

S′ = S] (loc1 7→ eClosure(H,e,ρ)) Π
′ = Π] (loc1 : Π(loc))

〈E[loc.invoke()],S,Π,A〉 ↪→
〈
E[e′′],S′,Π′,A

〉
(REGISTER)
∀ev ∈ eventsOf (loc) . A′[ev] = A[ev]+ loc
〈E[register(loc)],S,Π,A〉 ↪→

〈
E[loc],S,Π,A′

〉
(UNREGISTER)
∀ev ∈ eventsOf (loc) . A′[ev] = A[ev]− loc

〈E[unregister(loc)],S,Π,A〉 ↪→
〈
E[loc],S,Π,A′

〉
(REFINING)

n 6= 0
〈E[refining requires n ensures q {e}],S,Π,A〉 ↪→ 〈E[evalpost e q],S,Π,A〉

(EVALPOST)
n 6= 0

〈E[evalpost v n],S,Π,A〉 ↪→ 〈E[v],S,Π,A〉

(ECGET)
eClosure(H,e,ρ) = S(loc) v = ρ(f)
〈E[loc. f],S,Π,A〉 ↪→ 〈E[v],S,Π,A〉

Figure 13. Select rules for PtolemyS’s dynamic semantics, based
on [15].

(ANNOUNCE) also updates the store typing environment Π with
a new mapping from the location loc to the type thunk ev of the
event closure it points to. Recall that thunk types mark event closure
types. The operator] is an overriding union operator.

Rules (INVOKEDONE) and (INVOKE) handle the base case and
recursive case of observer invocation. The auxiliary function
methodBody emulates dynamic dispatch at runtime. After the ex-
ecution of the observer handler method at the beginning of the list
H, the event closure is updated to reflect the execution of the ob-
server and the updated event closure is stored at a fresh location

130

loc1. (INVOKE) also updates the store typing environment Π with a
mapping between location loc1 of new event closure and its type.

handlersOf (Event) = •

(c event ev extends ev′{ f orm* contractev}) ∈ CT
handlersOf (ev) = hbind(ev,S,A[ev])⊕handlersOf (ev′)

hbind(ev,S,•) = •

[c.F] = S(loc) B = bindingsOf (c)
hbind(ev,S, loc+A[ev]) = match(B,ev,S, loc)⊕hbind(ev,S,A[ev])

bindingsOf (Object) = •

(class c extends d { f orm* meth* binding*}) ∈ CT
bindingsOf (c) = binding* ⊕ bindingsOf (d)

match(•,ev,S, loc) = •

match((when ev do m)+B,ev,S, loc) = (〈loc,m〉+match(B,ev,S, loc))

[c.F] = S(loc) B = bindingsOf (c)
eventsOf (loc) = registeredFor(loc,B)

registeredFor(loc,•) = •

registeredFor(loc,(when ev do m)+B) = ev⊕ registeredFor(loc,B)

Figure 14. Select auxiliary functions for PtolemyS’s dynamic se-
mantics, based on [8, 15].

A refining expression claims that its body satisfies the pre-
condition and postcondition of its specification, which is checked
by rules (REFINING) and (EVALPOST). Exceptional cases in rules
(X-REFINING) and (X-EVALPOST) represent violation of precondi-
tion and postcondition.

(X-REFINING)
n == 0

〈E[refining requires n ensures q {e}],S,Π,A〉 ↪→ 〈TCE,S,Π,A〉

(X-REGISTER)
〈E[register(null)],S,Π,A〉 ↪→ 〈NPE,S,Π,A〉

(X-UNREGISTER)
〈E[unregister(null)],S,Π,A〉 ↪→ 〈NPE,S,Π,A〉

(X-EVALPOST)
n == 0

〈E[evalpost v n],S,Π,A〉 ↪→ 〈TCE,S,Π,A〉

(X-CAST)
[c.F] = S(loc) c 64 t

〈E[cast t loc],S,Π,A〉 ↪→ 〈CCE,S,Π,A〉

Figure 15. PtolemyS’s exceptional dynamic semantics.

PtolemyS also supports standard object-oriented expressions for
object creation, getting and setting the value of a field, if condition-
als, etc. Their semantics can be found in our report [33].

B. Type Checking
In this section, we discuss PtolemyS’s static semantics with the
focus on event subtyping, the refining relation among greybox
event specifications and the non-decreasing relation.

