
Reducing Field Failures in System Configurable Software: Cost-Based
Prioritization

Hema Srikanth
IBM Software Group

4 Technology Park Drive
Westford, MA

srikanth h@us.ibm.com

Myra B. Cohen
Dept. of Comp. Sci & Eng.

University of Nebraska-Lincoln
Lincoln, NE

myra@cse.unl.edu

Xiao Qu
Dept. of Comp. Sci & Eng.

University of Nebraska-Lincoln
Lincoln, NE

xqu@cse.unl.edu

Abstract

System testing of configurable software is an expensive
and resource constrained process. Insufficient testing of-
ten leads to escaped faults in the field where failures im-
pact customers and are costly to repair. Prior work has
shown that it is possible to efficiently sample configurations
for testing using combinatorial interaction testing, and to
prioritize these configurations to increase the rate of early
fault detection. The underlying assumption to date has been
that there is no added complexity to configuring a system
level environment over a user configurable one; i.e. the time
required to setup and test each individual configuration is
nominal. In this paper we examine prioritization of system
configurable software driven not only by fault detection but
also by the cost of configuration and setup time that mov-
ing between different configurations incurs. We present a
case study on two releases of an enterprise software system
using failures reported in the field. We examine the most ef-
fective prioritization technique and conclude that (1) using
failure history of configurations can improve the early fault
detection rate, but that (2) we must consider fault detection
rate over time, not by the number of configurations tested. It
is better to test related configurations which incur minimal
setup time than to test fewer, more diverse configurations.

1. Introduction

System configurability is a software development strat-
egy that enables companies to develop and deploy software
to a broad range of customers. The focus on system config-
urability rather than user configurability is characterized by
the early binding time for the composition of components
(or software environments) that are used for each instance
of the system. In these types of systems a set of the environ-
ments must be installed, compiled and customized for use;
they are not controlled by software parameters that can be

dynamically (and at little execution or setup cost) changed.
Instead there is a significant cost associated with composing
a single instance of the product and this can impact software
testing techniques. In fact, our experience has shown that
the time to configure and set up an environment for testing
is the largest differentiating factor in this type of testing.
The environments we aim to utilize during testing are anal-
ogous to those used by customers in the field, so we must
install and compile these before testing can occur.

In practice the primary costs of testing configurations in-
house consists of two elements:(1) setup (preparation) cost
and (2) running tests. Compared with setup, running tests is
a relatively fixed cost once a system instance is installed and
configured. Software environments may consist of different
operating systems, databases, and network and/or security
protocols, etc. They may also include configurable param-
eters set by the customer such as the specific fix pack of
a database, the number of concurrent connections allowed,
driver types, details of the customers clustered environment
or specific database settings.

In a system configurable development model, a core set
of components are built, tested and then composed each as
a unique instance from a potentially enormous set of config-
urations before delivering to a large customer base; the full
configuration space of a system can be in the thousands or
millions. While economical from the standpoint of software
development, research has shown that configurable software
from the system testing perspective should be viewed as a
family of software systems and that different faults will be
revealed when running the same set of test cases under dif-
fering configurations [13].

System testing (testing conducted on a complete, inte-
grated system to evaluate the system compliance with its
specified requirements [10]) is the last phase before a prod-
uct is delivered for customer use and thus represents the last
opportunity for verifying that the system functions correctly
and as desired by customers [9]. Configuring and testing

multiple complete, integrated systems (including hardware,
operating system, and cooperating and co-existing applica-
tions) that are representative of a subset of customer en-
vironments is time intensive and as the number of possi-
ble components (or environments) increases the possible set
of unique instances of configurations that can be deployed
multiplies exponentially.

Compounding this problem, research has shown that a
defect found in the field often costs 100 times as much to fix
as one found during requirements [1]. Based on the experi-
ence of the first author of this paper, field failures are more
expensive to fix because the field issues have to go through
additional processes and workflow before they come to the
development team to be reproduced locally and deployed
back into the customer environment. Further, every escape
of a failure into the field that is found by a customer has a
negative impact on system quality since this is measured by
the volume of field failures.

Companies, however, are often faced with lack of time
and resources, which limits their ability to effectively com-
plete system testing efforts. Recent work on prioritization
of configurations [13] suggests that we can explicitly or-
der configurations for testing to improve the rate of early
fault detection in resource constrained situations, but this
research has focused to date only on early fault detection.
In the types of software studied in this work, the configura-
tions are set at runtime and require installation. This work
has ignored an important aspect of testing the class of soft-
ware we term system configurable software – the difference
in cost between testing different configurations.

