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Abstract—In practice, there are a variety of real-world 
datasets that have an imbalanced nature where one of two classes 
dominates the data. These datasets are generally difficult to 
classify using machine learning algorithms as the skewed nature 
of the data has a significant impact on the training process. In 
order to combat this difficulty, many methods of under sampling 
and over sampling have been proposed in order to generate 
comparable data sets that are more easily classifiable. This study 
applies multiple resampling techniques to a set of commit 
messages that have been extracted from multiple Github and 
Sourceforge projects in order to answer the question, “Do 
developers discuss design?” This dataset is highly imbalanced 
with less than 15% of all commit messages being classified as 
having to do with design. Results demonstrate that the combined 
use of resampling as coupled with various classification 
algorithms yields improvements in classification over the state-of-
the-art by more than 10% in terms of accuracy. 

Keywords—component; machine learning; imbalance dataset; 
resampling; 

I. INTRODUCTION 
When considering real-world data, many of the datasets 

encountered are highly imbalanced with one or two classes 
having many more instances than any other class. This leads to 
significant issues for machine learning algorithms, as they 
tend to focus on the majority class while ignoring the minority 
class as it has little impact on performance metrics.  

One such dataset was introduced in [1] where a variety of 
commit messages were extracted from SourceForge and 
Github and classified as to whether or not each instance 
discussed software design. This resulted in a complete dataset 
containing 14% of instances that considered design and 86% 
of instances that did not. This paper continues the study of this 
dataset by seeking to improve classification results through the 
systematic application and evaluation of resampling 
techniques, with the end goal of applying these methods to a 
much larger dataset. 

The remainder of this paper is organized as follows: 
Section II reviews and describes the different resampling 
methods and performance metrics used in this study; Section 
III details the proposed methodology for evaluation; Section 
IV presents the results of this study; and Section V concludes 
this study. 

II. BACKGROUND 

This section reviews the various resampling methods 
applied in this study as well as various performance metrics 
that will be used. 

A. Sampling Methods 
Sampling methods generally exist in three variants: under 

samplers, over samplers, and hybrid samplers. All three 
methods maintain the goal of statistically resampling a data set 
in order to produce a new data set that is statistically similar 
while achieving improved balance between minority and 
majority cases. Under samplers resample the majority class in 
order to produce a new, smaller dataset that contains a balance 
between the minority and majority classes. Over samplers, on 
the other hand, resample the minority class in order to 
generate a new, generally larger dataset that contains a balance 
of majority and minority cases. Hybrid methods combine the 
two for improved results. 

1) Under samplers 
Random Under Sampler (RUS) is the simplest form 
of an under sampling method. Each example of the 
majority class has an equal chance of randomly being 
chosen and removed. 

Condensed Nearest Neighbor (CNN) is based on the 
nearest neighbor rule with some modification. In the 
nearest neighbor rule, any new unclassified example 
is classified according to its classified closest 
(nearest) neighbor. This method does have some 
drawbacks. For instance, the method typically takes 
too much space for storing all samples. Accordingly, 
the work in [2] came up with the idea of how to 
shrink (condense) the sample space. The study started 
with two bins, store and garbage. The first sample is 
placed into the store and then the second sample is 
classified by the nearest neighbor rule using store as 
the reference. If the sample is classified correctly, it 
will be stored in the garbage bin. Otherwise, it will be 
placed in the store bin. This procedure repeats for the 
entire sample space. This process then repeats using 
the garbage bin as  the  



 
Fig. 1. CNN under sampling on the dataset used in this study  

source, until the garbage is emptied or no more 
transfers occur. Fig. 1 shows the result of running the 
Condensed Nearest Neighbour under sampling 
method on the dataset in this study. 

Tomek Links is a method based on the earlier method 
of condensed nearest neighbor. Tomek [3] points out 
some disadvantages of the condensed nearest 
neighbor methodology. One is that at the beginning 
of the condensed nearest neighbor algorithm 
examples are chosen randomly, making the sample 
spaces unnecessarily dense in the center, leading the 
algorithm to pay less attention to important boundary 
samples. This can change the boundary of the original 
dataset as compared to the generated and condensed 
nearest neighbor dataset. As a result, Tomek also 
proposes his own algorithm with two modifications 
to the condensed nearest neighbor. 