B.1 Type Attributes
Figure 16 defines the type attributes used in PtolemyS’s typing
rules. The type attribute OK shows that a higher level declaration

type checks, whereas OK in c shows type checking in the context
of a class c. Other type attributes var t and exp t show variables
and expressions of type t, respectively. Variable and store typing
environments Γ and Π, respectively, map variables and locations
to their types. The typing judgment Γ,Π ` e : θ says that in the
variable typing environment Γ and the store typing environment Π,
the expression e has the type θ . PtolemyS’s type checking rules use
a fixed class table CT , which is a set of program’s class and event
type declarations. Top-level names in a program are distinct and
inheritance relations on classes and events types are acyclic.

θ ::= type attributes
OK program/top-level decl.
| OK in c method, binding
| var t var/formal/field
| exp t expression

t ::= c | int | bool types

Γ ::= {var : t} variable typing environment
Π ::= {loc : t} store typing environment
Γ,Π ` e : θ typing judgement

Figure 16. Type attributes, based on [15].

B.2 Static Semantics Rules
Figure 17 shows select typing rules for PtolemyS. The rest of
PtolemyS’s typing rules, which are mostly standard object-oriented
rules can be found in our technical report [33].

The rule (T-EVENT) type checks the declaration of an event ev.
Since ev extends another event ev′, the rule ensures that ev is a valid
subevent of ev′, i.e. ev�: ev′, and its translucid contract refines
the translucid contract of ev′, i.e. contractev′ E contractev. The
refinement of the translucid contract of ev′ by the contract of ev is
statically guaranteed by PtolemyS’s specification inheritance [33].
(T-EVENT) also checks, using the auxiliary function isClass, that
the return type and types of context variables of ev are valid class
types. Figure 18 shows the auxiliary functions used in PtolemyS’s
typing rules. The auxiliary function isClass simply ensures that its
parameter is a class declared in the class table CT .

(T-SUBEVENT) checks that an event ev is a valid subtype of
event ev′, regarding both width and depth subtyping. Width sub-
typing allows ev to declare context variables in addition to the
context it inherits from its superevent ev′, i.e. contextsOf (ev′) ⊆
contextsOf (ev). The auxiliary function contextsOf returns all the
context variables of an event along with their types, including con-
text inherited from all of its superevents. Depth subtyping allows
ev to redeclare a context variable of its superevent ev′. To redeclare
a context variable vari of type t ′i , the redeclaring context variable
must have the same name vari and its type ti must be a subtype
of t ′i , i.e. ti 4 t ′i . Similar to class subtyping, event subtyping is a
reflexive, transitive relation on event types, with a root event type
Event.

(T-SUBEVENT) also ensures that the return type of an event ev is
a supertype of the return type of its superevent ev′. This is necessary
for the non-decreasing relation on observers of an event and its
superevent, which ensures that an observer of an event runs before
an observer of its superevents. The auxiliary function returnType
returns the return type of an event.

(T-ANNOUNCE) type checks an announce expression. It ensures
that the type of a parameter expression ei is a subtype of its corre-
sponding context variable vari, i.e. t ′i 4 ti. Recall that an event can
inherit context variables from its superevents and the announce ex-
pression must provide values for all context variables of the event.

(T-ANNOUNCE) also ensures that the type of the event body e′ is
the same as the return type of the top event in the event inheritance

131

hierarchy. The top event of an event in an inheritance hierarchy is
the superevent of the event right before the root event Event. For
example, in Figure 2, the event ExpEv is the top event for AndEv.
The auxiliary function topEvent returns the top event of an event.
The relation between the return type of the event body and the
the return type of its top event is necessary for the non-decreasing
relation in which the event body runs as the last observer.

(T-EVENT)
(c′ event ev′ extends ev′′ {(t ′ var′)* contractev′}) ∈CT

Γ,Π ` contractev′ E contractev
` ev�: ev′ isClass(c) ∀ti ∈ t* . isClass(ti)
` c event ev extends ev′ {(t var)* contractev} : OK

(T-SUBEVENT)
contextsOf (ev′)⊆ contextsOf (ev)

(t var)* = contextsOf (ev) (t ′ var′)* = contextsOf (ev′)
∀ (ti vari) ∈ (t var)*, (t ′i vari) ∈ (t ′ var′)* . ti 4 t ′i

returnType(ev′)4 returnType(ev)
` ev�: ev′

(T-ANNOUNCE)
(t var)* = contextsOf (ev)