As a test architect at IBM, the first author’s experience is
that the preparation of a system testbed for these types of
system configurations takes from two to five days to com-
plete. This includes installing and configuring all software
environments for an individual configuration. Test plan-
ning and preparation may consume over 50% of the total
test time and the effort of running system tests. Our typical
system test is run in a clustered environment with an appli-
cation server that includes at least three component values
from a set of configurations – a specific operating system,
back end database integration and the lightweight directory
access protocol (LDAP). The time to run tests should con-
sider both the test runtime and the preparation time such as
installation and configuration times before test execution.
Testing two instances of a system consecutively will differ
in total test time depending on how much new setup is re-
quired to change from one configuration to the next.

There have been some recent advances in cost-based pri-
oritization. Do et al. present an economic model to capture
costs related to test case prioritization [5, 6] that include pa-
rameters such as the time to fix faults, the time to run tests
and revenue incurred. These models, while comprehensive,
do not explicitly focus on the configurations of a system,

but rather on test cases, and may be too fine-grained for the
system configurable software test environment.

In this paper, we re-visit prioritization of configurations
from a cost-cognizant point of view. We examine not only
the increased rate of fault detection that can be achieved,
but balance this with the cost of test setup required each
time a configuration is modified. Our intuition is that we
should focus on the total cumulative testing time taken to
find faults in a system rather than on the cumulative number
of configurations tested.

We analyze this tradeoff based on real data gathered from
the analysis of reported field failures of a large legacy en-
terprise system across two releases over the course of more
than two years. We demonstrate that identifying configura-
tions that are failure prone, and prioritizing test execution
based not only on fault detection but also on the cost of
changing and completing setup of configurations, may im-
prove field quality by increasing the faults found within a
time budget and minimizing escapes to the field.

The primary contributions we make are to present:

• an industrial case study of the potential effect of con-
figuration prioritization on two releases of a large en-
terprise software system.

• an evaluation of an alternative view of system config-
uration prioritization; one that is setup cost-cognizant.

The rest of this paper is organized as follows. Section
2 provides some background on regression testing config-
urable software. Section 3 discusses the tradeoffs in cost
vs. fault detection and presents the techniques we have de-
veloped to study this. Section 4 describes our case study
while Section 5 presents our results. Finally, in Section 6
we present related work and in Section 7 we present our
conclusions and future work.

2. Background

We begin with a small example to illustrate our prob-
lem domain and then present background on prioritization
and combinatorial interaction testing. A model of our sys-
tem is shown in Figure 1-A. Suppose we are testing an en-
terprise system that runs on three different operating sys-
tems, is supported on three different versions of Java™, and
can be viewed using three different media players and web
browsers. Each of these is considered a factor in our system.
The individual options for each factor is termed a value.
For instance the value Opera is one option for the factor
Browser. We have a large set of system tests that we run
to validate the system functionality. Running each system
tests can take hours to complete. In order to test this system,
we must first setup and configure the environment that con-
sists of selecting one possible value from each of the four
factors. Nine of the possible 81 configurations are shown in
Figure 1-B. Research has shown (and our field experience

confirms) that if we run the same set of test cases using a
different configuration different faults may be revealed [13].

Browser! Java! OS! Player!

Opera! JDK 1.3! Mac OS X! Quick Time!

Explorer! JDK 1.4! Windows XP! Real Player!

Firebox! JDK 1.5! Linux ! Windows MP!

Browser! Java! OS! Player!

1! Opera! JDK 1.3! Windows XP! Real Player!

2! Firefox! JDK 1.4! Linux! Real Player!

3! Explorer! JDK 1.5! Mac OS X! Real Player!

4! Opera! JDK 1.5! Linux! Quick Time!

5! Explorer! JDK 1.4! Windows XP! Quick Time!

6! Opera! JDK 1.4! Mac OS X! Windows MP!

7! Firefox! JDK 1.3! Mac OS X! Quick Time!

8! Explorer! JDK 1.3! Linux! Windows MP!

9! Firefox! JDK 1.5! Windows XP! Windows MP!

(A) Configuration Model!

(B) 2-way CIT Sample!

F1! F2! F3! F4! F5!

C1! 0! 0! 0! 0! 0!

C2! 1! 0! 0! 0! 1!

C3! 0! 0! 1! 1! 1!