Cluster Centroids (CC) is a type of under sampling 
method which replaces the complete majority class 
with the cluster centroid resulting from K-Means 
clustering [4]. 

Near Miss (NM) sampling focuses on the relation 
between majority and minority classes. The algorithm 
has three different strategies which are called Near 
Miss 1, 2, and 3. Near Miss 1 selects examples from 
the majority class that are close to three minority 
examples and then selects the ones with lowest 
average distance. Near Miss 2 is like Near Miss 1, but 
it also checks the distance with all minority examples 
and selects the ones with an average distance to the 
three farthest minority examples. Near Miss 3 only 
selects majority examples that are surrounded by 
minority examples [5]. 

One sided selection (OSS) is an under sampling 
method with multiple steps. First, the algorithm 
makes a subset of all minority examples and only one 
majority example. Then the one nearest neighbor 
algorithm is applied to this subset and the entire 
dataset is reclassified. The misclassified examples are 
then added to this subset. Secondly, Tomek Links is 

applied to this subset to remove the noisy and 
borderline examples of the majority class [6]. 

The fundamental idea of the Neighbourhood 
Cleaning Rule (NCR) is One Sided Selection, though 
the author claims that One Sided Selection suffers 
from using the nearest neighbor rule because it is too 
sensitive to noise in the data. To solve this problem, 
the author first uses the Edited Nearest Neighbor rule 
on the majority class to remove noisy examples. 
Next, examples are removed from all classes using 
the three nearest neighbor rule. However, this 
algorithm only removes examples from classes that 
are larger than 50% of the whole dataset [7]. 

The Edited Nearest Neighbours (ENN) method is 
based on the K nearest neighbor with a slight change 
[8]. The following algorithm details the Edited 
Nearest Neighbours method [9]: 

a) Classify sample x(i) ∈ D using 
k-NN with  samples x ∈ D, x ≠ 
x(i); 

b) Create a new design set, D', containing 
exactly only samples that have been 
classified properly from D. 

Repeated Edited Nearest Neighbours (RENN) is 
based on the Edited Nearest Neighbors method. 
Tomek [9] had the idea of repeating the Edited 
Nearest Neighbors algorithm again and again to 
achieve better results, with a probability of 
deteriorating performance. Neither Tomek nor 
Wilson [8] has a concrete proof that this method will 
work or not. Fundamentally, in this method,  Edited 
Nearest Neighbors is repeated infinite times (in 
reality the editing stops after a number of repetition 
due to no elimination) in order to make a new dataset. 
Tomek claims that, on average, this method will have 
better results than Edited Nearest Neighbors. 

Instance Hardness Threshold (IHT) is based on the 
idea that each example in a dataset has a property 
called hardness that indicates the probability of it 
being misclassified. For instance, alienated or 
mislabeled examples have a high level of hardness. 
Smith and Martinez proposed an algorithm called 
instance hardness to measure the hardness of 
examples of a dataset. The data is also filtered using a 
constant threshold [10]. 

2) Over samplers 
Random Over Sampler (ROS) is the naive approach 
to over sampling. As the name indicates, this method 
simply replicates the minority class randomly until a 
balanced ratio with the majority class is reached. 

SMOTE, or Synthetic Minority Over sampling 
TEchnique, is a popular over sampling method which 
over samples the minority class by generating 
synthetic examples rather than performing simple 
replacements. Over sampling takes one feature and its 
nearest neighbor, calculates the difference between 



the two, and then multiplies it by a random number 
between 0 and 1. This new sample is then added to 
the feature space [11]. Fig. 2 shows the result of 
running SMOTE over sampling method on the 
dataset used in this study. 

 
Fig. 2. SMOTE over sampling on the dataset used in this study.  

SMOTE borderline 1 and borderline 2 (SMOTE B1 
& B2) methods are based on SMOTE. Both claim 
that the borderline cases of each class are more 
important for classification algorithms as they are 
more likely to be misclassified. With this claim, these 
two methods try to only oversample borderline 
examples of the minority class as opposed to the 
entire minority class [12]. 

