
Poster: Using Consensus to Automatically Infer Post-conditions
Jingyi Su

Bowling Green State University
Bowling Green, Ohio

jsu@bgsu.edu

Mohd Arafat
Bowling Green State University

Bowling Green, Ohio
marafat@bgsu.edu

Robert Dyer
Bowling Green State University

Bowling Green, Ohio
rdyer@bgsu.edu

ABSTRACT
Formal behavioral specifications help ensure the correctness of
programs. Writing such specifications by hand however is time-
consuming and requires substantial expertise. Previous studies have
shown how to use a notion of consensus to automatically infer pre-
conditions for APIs by using a large set of projects. In this work,
we propose a similar idea of consensus to automatically infer post-
conditions for popular APIs. We propose two new algorithms for
mining potential post-conditions from API client code. The first
algorithm looks for guarded post-conditions that test the value re-
turned from the API and throws an exception. The second algorithm
looks for values flowing from the API to another API with already
known preconditions, which recommends them as post-conditions
of the first API.

CCS CONCEPTS
• Theory of computation→ Logic and verification;

KEYWORDS
specification inference, consensus, post-condition

ACM Reference Format:
Jingyi Su, Mohd Arafat, and Robert Dyer. 2018. Poster: Using Consensus
to Automatically Infer Post-conditions. In ICSE ’18 Companion: 40th In-
ternational Conference on Software Engineering Companion, May 27-June
3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3183440.3195096

1 INTRODUCTION
Behavioral interface specifications in the form of pre- and post-
conditions for methods, invariants for classes, etc [2, 3] help ensure
the correctness of programs. However writing such specifications
manually is a huge burden on programs, incurring large cost in
both money and time and requiring substantial expertise [4, 5].

Much previous work has been done on automating the inference
of such specifications [4–6]. Prior work focused on leveraging the
collective intelligence found in Big Code to automatically infer
pre-conditions for library functions [4, 5]. This allows inferring the
specification of an API whose code may not be available. Having
specifications for commonly used APIs can further aid tools and
humans in developing specifications for client code.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3195096

In this work, we extend the notion of consensus-based mining of
specifications to automatically infer post-conditions of APImethods.
We extend the approach of Nguyen et al. [4] and replace the pre-
condition mining logic with several new post-condition inference
algorithms. In the future we hope to fully implement and evaluate
the approach’s effectiveness using Boa [1].

2 APPROACH
Our approach builds off the approach proposed by Nguyen et al. [4].
An overview of the approach is shown in Figure 2. In this figure,
the majority of the pre-condition inference approach used by the
prior work is re-used while the pre-condition specific components
are replaced with post-condition inference algorithms (box in the
top-right of the figure). The function Ω(p) gives the set of all mined
postconditions for a particular project. In this work, we present
two possible algorithms for post-condition inference.

The general steps of the overall inference algorithm include:
finding calls to a set of target APIs, inferring post-conditions for
each target API by examining code at the client call sites for the
API, normalizing the inferred conditions (x > 0 and 0 < x are
the same), using logical inference to find more or strengthen the
conditions, then filtering and ranking them to help remove noise
and then propose the results to the user. Next we describe the two
new post-condition inference algorithms.

Algorithm1The first algorithm attempts to find the pattern shown
in Figure 1, where a target API is called and the return value is
stored in a variable. If the variable is not modified and we see a
guarded throws clause, where the guard uses the variable in the
condition, thenwe assume the negation of the condition is a possible
post-condition of the API. This is a form of defensive programming.

1 o = API();

2 ... // code that does not modify o

3 if (o > 5) // "o <= 5" is a potential post-condition

4 throw Exception();

Figure 1: Code examplewith a possible post-condition guard

Algorithm 2 If a value returned from an API flows into a different
API, assuming it was unaltered on the way, then we may be able
to gain knowledge from that pattern. If we have a large set of pre-
conditions and know the second API’s pre-conditions we can use
that to infer the post-condition of the first API. An example of such
code is shown in Figure 3.