C4! 1! 1! 0! 0! 0!

(C) Fault Matrix- first four configurations!

1." < C3, C4, C1, C2 >!

2." < C2, C4, C1, C3 >!

(D) 2 possible prioritization orderings!

Figure 1. Configuration Model

2.1 Configuration Prioritization

When software is modified, regression testing is per-
formed. This involves testing of both the new features
and retesting the original features to ensure that changes
have not introduced new faults. Many methodologies have
been developed that focus on increasing cost-effectiveness
through test case selection and/or test case prioritization (or-
dering) [7, 16, 17]. We only discuss the latter in this work.

Many test case prioritization techniques have been pro-
posed (e.g., [8, 18, 17]). Different techniques use differ-
ent types of information to determine order such as branch,
function or requirements coverage [17, 18]. In a typical re-
gression testing scenario, a base program, P is used to col-
lect data for prioritization of program P ′. The assumption
is that information from earlier programs predicts the fault
occurrence in their modified counterparts.

Regression testing for system configurable software may
include not only test case selection and prioritization but
also configuration selection and configuration prioritiza-
tion. In [13], sampling was used to select configurations
for testing of user configurable systems and these configu-
rations were prioritized. As in test case prioritization infor-
mation from prior releases was used to inform and predict
which configurations should be tested first in the next re-
lease. The results of this work show that the order of config-
urations can impact the fault detection rate when the same
set of test cases are run under differing configurations.

To prioritize a set of configurations we first create a fault
matrix. We show a simple matrix for the first four configu-
rations of our example in Figure 1-C. Each row represents a
configuration and each column a fault in the system. A zero
in a column means that the fault is not revealed after running
all test cases on that configuration, while a one means that
at least one test case reveals it. As we can see, the test suite

run on the first configuration of our sample (1-B), (Opera,
JDK 1.3, Windows XP, Real Player) did not reveal
any faults during testing, while the same test suite run on
the third configuration revealed three.

We show two possible prioritization orderings in Figure
1-D. The first one finds all faults after testing only two con-
figurations, and the second finds only three faults after the
same time; it requires all four configurations to uncover all
five faults.

2.2 Combinatorial Interaction Testing

Before we can determine prioritization orderings we
must select a set of configurations to test. In our configura-
tion example we have 81 configurations that are supported.
If it takes 4 hours to run each test suite, and we can run tests
continually, completely testing this system will take almost
2 weeks. Since the size of the configuration space increases
exponentially in the number of factors it quickly becomes
necessary to sample the configuration space.

We can randomly select configurations, but we do not
have knowledge of what an appropriate sample size is, and
we have no guarantee of consistency. Prior work has moved
towards sampling techniques that select representative sub-
sets of configurations to test for combinations or interac-
tions of factors and their values [13, 20].

One such method, combinatorial interaction testing
(CIT) was originally created to sample a program’s input
space. CIT sampling models the configurable options for a
software system (factors) and their associated settings (val-
ues) and combines these so that all t-way (t > 1) combi-
nations of settings are tested together [3]. Here, t is called
the strength of testing, and when t=2, we call this pairwise
testing. Recent studies suggest that CIT may provide an ef-
fective way to sample configurations for testing [12, 13, 20].

CIT samples can be modeled as a covering array, de-
noted CA(N ; t, k, (v1v2...vk)), which is is an N × k array
on v symbols, where v =

∑k
i=1 vi, and where each col-

umn i (1 ≤ i ≤ k) contains only elements from a set
Si of size vi and the rows of each N × t sub-array cover
all t-tuples of values from the t columns at least once. We
use a notation to describe these with superscripts to indicate
the number of factors with a particular number of values.
A pairwise covering array with five factors, three of which
are binary and two of which have four values, is written as
CA(N ; 2, 2342).

Figure 1-B, shows a 2-way CIT sample for our model;
this is a CA(9; 2, 34). All pairs of values between factors
are combined. For instance we see all pairs of values from
Browser and Java as well as all pairs of values from Java
and Player. We can increase the strength of our sampling by
including all 3-way combinations of values between factors.
This will require a sample size of 27.

3. Cost-Based Prioritization

In order to prioritize the CIT samples we first collect rel-
evant information to drive the ordering. In [13] we exam-
ined ways to order CIT samples based on block coverage
of each configuration’s test suite using program P to priori-
tize P ′. We also examined alternative methods such as fault
based prioritization and specification based prioritization.