SMOTE SVM is another SMOTE based method that 
focuses on the borders between the minority and 
majority classes. The algorithm has two key features: 
First, if the original minority sample is far from 
majority samples, it will be resampled by 
extrapolation; Second, if a sample is located near the 
majority examples it will then be resampled to 
strengthen the minority class [13]. 

ADASYN (Adaptive Synthetic) is motivated by other 
synthetic sampling methods like SMOTE. ADASYN 
attempts to reach two goals: Reducing the bias caused 
by imbalanced data and shifting the boundaries 
toward harder examples. To accomplish this, 
ADASYN takes each minority example and 
calculates the k nearest neighbor from majority class 

based on euclidean distance. Next, through a 
weighting algorithm, ADASYN decides how many 
examples should be generated for each minority 
example. This is the key difference of ADASYN as 
compared to SMOTE, as an equal number of new 
samples are generated for each minority example 
[14]. 

3) Hybrid Methods 
The SMOTE Tomek method is a combination of over 
sampling followed by under sampling. The authors of 
[15] stated that both over sampling and under 
sampling methods have their own disadvantages - 
Over sampling can cause overfitting and under 
sampling can eliminate useful data. Thus, a 
combination should improve results. Accordingly, 
they used a combination of both, in this case using 
SMOTE as an over sampling method followed by 
Tomek for under sampling. Fig. 3 shows the result of 
running the SMOTE Tomek combined sampling 
method on the dataset used in this study. Note the 
similarity in results to Fig. 2. 

 
Fig. 3. SMOTE Tomek combine sampling on the dataset used in this study.  

SMOTE ENN is another hybrid of over and under 
sampling. The idea behind this method is the same as 
SMOTE Tomek, an over sampling followed by an 
under sampling. Gustavo and Ronaldo [16] 
performed research and mixed different sampling 
methods together. This algorithm is fundamentally 
driven by the idea that the ENN under sampler can 
delete more samples than Tomek, leading to 
improved results. 



Fig. 4. Sample count of different resampling methods used in this study. The number on top of each bar represent the time it take to resample in second

B. Performance Metrics 
The following metrics are used to measure the performance 

of various machine learning techniques. These consist of  
Accuracy (A), Recall (R), Specificity (S), Precision (P), F1-
score (F), and Gmean (G) as listed in (1)-(7) where TP is true 
positive, TN is true negative, FP is false positive, and FN is 
false negative [17]. These measures provide insight into the 
success of any given classifier. 

𝑁 = (𝑇% + 𝑇' + 𝐹% + 𝐹') (1) 

𝐴 = +,-+.
'

  (2) 

𝑅 = +,
+,-0.

 (3) 

𝑆 = +.
+.-0,

 (4) 

𝑃 = +,
+,-0,

 (5) 

𝐹 = 3%4
%-4

 (6) 

𝐺6789 = 𝑅𝑆 (7) 

The  Gmean value is somewhat different from other 
measures as it makes an effort to combine multiple measures 
in a meaningful fashion. In all cases, a higher value is better 
[18]. 

III. Experimental setup 
For this study, scikit-learn version 0.17 [19], with python 

version 3.5.2” was used. The scikit-learn library was used for 
data preprocessing, classification and evaluation. To perform 
resampling on the dataset, imbalanced-learn version 0.1.8 [4] 
was used. The overall program was run using a Windows 10 
computer with Intel Core i5 6400, and 16 gigabytes of DDR4 
RAM. All code and data is available online via Gitlab1. 

When data is initially read from a comma separated value 
(CSV) file, the default scikit-learn tf-idf (term frequency-
inverse document frequency) is applied to the raw text data to 
convert it to a matrix of features, which is later fed to the 
classifiers. At this point, the feature matrix is then resampled 

                                                             
1 https://gitlab.com/ensemble-classifiers/fourd-python 

using imbalanced-learn resampling methods. All the 
resampling methods in this research are applied with the 
default settings of the imbalanced-learn library. Having all the 
resampled data now in place, it is fed into classification 
algorithms using the default settings of the classifiers in the 
scikit-learn library. 

For each of the different types of resampling, multiple 
types of classifiers are also used. These include Random 
Forest classifier (RF) [20], Decision Tree (DT) [21], Support 
Vector Classification (SVC) [22], Linear Support Vector 
Classification (LSVC) [23], Bernoulli Naive Bayes (BNB) 
[24], Nearest Centroid (NC) [25], and Multinomial Naive 
Bayes (MNB) [26]. 

