Identifying Anomalies in GridFTP transfers for Data-Intensive Science through Application-Awareness

Abstract

Network anomaly detection systems can be used to identify anomalous transfers or threats, which, when undetected, can trigger large-scale malicious events. Data-intensive science projects rely on high-throughput computing and high-speed networking resources for data analysis and processing. In this paper, we propose an anomaly detection framework and architecture for identifying anomalies in GridFTP transfers. Application-awareness plays an important role in our proposed architecture and is used to communicate GridFTP application metadata to the machine learning and anomaly detection system. We demonstrate the effectiveness of our architecture by evaluating the framework with a real-world, large-scale dataset of GridFTP transfers. Preliminary results show that our framework can be used to develop novel anomaly detection services with diverse feature sets for distributed and data-intensive projects.

Publication
Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization
Byrav Ramamurthy
Byrav Ramamurthy
Professor & PI

My research areas include optical and wireless networks, peer-to-peer networks for multimedia streaming, network security and telecommunications. My research work is supported by the U.S. National Science Foundation, U.S. Department of Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent Tech., Ciena, HP and OPNET Inc.