In this section we will present techniques that can be
used to prioritize program P ′; ones that are aimed at cap-
turing important information for system configurability. We
will also present the metrics that we will use to capture the
cost benefit tradeoff between the cost of configuration setup
and that of fault detection.

3.1. Modeling Costs

Prior work on cost models for prioritization have in-
cluded many factors such as the time to fix the fault, the
time to run the test case, and if the fault escapes into the
field where a failure will impact customers (i.e. fault sever-
ity) [5, 6, 7]. Additionally, others have examined time-
constrained environments [19]. At IBM we have a thorough
testing environment and expect that all easy to find faults
are already found during unit testing. The types of faults
we find due to configuration testing will likely be critical
faults that will be treated as high priority. Our assumption
is that due to their high priority, sufficient resources will be
allocated to subsume the time tradeoff of fixing them.

Our experience also shows that system test faults are
highly complex to find and expensive, since it involves sev-
eral days effort to configure an environment before any sys-
tem test defects can surface. In other words, the overriding
variable for running our tests is the time to install and build
a new configuration. Based on this, we focus on this fac-
tor as the true cost of testing each configuration. Although
the time to run system tests should also be considered in
an absolute cost sense, it is relatively constant across dif-
ferent configurations so we do not consider it here. In the
system configuration prioritization problem we aim to max-
imize fault detection while minimizing the install and build
cost within a given time budget.

3.2. Prioritization Techniques

We next describe three prioritization techniques that we
propose which are based on the fielded test history data. In
system configuration testing, we do not have prior code cov-
erage therefore we must use other heuristics to drive prior-
itization. We make the assumption that faults found in one
version will be indicative of the configuration value combi-
nations for faults in the next version; i.e. these are the most
complex and therefore the riskiest configurations. This is
consistent with fault-based test case prioritization [16].

3.2.1 Factor-Value Prioritization
Our first method for prioritization aims to isolate the values
of factors that are involved in the largest number of fielded
failures. We use a previously developed algorithm to gener-
ate prioritized CIT samples [2]. We have successfully used
this algorithm for configuration prioritization in [13]. The
algorithm generates a single configuration at a time, driven
by the product of the weights of each pairwise set of values.
It stops when all pairs of factor-values are included in the
sample. The resulting sample is a biased covering array. It
covers all 2-way combinations of factor-values, but it is bi-
ased in that the factor-values with the highest weights occur
in the earlier configurations.

To set weights for this algorithm, we analyze the fault
detection of each value and base the weights on this. Sup-
pose we are setting weights using the fault matrix in Fig-
ure 1-C. Since C2 detects two faults and C2 is composed
of Firefox, JDK™1.4, Linux® and Real Player,
we say that Firefox, JDK 1.4, Linux and Real
Player contributes to revealing fault 1 and fault 5. Sim-
ilarly, for C3, Explorer, JDK 1.5, Mac and Real
Player contributes to revealing fault 3, 4 and 5; for C4,
Opera, JDK 1.5, Linux and Quick Time contributes
to revealing fault 1 and 2.

We then calculate the contribution of each factor-value
in a cumulative fashion. A value’s contribution to one par-
ticular fault will be counted only once, even if it appears in
different configurations. From this point of view, Firefox
reveals two faults (F1, F5), JDK 1.5 reveals all five faults,
etc. The weight is equal to the ratio of the contribution of
each value to the cumulative contribution of the factor to
which the value belongs.

We next consider the importance of each factor. Some
factors will have more faults associated with them than oth-
ers. Once again we calculate this and determine the ratio of
the faults for the entire system. The final weight for each
value in the system is the product of the factor weight and
the value weight.

3.2.2 Pairwise Prioritization
In a configurable system, harder to find faults (and the
ones that our system tests should focus on) are most likely
caused by interacting value combinations. In Figure 1,
F1 will only be detected by the pair (JDK 1.4 or 1.5,
Linux), which means, if we change the value of the op-
erating system or of the Java™version to something else,
this fault will not be revealed even if all other values re-
main the same as in C2 and C4. In essence, only the pairs
contribute to revealing F1; not the individual values of C2

and C4. Our pairwise method of prioritization uses this idea
to set weights to pairs, rather than to each single value. It
uses a modified fault-matrix that represents fault detection
for pairs of values, rather than for the entire configuration.

