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ABSTRACT
Formal behavioral specifications help ensure the correctness of
programs. Writing such specifications by hand however is time-
consuming and requires substantial expertise. Previous studies have
shown how to use a notion of consensus to automatically infer pre-
conditions for APIs by using a large set of projects. In this work,
we propose a similar idea of consensus to automatically infer post-
conditions for popular APIs. We propose two new algorithms for
mining potential post-conditions from API client code. The first
algorithm looks for guarded post-conditions that test the value re-
turned from the API and throws an exception. The second algorithm
looks for values flowing from the API to another API with already
known preconditions, which recommends them as post-conditions
of the first API.
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1 INTRODUCTION
Behavioral interface specifications in the form of pre- and post-
conditions for methods, invariants for classes, etc [2, 3] help ensure
the correctness of programs. However writing such specifications
manually is a huge burden on programs, incurring large cost in
both money and time and requiring substantial expertise [4, 5].

Much previous work has been done on automating the inference
of such specifications [4–6]. Prior work focused on leveraging the
collective intelligence found in Big Code to automatically infer
pre-conditions for library functions [4, 5]. This allows inferring the
specification of an API whose code may not be available. Having
specifications for commonly used APIs can further aid tools and
humans in developing specifications for client code.
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In this work, we extend the notion of consensus-based mining of
specifications to automatically infer post-conditions of APImethods.
We extend the approach of Nguyen et al. [4] and replace the pre-
condition mining logic with several new post-condition inference
algorithms. In the future we hope to fully implement and evaluate
the approach’s effectiveness using Boa [1].

2 APPROACH
Our approach builds off the approach proposed by Nguyen et al. [4].
An overview of the approach is shown in Figure 2. In this figure,
the majority of the pre-condition inference approach used by the
prior work is re-used while the pre-condition specific components
are replaced with post-condition inference algorithms (box in the
top-right of the figure). The function Ω(p) gives the set of all mined
postconditions for a particular project. In this work, we present
two possible algorithms for post-condition inference.

The general steps of the overall inference algorithm include:
finding calls to a set of target APIs, inferring post-conditions for
each target API by examining code at the client call sites for the
API, normalizing the inferred conditions (x > 0 and 0 < x are
the same), using logical inference to find more or strengthen the
conditions, then filtering and ranking them to help remove noise
and then propose the results to the user. Next we describe the two
new post-condition inference algorithms.

Algorithm1The first algorithm attempts to find the pattern shown
in Figure 1, where a target API is called and the return value is
stored in a variable. If the variable is not modified and we see a
guarded throws clause, where the guard uses the variable in the
condition, thenwe assume the negation of the condition is a possible
post-condition of the API. This is a form of defensive programming.

1 o = API();

2 ... // code that does not modify o

3 if (o > 5) // "o <= 5" is a potential post-condition

4 throw Exception();

Figure 1: Code examplewith a possible post-condition guard

Algorithm 2 If a value returned from an API flows into a different
API, assuming it was unaltered on the way, then we may be able
to gain knowledge from that pattern. If we have a large set of pre-
conditions and know the second API’s pre-conditions we can use
that to infer the post-condition of the first API. An example of such
code is shown in Figure 3.

An overview of the inference algorithm is shown in Figure 4.
Here we have used some helper functions: rhs(e) means the right-
hand side of an assignment expression, lhs(e)means the left-hand
side of an assignment expression, vars(e) means the variables in
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Figure 2: Overview of consensus based post-condition inference (based on [4, Fig.3]) - new components in top-right box

1 o = API();

2 ... // code that does not modify o

3 anotherAPI(o);

Figure 3: Code example requiring pre-conditions
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Figure 4: Use pre-conditions to infer post-conditions

the expression, and args(e)means the arguments to a method call.
FindAPI(stmt, api) is a function for checking if the statement is
a method call calling a target API.

The algorithm examines each statement in a method, looking
for calls to a target API. If it finds such a call, it keeps track of the
variable name used to store the result. If it sees an assignment to

any variable being tracked, it removes that variable from the set.
Finally, if it sees a method call using one of the tracked variables,
it will suggest the pre-conditions of the second API as possible
post-conditions of the target API.

This algorithm examines a single method sequentially, which
may lead to imprecision. In the future we hope to strengthen this
algorithm by using program analysis techniques such as generating
control-flow graphs and data-flow analysis to properly track the
use-def relationship of the variables.

3 CONCLUSION
Automatically inferring API specifications aids developers wishing
to formally specify their code. In this paper, we presented several
algorithms for inferring post-conditions of API methods using a no-
tion of consensus. In the future we hope to implement and evaluate
the approach using the Boa infrastructure and dataset [1].
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