In order to ensure consistent results, 10 fold cross-
validation is used. This means that training and testing both 
happens on the resampled data, 9 fold for training and 1 fold 
for testing. At this time, prediction accuracy and other metrics 
are calculated using default modules in the scikit-learn library. 
Results reported are average values. 

IV. Results 
Results for this study will be compared in terms of samples 

generated by each resampling method, the required 
computation time for each resampling method, accuracy, 
precision, recall, F1-score, and Gmean. 

A. Sample counts and time 
The first result to discuss is the number of features that 

each resampling method produces (i.e. the size of the 
resampled data set). Fig. 4 shows the number of samples in 
each class (both minority and majority) after applying a given 
resampling method. Above each bar in the figure there is also 
a number that shows the time it takes to resample the dataset 
in seconds. All names of resampling methods in the figures are 
abbreviated for better readability. As expected, both random 
methods take the lowest amount of time to create a new 
dataset. Apart from these two methods, the lowest  

TABLE I.  ACCURACY OF DIFFERENT CLASSIFICATION METHODS USING 
DIFFERENT RESAMPLING (MIN AND MAX VALUES IN BOLD). 

 RF DT SVC LSVC BNB NC MNB 



No Sampling 0.84 0.81 0.86 0.85 0.84 0.86 0.66 

Tomek Links  0.84 0.81 0.86 0.85 0.84 0.86 0.65 

OSS 0.84 0.81 0.86 0.85 0.84 0.86 0.67 

NCR 0.84 0.81 0.86 0.85 0.84 0.86 0.65 

ENN 0.84 0.81 0.86 0.85 0.84 0.86 0.66 

RENN 0.84 0.81 0.86 0.85 0.84 0.86 0.66 

RUS 0.59 0.63 0.57 0.68 0.6 0.72 0.69 

CC 0.61 0.62 0.67 0.69 0.61 NA 0.67 

NM 0.74 0.76 0.88 0.86 0.87 0.89 0.88 

CNN 0.67 0.63 0.8 0.75 0.8 0.77 0.64 

IHT 0.7 0.69 0.63 0.79 0.65 0.83 0.68 

ROS 0.95 0.87 0.52 0.95 0.84 0.82 0.72 

SMOTE B1 0.9 0.85 0.78 0.91 0.87 0.84 0.86 

SMOTE B2 0.9 0.85 0.6 0.9 0.83 0.84 0.89 

SMOTE SVM  0.88 0.82 0.66 0.88 0.83 0.84 0.85 

ADASYN  0.86 0.8 0.51 0.97 0.75 NA 0.7 

SMOTE  0.94 0.87 0.63 0.95 0.88 0.83 0.76 

SMOTE Tomek  0.94 0.88 0.59 0.95 0.88 0.83 0.76 

SMOTE ENN  0.94 0.88 0.51 0.96 0.88 0.83 0.76 

 
computation time in each category belongs to NM and 
SMOTE. Another expected result, as indicated by their names, 
is that RENN takes twice the time to resample than ENN. IHT 
also takes the longest time in under sampling along with 

ADASYN in the over sampling category. Also of note is that 
Tomek Links, though an under sampling method, only slightly 
reduces the size of the dataset. 

B. Accuracy 
The fundamental goal of applying resampling to a dataset 

is the hope that it will help improve the results during 
classification. Table I lists the resulting classification accuracy 
of various combinations of resampling and classifiers. The 
lowest accuracy scores are from random under sampling and 
Cluster Centroid methods. The highest accuracy belongs to 
ADASYN while using Linear SVC classifier. Surprisingly, the 
Random oversampler has a very high accuracy. The SVC 
classifier also has better accuracy while using the under 
sampling dataset. 

Looking at Accuracy in conjunction with the data in Fig. 4, 
it can be seen that RUS, CC, NM, CNN and IHT resampling 
methods severely reduce the number of samples of the 
majority class when compared to other under sampling 
methods. This behavior has an effect on the accuracy, as it can 
easily be seen that these methods score lower in accuracy as 
compared to other under samplers.  