We show the pseudocode for an algorithm (Algorithm 1)
that performs this prioritization. Once again, the aim is to
generate a CIT sample where all pairs are covered, but with
more important pairs covered first. The algorithm begins
by adding all pairs to the UncoveredPairs set (Line 1).
Next it loops through and generates each configuration as
follows until all pairs are covered. First it selects the uncov-
ered pair that has the highest weight. Next it enters a loop
to complete the configuration (Line 4). All pairs that are
consistent with the values already selected for this configu-
ration are put into a candidate set. For instance if we have
already selected the pair Linux, Real Player, then any
pair which contains this operating system and media player
is considered consistent. From this candidate set we select
the pair that has the highest value and add it to our configu-
ration (Line 6 and 7). When we have selected values for all
factors in our configuration we update (Line 8) and add this
to the configuration sample (Line 9).

1: Initialize UncoveredPairs
2: while UncoveredPairs 6= ∅ do
3: selectedvalues← values in highest weight pair
4: while Configuration is not complete do
5: candidate set ← all pairs that are consistent with

selected values
6: new values ← Select highest weight pair from

candidate set
7: selected values← selected values + new values
8: update UncoveredPairs
9: add configuration to sample

Algorithm 1: Pairwise Prioritization

3.2.3 Cost-Based Prioritization
The two techniques mentioned above are considered tradi-
tional prioritization techniques and assume that the cost is
the same for running each configuration and switching be-
tween configurations.

Our last technique aims to minimize the cost of switch-
ing configurations. We use the same base algorithm as the
factor-value prioritization, but instead of considering fault
detection to set the weights, we use configuration switching
cost — the lower the cost, the higher the priority.

There are two modifications we make to the original al-
gorithm. First, when we prioritize based on fault detection,
we set weights ahead of time. But in the cost-based algo-
rithm, the cost of switching configurations is dependent on
the prior configuration, which means, the weights change
after each configuration is generated; we dynamically cal-
culate the weights at the start of each configuration gen-
eration. Second, while minimizing the cost, we still want
to maximize the fault detection as much as possible. We
use tie breaking to incorporate this aspect of the genera-
tion. When we have more than one choice of values with an

equal weight to select, we choose the one which will yield
the highest fault detection (based on the value weights); in
the original algorithm, we randomly select one.

3.2.4 Unordered
As a baseline technique we use an unordered CIT sample.
In this technique we generate a pairwise configuration sam-
ple using simulated annealing [4]. The generation does not
occur a single row at a time, but rather the entire sample is
modified during generation, viewed as a series of transfor-
mations. Therefore we can expect no bias in the ordering of
the configurations of the sample.

3.3. Evaluation Metrics
A common way to evaluate the effectiveness of different

prioritization techniques is to measure the area under the
curve when we plot the proportion of configurations run on
the x-axis and the proportion of fault detection of the sam-
ple on the y-axis [8]. This metric can range from 0 to 1
(representing a proportion of the total plot area). If faults
are found early in the sample, the left part of the curve will
be high resulting in a larger area. The metric we use for
CIT samples is called the Normalized Average Percentage
of Faults Detected (NAPFD) (see [14] for a more thorough
explanation). If we examine Figure 3 on page 8 we see that
the topmost line has the earliest fault detection and com-
poses the largest area (.82).

The NAPFD can be formalized as follows.

NAPFD = p− CF1 + CF2 + ... + CFm

m× n
+

p

2n

We have n configurations and m faults. CFi represents the
number of the configuration (when testing in prioritized or-
der) in which Fault i is found and p is equal to the num-
ber of faults detected by the prioritized set of configurations
suite divided by the number of faults detected in the full
CIT sample. If a fault, i, is never detected we set CFi = 0.
Given our example in Figure 1-D, suppose we run only 3
configurations, then n = 3 and m = 5. With the first con-
figuration order C3, C4, C1, faults 3, 4, 5 are detected by
the first configuration, C3, and faults 1,2 can be detected by
C4, so CF3 = CF4 = CF5 = 1 while CF1 = CF2 = 2,
and the NAPFD is 0.7. Similarly, with the second configu-
ration order, C2, C4, C1, CF1 = CF5 = 1, CF2 = 2, and
CF3 = CF4 = 0 since faults 3, 4 are not detected by these
three configurations. The NAPFD value is 0.43.