∀ei ∈ e*, (ti vari) ∈ (t var)* . Γ,Π ` ei : exp t ′i ∧ t ′i 4 ti
c′′ event ev′extends Event{}= topEvent(ev)

c = returnType(ev) Γ,Π ` e′ : exp c′′

Γ,Π ` announce ev(e*) {e′} : exp c

(T-BINDING)
(c event ev extends ev′ { f orm* contractev}) ∈ CT
contractev = requires p assumes {se} ensures q

(c m(thunk ev var){e}) = methodBody(c′,m) seE e
` when ev do m : OK in c′

(T-INVOKE)
c event ev extends ev′ { f orm* contractev} ∈ CT

Γ,Π ` e : exp thunk ev
Γ,Π ` e.invoke() : exp c

(T-REGISTER)
Γ,Π ` e : exp t

Γ,Π ` register(e) : exp t

(T-UNEGISTER)
Γ,Π ` e : exp t

Γ,Π ` unregister(e) : exp t

(T-EVALPOST)
Γ,Π ` e : exp t Γ,Π ` q : exp t2

Γ,Π ` evalpost e q : exp t

(T-SPEC)
Γ,Π ` p : exp t1 Γ,Π ` q : exp t2
Γ,Π ` requires p ensures q : exp ⊥

(T-REFINING)
spec = requires p ensures q

Γ,Π ` spec : exp⊥ Γ,Π ` e : exp t
Γ,Π ` refining spec {e} : exp t

(T-PROGRAM)
∀decl ∈ decl* . ` decl : OK ` e : exp t

` decl* e : exp t

(T-CLASS)
∀meth ∈ meth* . ` meth : OK in c

∀binding ∈ binding* . ` binding : OK in c
isClass(d) ∀(t f) ∈ f orm* . isClass(t)∧ f 6∈ dom(fieldsOf (d))

` class c extends d { f orm* meth* binding*} : OK

Figure 17. Select typing rules for PtolemyS [8, 24].

(T-BINDING) type checks a binding declaration. It ensures that
the body e of the observer handler method m refines the assumes
block se of the translucid contract of its event ev, i.e. se E e, as
defined in Figure 9. The auxiliary function methodBody returns the
body of a method of a class defined in the class table CT . The rule
also ensures that the return type of the observer handler method m
is the same as the the return type of the event.

(T-INVOKE) type checks an invoke expression. The invoke ex-
pression invokes the next observer in the chain of observers. The
chain of observers is included in the event closure receiver object
e. The rule ensures that the event closure of an event ev is of type
thunk ev. A thunk type marks the type of an event closure. The type
of an invoke expression is the same as the return type c of its event
ev. This is sound because the non-decreasing relation ensures that
observers of an event run before observers of its superevent. Typ-
ing rules for register, unregister, specification, refining and evalpost
expressions are intuitive.

(c event ev extends ev′ {(t var)* contractev}) ∈CT
(t ′ var′)* = contextsOf (ev′)

contextsOf (ev) = (t ′ var′)* ⊕ (t var)*

contextsOf (Event) = •

(c event ev extends ev′ { f orm* contractev}) ∈ CT
returnType(ev) = c

(c event ev extends ev′ { f orm* contractev}) ∈ CT
isEvent(ev)

class c extends d{ f orm* meth* binding*} ∈ CT
isClass(c)

t = thunk ev
isThunkType(t)

isClass(t)∨ isThunkType(t)
isType(t)

class c extends d{(t var)* meth* binding*} ∈ CT
fieldsOf (c) = (var : t)*

class c extends d{ f orm* meth* binding*} ∈ CT
(c′′ m (t var)* {e}) ∈ meth*

methodBody(c,m) = (c′′ m (t var)* {e})

class c extends d{ f orm* meth* binding*} ∈ CT
(c′′ m (t var)* {e}) 6∈ meth*

methodBody(c,m) = methodBody(d,m)

Figure 18. Select auxiliary functions for PtolemyS’s typing rules,
based on [8, 15].

B.3 Soundness of Type System
THEOREM B.1. (Soundness of PtolemyS’s Semantics) PtolemyS’s
semantics is sound regarding its progress and preservation [50].

The proof follows standard progress and preservation argu-
ments. Full proof of the theorem can be found in our report [33].

132