However, accuracy alone does not guarantee the best results 
as sometimes the accuracy can be misleading. The accuracy 
paradox states that some prediction models with lower 
accuracy can perform better, therefore other metrics should 
also be considered.

TABLE II.  PRECISION (P), RECALL (R) AND SPECIFICITY (S) OF DIFFERENT CLASSIFICATION METHODS USING DIFFERENT RESAMPLERS. 

 RFC DTC SVC LSVC BNB NC MNB 

P R S P R S P R S P R S P R S P R S P R S 

No Sampling .23 .05 .97 .30 .29 .89 .00 .00 1.00 .33 .10 .97 .35 .15 .95 .24 .66 .66 .00 .00 1.00 

Tomek Links  .19 .03 .98 .31 .30 .89 .00 .00 1.00 .37 .10 .97 .36 .15 .95 .24 .67 .65 .00 .00 1.00 

OSS .14 .03 .97 .30 .30 .89 .00 .00 1.00 .37 .10 .97 .36 .15 .95 .24 .67 .65 .00 .00 1.00 

NCR .25 .05 .98 .32 .29 .90 .00 .00 1.00 .38 .10 .97 .36 .15 .95 .24 .67 .65 .00 .00 1.00 

ENN .21 .04 .97 .31 .29 .89 .00 .00 1.00 .38 .10 .97 .36 .15 .95 .24 .67 .65 .00 .00 1.00 

RENN .26 .05 .98 .31 .30 .89 .00 .00 1.00 .38 .10 .97 .36 .15 .95 .24 .67 .65 .00 .00 1.00 

RUS .76 .32 .90 .68 .50 .77 .54 .90 .24 .73 .60 .78 .81 .32 .93 .62 .78 .53 .68 .66 .69 

CC .75 .33 .89 .64 .51 .72 .67 .71 .64 .74 .58 .80 .56 1.00 .21 .73 .55 .79 NA NA NA 

NM .81 .58 .86 .85 .64 .89 .86 .91 .85 .87 .85 .87 .86 .89 .85 .86 .90 .85 .94 .84 .94 

CNN .82 .71 .47 .79 .67 .40 .77 1.00 .00 .76 .92 .01 .77 1.00 .00 .75 .79 .12 .77 1.00 .00 

IHT .84 .56 .90 .72 .73 .71 .57 .98 .28 .79 .87 .76 .61 .88 .43 .60 .90 .40 .87 .82 .87 

ROS .91 1.00 .90 .81 1.00 .76 .52 .91 .15 .91 1.00 .91 .83 .85 .83 .68 .88 .58 .75 .96 .69 

SMOTE B1 .96 .85 .97 .85 .87 .84 .99 .54 .99 .94 .87 .95 .91 .82 .92 .94 .77 .95 .82 .88 .80 

SMOTE B2 .96 .85 .96 .85 .86 .84 .99 .37 1.00 .94 .86 .94 .88 .76 .90 .98 .78 .99 .82 .88 .81 

SMOTE SVM  .92 .72 .97 .76 .76 .87 .00 .00 1.00 .89 .76 .95 .81 .70 .91 .86 .70 .94 .79 .74 .90 

ADASYN  .89 .79 .91 .77 .86 .76 .00 .00 1.00 .94 .99 .94 .79 .66 .83 .76 .58 .82 NA NA NA 

SMOTE  .93 .94 .93 .83 .93 .81 .59 .87 .40 .92 1.00 .91 .90 .86 .91 .72 .85 .67 .76 .98 .68 

SMOTE Tomek .92 .95 .92 .83 .93 .81 .56 .56 .60 .92 1.00 .91 .90 .86 .91 .72 .85 .66 .76 .97 .69 

SMOTE ENN  .93 .95 .93 .83 .94 .81 .00 .00 1.00 .92 1.00 .91 .90 .86 .91 .71 .85 .67 .76 .97 .69 



C. Precision 
Precision, or positive predictive value, is a measure of 

classification exactness that refers to how well a certain result 
is reproducible given the same starting conditions. Table II 
shows results that can be interpreted in light of the accuracy. 
Starting with the lowest precision, no sampling, Tomek links, 
OSS, NCR, ENN and RENN all had a similar and very low 
precision score when coupled with any classifier, yet their 
accuracy ratings were solid. The MNB method achieved the 
lowest precision score possible of zero. It appears that despite 
having a solid performance in terms of accuracy, these 
resampling methods result in low precision when coupled with 
classifiers. 