The NAPFD assumes that all faults have the same sever-
ity and configurations have the same cost. In [7], Elbaum
et al. address this limitation and propose a metric, APFDc,
which considers the differences in fault severity and cost of
the test case. However, in the APFDc the area measured is
still that of fault detection. We would instead like to mea-
sure the area of cost where the x-axis is the proportion of the
cost (or time in our case) and the y-axis remains the propor-
tion of faults detected. We have developed a new metric to

capture this area based on the NAPFD that we call NAPFDc

where c indicates cost.

NAPFDc = p− cF1 + cF2 + ... + cFm

m× n
+

p

2n

In this formula there are m faults and n units of cost (or
time). cFi stands for the number (or units) required to find
Fault i (we use discrete units of time). As before, p is equal
to the number of faults detected by the prioritized set of
configurations divided by the number of faults detected in
the full CIT sample and if a fault , i, is never detected we
set cFi = 0.

4. Case Study

In this section we describe our case study designed to ex-
amine the cost-benefits in testing system configurable soft-
ware. We answer the following two research questions.

RQ1: Can we effectively prioritize software environments
for in-house testing using historical field failure data?

RQ2: Is there a cost-benefit tradeoff for evaluating priori-
tization of system configurable software?

We begin by describing our software subjects and then
discuss our dependent, independent variables, metrics and
experimental methodology.

4.1. Objects of Analysis

For this study we have used two consecutive major re-
leases of a legacy product that allows enterprise customers
to manage and customize organizational content for users
and groups across an organization.1 The product has over a
million source LOC and has been in the market for several
releases and multiple years. Hundreds of enterprise cus-
tomers are using this product to manage content from a sin-
gle point of access. A typical mini-release of this product
extends to a year, while a major release spans up to three
years. The product team is spread around the globe with
teams in US, India, China and Europe. The development
team is moving away from a waterfall type model to a more
agile process model with iterations of four weeks in length.
The product has to satisfy the enterprise level customer re-
quirements and must meet the aggressive reliability and per-
formance requirements. Additionally, the product must en-
sure coverage across all supported environments. The sys-
tem chosen has many environmental options, but for this
study we focus on three major ones which have traditionally
been the most problematic in the field and mirrors where we
would therefore focus testing.

1For proprietary reasons we cannot release the name or specific mod-
ules of this system

4.2. Experimental Methodology
4.2.1 Data Collection
During the course of more than two years field failures from
both releases were recorded. All of these failures are con-
sidered high severity failures because they escaped in-house
testing and were due to complex combinations of configura-
tions. The combinations of factors at the root cause of these
failures were also recorded. Faults were associated with a
pair of factors. More than 150 faults were considered for
version one. Fewer faults were found in the second version
(approximately 1/3). From this information we developed
two fault matrices. The first is a standard matrix and the
second is a pairwise matrix that considers the fault detec-
tion for pairs of values.

4.2.2 Prioritization
We use the first release to determine a prioritization weight-
ing for the second release. We focus on three environ-
ments that were deemed to be the most important in fault-
proneness based on the failure reports and choose to focus
test efforts on this portion of the configuration model. This
methodology is in line with what would happen in practice.

According to the fault reports the following environ-
ments contributed to almost all of the fielded failures: Oper-
ating System (O), Database (D) and Security Protocol (S).
We determined this based on the fact, the majority of fail-
ures were reported only when specific values were used for
one of these, and remained undetected otherwise.

There are five operating systems, three databases and
seven security protocols. For the factor-value prioritiza-
tion method we summed all faults reported for a particu-
lar factor-value and calculated the percentages of each with
respect to all faults to determine the importance for prioriti-
zation. (Faults can be associated with more than one factor-
value at a time so these are not unique faults). For the pair-
wise prioritization technique we calculated the faults asso-
ciated with pairs of configurations that were most often as-
sociated with the fault.

Table 1 shows the factor-value model along with the per-
centage of faults associated with each value for the first ver-
sion. The bold rows show the totals for each factor. As can
be seen the operating system was associated with 72% of
the faults in this version, while security was associated with
16%. Within operating system, O1 has the highest fault per-
centage while O3 has the least.

4.3. Dependent and Independent Variables
Our independent variables are the various prioritization

models described in Section 3, factor-value, pairwise, cost-
based and unordered. For each technique we generate five
samples of configurations and average the results. We use
more than one sample for each technique to reduce the
chance that a random choice made during the algorithm is
causing the observed result rather than the technique itself.

