Impact of Transmission Impairments on the Teletraffic Performance of Wavelength-Routed Optical Networks

Abstract

In a wavelength-routed optical network, a transmitted signal remains in the optical domain over the entire route (lightpath) assigned to it between its source and destination nodes. The optical signal may have to traverse a number of crossconnect switches (XCS’s), fiber segments, and optical amplifiers, e.g., erbium-doped fiber amplifiers (EDFA’s). Thus, while propagating through the network, the signal may degrade in quality as it encounters crosstalk at the XCS’s and also picks up amplified spontaneous emission (ASE) noise at the EDFA’s. Since these impairments continue to degrade the signal quality as it progresses toward its destination, the received bit error rate (BER) at the destination node might become unacceptably high. Previous work on the lightpath routing and wavelength assignment (RWA) problem assumed an ideal physical layer and ignored these transmission impairments. The main contribution of our work is to incorporate the role of the physical layer in setting up lightpaths by employing appropriate models of multiwavelength optical devices (XCS’s and EDFA’s) such that the BER of a candidate lightpath can be computed, in advance, to determine if this lightpath should be used for the call. Features from existing RWA algorithms are integrated with our on-line BER calculation mechanism. Our simulation studies indicate that employing BER-based call-admission algorithms has a significant impact on the performance of realistic networks.

Publication
Journal of Lightwave Technology
Byrav Ramamurthy
Byrav Ramamurthy
Professor & PI

My research areas include optical and wireless networks, peer-to-peer networks for multimedia streaming, network security and telecommunications. My research work is supported by the U.S. National Science Foundation, U.S. Department of Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent Tech., Ciena, HP and OPNET Inc.