Another group of resampling methods discuss in accuracy 
section were RUS, CC, NM, CNN and IHT. All of these 
methods had a lower accuracy than those previously discussed 
(Tomek links, OSS, NCR, ENN, and RENN), yet all have a 
much higher precision score, suggesting that, though they 
resulted in lower accuracy when coupled with various 
classification methods, their higher precision rating makes 
them more attractive for use. This increase in precision was 
due to an increased value of TN in all cases. 

Considering over-samplers and hybrid samplers, accuracy 
has an inverse relationship with their precision score. As 

expected, the coupling of various resampling methods and 
classifiers resulted in different pairings of accuracy and 
precision. For example, when coupled with classification 
methods the ADASYN with LSVC methods show superior 
accuracy with a score of 97%, and a 94% precision. The 
highest precision score achieved was when using the SMOTE 
B1 & B2 method with SVC (99%), which also resulted in a 
slightly lower accuracy (78% & 60%). 

In general, all of the over sampling and hybrid sampling 
methods have a better precision score than the under samplers, 
such that their average precision score of 80% is superior to 
the under samplers average precision score 48%. 

D. Recall 
Recall, or sensitivity, is a measure of classifier 

completeness. Recall can be a very important in some 
problems as it is related directly to the number of false 
negatives. As in the previous section, analysis shows that one 
particular grouping of resampling methods - no sampling, 
Tomek links, OSS, NCR, ENN and RENN - tend to have 
similar (and low) recall scores despite resulting in a high 
accuracy. This is explained by the fact that the number of TN 
was less than FN in these case, with the NC classifier being the 
exception. 

 

TABLE III.  F1-SCORE (F) AND G MEAN (G) OF DIFFERENT CLASSIFICATION METHODS USING DIFFERENT RESAMPLING 

 
RFC DTC SVC LSVC BNB NC MNB 

F1 G F1 G F1 G F1 G F1 G F1 G F1 G 

No Sampling .09 .23 .30 .51 .00 .00 .15 .31 .21 .38 .35 .66 .00 .00 

Tomek Links  .05 .18 .31 .52 .00 .00 .16 .32 .22 .38 .35 .66 .00 .00 

OSS .05 .16 .30 .51 .00 .00 .16 .32 .22 .38 .35 .66 .00 .00 

NCR .08 .21 .30 .51 .00 .00 .16 .32 .22 .38 .35 .66 .00 .00 

ENN .07 .20 .30 .51 .00 .00 .16 .32 .22 .38 .35 .66 .00 .00 

RENN .08 .22 .31 .52 .00 .00 .16 .32 .22 .38 .35 .66 .00 .00 

RUS .45 .54 .58 .62 .68 .46 .66 .68 .45 .54 .69 .64 .67 .68 

CC .46 .55 .57 .60 .69 .68 .65 .68 .72 .46 .62 .66 NA NA 

NM .67 .71 .73 .76 .89 .88 .86 .86 .88 .87 .88 .88 .88 .89 

CNN .76 .58 .72 .52 .87 .00 .83 .09 .87 .00 .77 .31 .87 .00 

IHT .68 .71 .72 .72 .72 .52 .82 .81 .72 .62 .72 .60 .84 .85 

ROS .95 .95 .89 .87 .66 .37 .96 .95 .84 .84 .77 .71 .84 .81 

SMOTE B1 .90 .90 .86 .85 .70 .74 .90 .90 .86 .86 .85 .86 .85 .84 

SMOTE B2 .90 .90 .86 .85 .49 .61 .90 .90 .82 .83 .87 .88 .85 .84 

SMOTE SVM  .81 .84 .76 .81 .00 .00 .82 .85 .75 .80 .77 .81 .77 .82 

ADASYN  .84 .85 .81 .80 .00 .00 .97 .97 .72 .74 .66 .69 NA NA 

SMOTE  .94 .94 .88 .87 .70 .59 .96 .95 .88 .88 .78 .75 .85 .82 

SMOTE Tomek .94 .93 .88 .87 .48 .58 .96 .95 .88 .88 .78 .75 .85 .82 



SMOTE ENN  .94 .94 .88 .87 .00 .00 .96 .95 .88 .88 .78 .75 .85 .82 

The group consisting of RUS, CC, NM, CNN and IHT has 
higher recall score than the previous group discussed, despite 
their lower accuracy. Again, this suggests that this grouping of 
resampling methods provides superior results. ROS also has a 
surprisingly high recall score that was also consistent across 
all runs. 

