Improving Service Performance through Multilayer Routing and Service Intelligence in a Network Service Mesh

Abstract

Network service mesh architectures, by interconnecting cloud clusters, provide access to services across distributed infrastructures. Typically, services are replicated across clusters to ensure resilience. However, end-to-end service performance varies mainly depending on the service loads experienced by individual clusters. Therefore, a key challenge is to optimize end-to-end service performance by routing service requests to clusters with the least service processing/response times. We present a two-phase approach that combines an optimized multi-layer optical routing system with service mesh performance costs to improve end-to-end service performance. Our experimental strategy shows that leveraging a multi-layer architecture in combination with service performance information improves end-to-end performance. We evaluate our approach by testing our strategy on a service mesh layer overlay on a modified continental united states (CONUS) network topology.

Publication
2021 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)
Byrav Ramamurthy
Byrav Ramamurthy
Professor & PI

My research areas include optical and wireless networks, peer-to-peer networks for multimedia streaming, network security and telecommunications. My research work is supported by the U.S. National Science Foundation, U.S. Department of Energy, U.S. Department of Agriculture, NASA, AT&T Corporation, Agilent Tech., Ciena, HP and OPNET Inc.