Factor Value Percent Faults

Operating System 72.0
O1 41.0
O2 16.3
O3 0.4
O4 6.6
O5 35.7

Database 11.9
D1 61.2
D2 29.1
D3 9.7

Security 16.1
S1 22.0
S2 9.4
S3 24.7
S4 2.2
S5 26.0
S6 6.3
S7 9.4

Table 1. Version 1 - Faults Recorded

Pair Fault Pair Fault Pair Fault
Percent Percent Percent

O1, D1 17.4 O3, S7 0.6 O5, D2 4.9
O1, D2 5.8 O4, D1 2.1 O5, D3 4.3
O1, S1 6.7 O4, D2 2.7 O5, S1 4.9
O1, S2 4.0 O4, S1 1.2 O5, S2 0.9
O1, S3 2.1 O4, S2 0.6 O5, S3 9.8
O1, S4 0.3 O4, S6 1.8 O5, S4 1.2
O1, S5 7.9 O4, S3 0.3 O5, S5 5.8
O3, S3 0.6 O4, S5 0.3 O5, S6 0.9
O3, S5 0.6 O5, D1 7.3 O5, S7 4.9

Table 2. Version 1 - Pairwise Fault Matrix

For the factor-value prioritization model we first multi-
plied each percentage (as a fraction) by the weight of the
factor and then used this as our weight. For instance for
O1, we use the weight 0.30 and for O2 the weight is 0.12.
In this way, the operating system values become the most
important, followed by the security and finally the database
values. We then created a CIT sample which resulted in 35
configurations. The model is a CA(35; 513171).

For the pairwise prioritization we use the data from Table
2. This table shows the pairs of values that are attributed to a
set of faults. The percentage is the percentage of total faults
attributed to this pair. All pairs not shown are zero. For in-
stance, O1 combined with D1 constitutes approximately 17
percent of the faults while O1 combined with D2 accounts
for 5.8 percent of the faults. The prioritized CIT samples
for the cost-based prioritization is larger (45 configurations)
due to repetition of some pairs early on in the sample.

For RQ1 we use the first two prioritization techniques
described, factor-value, and pairwise and compare this with
the unordered CIT sample. For RQ2 we compare a single
prioritization technique, factor-value, against the cost-based
prioritization technique based on the results of RQ1. We
also include the unordered technique as a baseline.

Our dependent variables for RQ1 are the faults that could
have been detected based on the fault matrix from the sec-
ond fault matrix, and the NAPFD described earlier. For
RQ2 we consider time to change configurations and there-
fore examine the NAPFDc as well as analyze the cumulative
fault detection that will occur within specific time intervals.
We compare this with the NAPFD results.

4.3.1 Compile/Build Cost
For each prioritization schedule we calculate the time to
compile and build the system as follows. Based on our ex-
perience it takes an average of one day to install/setup a new
operating system and one half day for either the database or
security environment. The absolute time will vary slightly
between testers. An operating system change requires that
the testers re-install both the security and database configu-
rations, therefore each time an environment is changed we
add time to install and configure all three. Using 8 hours
as the time for a single day, we associate 16 hours for an
operating system change (this includes both security and
database) and 4 hours for any changes to the database and/or
security. Since the security and database have no dependen-
cies the time is additive. Next we assume that the time to run
all tests on each configuration is a constant and is dropped
from our equation. If for example we begin with a configu-
ration consisting of O1, D3 and S7 the cost is 16 hours. If
we next test O1, D1 and S6 the cost is 8 hours with a cu-
mulative cost of 24 hours. Had we selected O1, D3 and S6
the cost would be only 20 hours (4 for the re-configuration).
Likewise if we change operating systems and run O2, D3
and S7 (or any other combination of database and security)
the cost is 16 for a total of 32 hours. We use these costs
to weight the cost-based prioritization and to measure the
NAPFDc for each configuration sample.

4.4. Threats to Validity

Despite our best efforts these experiments suffer from
some threats to validity. We outline the most significant
ones here. We use only two consecutive releases of a single
subject for our study. The subject used however is a large,
real, deployed system and the faults reported are actual cus-
tomer faults found in the field. We wrote several programs
to manipulate our data, however we have cross validated
these by hand to reduce the likelihood of any errors. One of
the authors of this paper analyzed the fault reports from the
field to develop the fault matrices. Although this is a threat,
the other authors were not involved in this process and the
matrices were developed and fixed before any prioritization
techniques were applied. We also conducted this study ret-
rospectively so we cannot be sure that the faults would have
been uncovered by our in-house test suites. There is some
variance in the time taken to install and compile the con-
figurations between different testers. In this study we used
an average time to compensate for this variance. Finally,
there are other metrics that we may have used, but we have
chosen ones that we believe are relevant to the problem and
useful for others faced with the same problems.