Again, it can generally be stated that the the over 
resampling and hybrid resampling methods result in a better 
recall score than the under sampling method. 

E. F1-score 
F1-score (or F score or F measure), is a weighted average 

of precision and recall. In other words, this measure is the 
harmonic mean of precision and recall. There are other ways 
to average precision and recall that include the arithmetic or 
geometric mean, but since we are working with percentages (R 
and S), it more suitable to use the F1-score. 

To fully understand the F1-score, consider an example: In 
case 1 there exists 50% precision and 20% recall. In case 2 
there is 40% precision and 30% recall. The F1-score of case 1 
is 28% and case 2 is 34%. Even though the arithmetic mean is 
the same, the F1-score of case 2 is better, therefore it is judged 
as a better classifier. This suggests that, the F1-score can 
provide an additional level of insight on the tradeoffs of 
various classifiers. 

All results for F1-score are listed in Table III. In all cases, 
the results of the F1-score are very similar to those of both 
precision and recall. 

F. GMean 
GMean or geometric mean is a single value representation of 

the confusion matrix. It is a measure of the quality of 
classification. There are also other representations of 
confusion matrices available, like Matthews correlation 
coefficient (MCC), though evaluating these is left for future 
work.. 

Once again, the general results of GMean (shown in Table 
III) are very close to the F1-score, precision, and recall. 
However, when comparing the GMean with F1-score we see that 
over samplers have a small difference with few exceptions. On 
the other hand, the GMean  and F1-score of under samplers has a 
considerable difference. The CNN under sampler has the 
largest differences on all classifiers. 
 

V. Conclusion 
This study has applied a variety of resampling methods 

(under, over, and hybrid) in combination with various 
classifiers in order to improve the classification of commit 
messages in software repositories. Particularly, this study 
focuses on a dataset concerned with the fundamental question, 
“Do developers discuss design?”. The proposed methodology 
improves the state-of-the-art in multiple categories by 
achieving an accuracy of 97% using LSVC with ADASYN, 
precision of 99% using SVC with SMOTE B1 & B2, recall of 
100% in 10 cases, 4 using LSVC classifier and 3 using ROS 
over sampler, a F1-score of 97% using LSVC with ADASYN, 

and a GMean score of 97% using LSVC with ADASYN. All 
things considered, the overall best performing combination of 
resampling and classification occurred when using ADASYN 
over sampling with LSVC, resulting in an accuracy of 97%, 
F1-measure of 97%, and GMean of 97%. However, if 
computational time were a factor, the best choice would be the 
Random over sampler as used with the random forest classifier 
(A=95%, F1=95% and MCC=90%). 

 
In the future, this work may be extended by: 
1. Improving parameter selection of resampling and 

classification methods. Many of the resampling 
methods and classifiers have various parameters that 
can be adjusted to improve performance. This may be 
done through various searching techniques including 
grid search and population-based metaheuristics.  

2. Exploring the application of ensemble-based methods 
like Easy Ensemble and Balance Cascade [27]. 

3. Evaluating the dataset at different levels. In previous 
work, commit messages were divided based on their 
source - SourceForge or Github. As this work 
considered only the combined dataset, a more 
thorough evaluation would be of interest. 

4. Expanding the dataset to a larger sample size. As the 
current dataset contains only 2,000 samples, 
expanding to a much larger size would be of great 
interest. 

5. A more in depth analysis of the resamplers, and the 
interdependencies of different resamplers with 
classifiers. Do all classifiers need resampling? and 
also the limitation of resampling due to the dataset 
size or classifiers. 

REFERENCES 

[1] A. Shakiba, R. Green, and R. Dyer, “FourD: do developers discuss 
design? revisited,” in Proceedings of the 2nd International Workshop 
on Software Analytics - SWAN 2016, Seattle, Washington, 2016, pp. 
43–46. 

