
 Feature Volatility Assessment

Warren Baelen, Yuanfang Cai
Department of Computer Science

Drexel University
{st95b589, yfcai}@cs.drexel.edu

Robert Dyer, Hridesh Rajan
Department of Computer Science

Iowa State University
{rdyer, hridesh}@iastate.edu

I. INTRODUCTION
With the development of new modularization techniques,

such as aspect-oriented programming and feature-oriented
programming, assessing and comparing their differences in
different circumstances becomes important for the user to
chose, compare and synthesize these techniques. Numerous
studies have been conducted to assess and compare different
software modularization techniques in terms of their impact
on software modularity and stability when new features are
added [3][4][5].

At the same time, it has been realized that traditional
software metrics based on coupling and cohesion
measurement are not effective in terms of measuring key
properties of modularity, such as separation of concerns and
option value generation. Researchers have proposed and
applied new assessment techniques. Concern-based metrics,
such as Concern Diffusion over Components (CDC),
Concern Diffusion over Operations (CDO), Concern
Diffusion over Lines of Code (CDLOC), have been used to
compare aspect-oriented vs. object-oriented
implementations[3][4][6]. Baldwin and Clark’s net option
value analysis and design structure matrix modeling [1]
have been used to assess how well different paradigms can
effectively generate option values [2][6][8].

These studies show that the impact of a modularization
technique not only depends on the techniques itself, but also
depends on the design and nature of a particular feature. For
example, some modularization techniques make
crosscutting features more stable, such as exception
handling, while making other types of features more
volatile. It is also possible that these modularization
techniques do not make much difference for certain types of
features. The concern-based metrics only count the number
of components, operation, and lines of code that are
influenced by the feature, but do not directly assess how
stable these components are. The option-based metrics
measure the effects of overall design, blurring the impact on
each feature.

In the paper, we propose a feature stability/volatility
measurement to explicitly show which modularization
technique is the best for which type of features, and to show

how the stability of each feature changes over time. Using
these feature stability measurements, the designer can not
only compare and contrast different modularization
techniques, but also track which features is most volatile or
how maintenance activities change feature volatility over
time. For a highly volatile feature, the components
implementing it will be changed frequently.

Our idea is to combine concern diffusion measurement
with the internal coupling of components. The rationale is
that: feature stability depends on the stability of the
components that implements the feature, and the stability of
the feature is thus the summation of the stability of its
components. As a result, we first need to measure the
stability of each component.

Traditionally, the stability of a software component is
measured by the number of dependents (fan-out
dependencies) divided by the total number of dependencies
(both fan-in and fan-out). That is, the more dependents a
component has and the fewer it depends on, the more stable
a component is. However, it is possible that all the other
components a component depends on are stable in the sense
that they do not subject to any environmental changes.

Based on the assumption that environmental factors, such
as features, are the drivers of software changes, our recent
work [6] proposed a new software volatility measure: the
more features influence a components (EnvrImpact), and the
more dependents it has (ImpactScope), the more volatile it is.
That is, for component i, Volatiltyi= EnvrImpacti*
ImpactScopei. Accordingly, the volatility of a feature is the
summation volatility of each component implementing it:
FeatureVolatilty =6Volatilityi.

II. MEASURING MOBILEMEDIA FEATURE STABILITY

To preliminarily assess the effectiveness of this feature
volatility measure, we applied it to different types of
features of MobileMedia, a software product line
[3][4][6][7][8] system that is widely studied. The
MobileMedia system has eight releases, each adding a new
feature to the previous release. These new features are
categorized into three types, each of which has dramatically
different characteristics: (1) alternative features, such as

33

functions related to photo, music or video; (2) optional
features, such as selecting favorite media; (3) mandatory
features, such as exception handling.

Figure 1. The Create Photo Feature Volatility

We calculated the volatility of each feature in each

version, designed in Java, AspectJ, and Ptolemy [7]
respectively, to understand which design is best for which
feature. Figure 1 shows the volatility of the create photo
feature from release 1 to 8. The chart shows that using OO
design will make the feature most stable, and using AO
design will make this feature most volatile. The data suggests
that using OO to implement this feature is the best choice.

Figure 2 shows the volatility value of the exception

handling feature. The data shows that Ptolemy is the best
choice for this feature because the resulting design is far
more stable than the other two choices. The AO design
appears to be the worse choice, which has been confirmed
by previous studies.

We also measured the volatility of optional features, such
as setting favorite photos or music. The results depend on
the concrete feature, that is, not all the optional features
were impacted in the same way by these different
paradigms. For example, for the favorite photo feature, both
Ptolemy and aspect-oriented design appear to be most stable
with 0 volatility. This means that the components that

implement this feature do not influence other components,
and that these two paradigms appear to have the same
ability in terms of accommodating this feature.

REFERENCES

[1] Carliss Y. Baldwin and Kim B. Clark. Design Rules, Vol. 1: The
Power of Modularity. The MIT Press, 2000.

[2] Cai, Y., Huynh, S., and Xie, T. A framework and tool supports for
testing modularity of software design. in Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), pages 441–444, November 2007.

[3] Figueiredo, E. et al.: Evolving software product lines with aspects:
An empirical study on design stability. In Proceedings of the 30th
International Conference on Software Engineering, Leipzig,
Germany, 2008.

[4] Garcia, A. et al. Modularizing design patterns with aspects: a
quantitative study. In Proceedings of the 4st international conference
on Aspect-Oriented Software Development (AOSD). 2005, pages 3–
14.

[5] C. Sant’Anna et al, “On the modularity of software architectures: A
concern-driven measurement framework,” in Proc of the 1st
European Conference on Software Architecture (ECSA), Sep. 2007.

[6] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna,“From
retrospect to prospect: Assessing modularity and stability from
software architecture,” in Proceedings of the Joint 8th Working
IEEE/IFIP Conference on Software Architecture and 3rd European
Conference on Software Architecture (WICSA/ECSA) 2009.

[7] Hridesh Rajan and Gary T. Leavens, "Ptolemy: A Language with
Quantified Typed, Events," ECOOP '08: 22nd European Conference
on Object-Oriented Programming, July 2008, Paphos, Cyprus.

[8] Robert Dyer, Mehdi Bagherzadeh, Hridesh Rajan and Yuanfang Cai,
"A Preliminary Study of Quantified, Typed Events," the Empirical
Evaluation of Software Composition Techniques (ESCOT 2010),
Rennes and St. Malo, France, March 2010.

Figure 1. The Exception Handling Feature Volatility

34