An overview of the inference algorithm is shown in Figure 4.
Here we have used some helper functions: rhs(e) means the right-
hand side of an assignment expression, lhs(e)means the left-hand
side of an assignment expression, vars(e) means the variables in

https://doi.org/10.1145/3183440.3195096
https://doi.org/10.1145/3183440.3195096
https://doi.org/10.1145/3183440.3195096

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Jingyi Su, Mohd Arafat, and Robert Dyer

RankingFilteringInferenceNormalization

1 p1

2 p2

.. ..

n pn

APIs

Projects

conf(p)

confpr(p) > σ
confm(p) > σnormalize(p)

p = (a == b) ^ q = (a < b)
→ t = (a ≤ b)

p→q ^ |Ω(p)| ≤ |Ω(q)|

Mined
Postconditions

Ω(p)

for each p

Calling
Methods
(M1 .. Mn)

for each Mi

Find methods
that call APIs

Mined
Postconditions

Ω(p)

API Finding Postcondition Inference

Preconditions

o=API();

if(o)

Exception...

T F

o=API();

API2(o);

Figure 2: Overview of consensus based post-condition inference (based on [4, Fig.3]) - new components in top-right box

1 o = API();

2 ... // code that does not modify o

3 anotherAPI(o);

Figure 3: Code example requiring pre-conditions

FindAPI(stmt,
api)

Set s = ∅

s = s ∪ lhs(stmt)

lhs(stmt) ∈ s s = s / lhs(stmt)

isCall(stmt) &&
vars(args(stmt)) ∩ s ≠ ∅

Preconditions of stmt
are possible postconditions

of api

for stmt in m

F

T T

T

T

F

F

F

Figure 4: Use pre-conditions to infer post-conditions

the expression, and args(e)means the arguments to a method call.
FindAPI(stmt, api) is a function for checking if the statement is
a method call calling a target API.

The algorithm examines each statement in a method, looking
for calls to a target API. If it finds such a call, it keeps track of the
variable name used to store the result. If it sees an assignment to

any variable being tracked, it removes that variable from the set.
Finally, if it sees a method call using one of the tracked variables,
it will suggest the pre-conditions of the second API as possible
post-conditions of the target API.

This algorithm examines a single method sequentially, which
may lead to imprecision. In the future we hope to strengthen this
algorithm by using program analysis techniques such as generating
control-flow graphs and data-flow analysis to properly track the
use-def relationship of the variables.

3 CONCLUSION
Automatically inferring API specifications aids developers wishing
to formally specify their code. In this paper, we presented several
algorithms for inferring post-conditions of API methods using a no-
tion of consensus. In the future we hope to implement and evaluate
the approach using the Boa infrastructure and dataset [1].

Acknowledgements This work was supported by the National
Science Foundation under grants 1512947 and 1518776.

REFERENCES
[1] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa:

A Language and Infrastructure for Analyzing Ultra-Large-Scale Software Reposi-
tories. In Proceedings of the 35th International Conference on Software Engineering
(ICSE’13). 422–431.

[2] John V Guttag, James J Horning, and Jeannette M Wing. 1985. The Larch family
of specification languages. IEEE Software 2, 5 (1985).

[3] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 2006. Preliminary Design of
JML: A Behavioral Interface Specification Language for Java. SIGSOFT Softw. Eng.
Notes 31, 3 (May 2006), 1–38.

[4] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014. Mining
Preconditions of APIs in Large-scale Code Corpus. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14).
166–177.

[5] Hridesh Rajan, Tien N. Nguyen, Gary T. Leavens, and Robert Dyer. 2015. Inferring
Behavioral Specifications from Large-scale Repositories by Leveraging Collec-
tive Intelligence. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (ICSE ’15). 579–582.

[6] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring
Better Contracts. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). 191–200.