[2] P. Hart, “The condensed nearest neighbor rule (Corresp.),” IEEE Trans. 
Inf. Theory, vol. 14, no. 3, pp. 515–516, 1968. 

[3] I. Tomek, “Two Modifications of CNN,” IEEE Trans. Syst. Man 
Cybern., vol. 6, no. 11, pp. 769–772, 1976. 

[4] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A 
Python Toolbox to Tackle the Curse of Imbalanced Datasets in 
Machine Learning,” arXiv [cs.LG], 21-Sep-2016. 

[5] I. Mani and I. Zhang, “kNN approach to unbalanced data distributions: 
a case study involving information extraction,” in Proceedings of 
workshop on learning from imbalanced datasets, 2003. 

[6] M. Kubat, S. Matwin, and Others, “Addressing the curse of imbalanced 
training sets: one-sided selection,” in ICML, 1997, vol. 97, pp. 179–
186. 

[7] J. Laurikkala, “Improving Identification of Difficult Small Classes by 
Balancing Class Distribution,” in Artificial Intelligence in Medicine, 
2001, pp. 63–66. 

[8] D. L. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using 
Edited Data,” IEEE Trans. Syst. Man Cybern., vol. 2, no. 3, pp. 408–
421, 1972. 

[9] I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE 
Trans. Syst. Man Cybern., vol. SMC-6, no. 6, pp. 448–452, 1976. 

[10] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level 
analysis of data complexity,” Mach. Learn., vol. 95, no. 2, pp. 225–



256, Nov. 2013. 
[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, 

“SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell. 
Res., vol. 16, pp. 321–357, 2002. 

[12] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A New 
Over-Sampling Method in Imbalanced Data Sets Learning,” in 
Advances in Intelligent Computing, 2005, pp. 878–887. 

[13] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline over-
sampling for imbalanced data classification,” Int. J. Knowl. Eng. Soft 
Data Paradig., vol. 3, no. 1, pp. 4–21, 2011. 

[14] Haibo He, H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: 
Adaptive synthetic sampling approach for imbalanced learning,” in 
2008 IEEE International Joint Conference on Neural Networks (IEEE 
World Congress on Computational Intelligence), 2008. 

[15] G. E. Batista, A. L. C. Bazzan, and M. C. Monard, “Balancing Training 
Data for Automated Annotation of Keywords: a Case Study,” in WOB, 
2003, pp. 10–18. 

[16] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the 
behavior of several methods for balancing machine learning training 
data,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20–29, 
Jun. 2004. 

[17] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, 
“Assessing the accuracy of prediction algorithms for classification: an 
overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, May 2000. 

[18] M.-J. Kim, D.-K. Kang, and H. B. Kim, “Geometric mean based 
boosting algorithm with over-sampling to resolve data imbalance 
problem for bankruptcy prediction,” Expert Syst. Appl., vol. 42, no. 3, 
pp. 1074–1082, 2015. 

[19] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. 
Mach. Learn. Res., vol. 12, no. Oct, pp. 2825–2830, 2011. 

[20] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 
Oct. 2001. 

[21] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification 
and regression trees. CRC press, 1984. 

[22] A. J. Smola and B. Schölkopf, “A tutorial on support vector 
regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004. 

[23] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, 
“LIBLINEAR: A Library for Large Linear Classification,” J. Mach. 
Learn. Res., vol. 9, no. Aug, pp. 1871–1874, 2008. 

[24] A. McCallum, K. Nigam, and Others, “A comparison of event models 
for naive bayes text classification,” in AAAI-98 workshop on learning 
for text categorization, 1998, vol. 752, pp. 41–48. 

[25] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Diagnosis of 
multiple cancer types by shrunken centroids of gene expression,” Proc. 
Natl. Acad. Sci. U. S. A., vol. 99, no. 10, pp. 6567–6572, May 2002. 

[26] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to 
Information Retrieval, vol. 100. 2008, pp. 234–265. 

[27] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for 
class-imbalance learning,” IEEE Trans. Syst. Man Cybern. B Cybern., 
vol. 39, no. 2, pp. 539–550, Apr. 2009. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