5. Results

In this section we present the results of our study to an-
swer our two research questions.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

F
a

u
lt
 D

e
te

c
ti
o

n
 R

a
te

Number of Configurations

!"#$%&'(")*+,

-".&/.0+,

12%&3+&+3,

Figure 2. Cumulative Fault Detection

To answer RQ1 we look at both the average percentage
of faults detected across the 5 samples for each technique
(factor-value, pairwise and unordered) and and the NAPFD
values. We examine these values at configuration intervals
which mimics a scenario where time is exhausted before
testing is complete [13]. We show data for a single config-
uration and then show increments of 5 configurations up to
35 which is the size of the full CIT sample. These are shown
in Table 3. As can be seen the NAPFD is quite low for all
techniques after one configuration (.04 -.15); less than 1/3
of the faults are found. But it is as high as .76 for pairwise
after 25 configurations are run. At this point 94 percent of
the faults are detected, but only 83 percent of the faults are
detected in the unordered sample. The unordered technique
finds over 50 percent of the faults after 15 configurations,
but at this point both prioritization techniques already detect
over 80 percent of the faults and have NAPFDs of .63 and
.67 for factor-value and pairwise respectively. There does
not seem to be a large difference between the factor-value
and the pairwise prioritization techniques.

We also examine the cumulative fault detection in Figure
2. In this figure the x-axis is the number of configurations
tested and the y-axis is the cumulative fault detection as a
ratio of the total fault detection. Once again it seems that
both of the fault-based prioritization orders outperform the
unordered, however both seem relatively close in their abil-
ity to increase early fault detection.
RQ1: Summary We conclude from this data that we can ef-
fectively prioritize system configurations using the history
of escaped faults for a subsequent version of our program.
We do not draw any conclusions about which of the priori-
tization techniques is stronger.

To answer RQ2 we show only a single prioritization
technique from RQ1 to compare with the cost-based tech-
nique. We have chosen factor-value because it does not re-
quire a specialized fault matrix, but the data allows us to
draw the same conclusions for RQ1 as from pairwise. We
begin with an examination of the graph for the NAPFD.
This is shown in Figure 3. As has already been illustrated
in Table 3 the factor-value NAPFD is higher than the un-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
a

u
lt
 D

e
te

c
ti
o

n
 R

a
te

Proportion of Configurations Run

Factor-Value

Cost-Based

Unordered

 0.82

 0.71

 0.58

Figure 3. NAPFD Comparison

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

C
u

m
u

la
ti
v
e

 C
o

s
t

(w
e

e
k
s
)

Number of Configurations

Factor-Value

Cost-Based

Unordered

Figure 4. Cumulative Cost in Weeks

ordered sample. The area is also greater than the cost-based
technique indicating that the factor-value prioritization is
better. However, we must examine this further to under-
stand cost.

A different view of the data shows the cumulative cost
(Figure 4), In this graph we show increments of weeks
on the y-axis and the number of configurations on the x-
axis. We see that the lowest cost is found in the cost-based
method which is not unexpected. However, we also see that
this cost is lower even after the other samples have run all
of their tests. The cost-based sample has 45 (instead of 35)
configurations in its sample, yet it finished in less than 6
weeks time (the horizontal line). The other techniques com-
plete only about 1/2 of their configurations after 6 weeks.
In fact to run the full CIT samples for unordered or factor-
value takes between 10-12 weeks.

If we take a different view, we can graph the fault detec-
tion (y-axis) against the time in weeks (x-axis). We show
this view of our data as Figure 5. Now it becomes clear that
the cost-based prioritization, although it has a much lower
NAPFD, improves early fault detection if we consider time.
In 2 weeks it finds almost 90% of the faults and it finds
all faults and is finished testing all configurations after 6
weeks. The factor-value prioritization on the other hand has
only found 56% of the faults.

Given this result we next examine the NAPFDc to see if
this new metric is a better way to analyze the cost versus
configuration tradeoff. We look at the NAPFDc for differ-
ent time budgets. Figure 6 shows the graph for two differ-

Unordered Factor-Value Prioritization Pairwise Prioritization
Number Avg. % Faults Avg. Avg. % Faults Avg. Avg. % Faults Avg.
Configs Detected NAPFD Detected NAPFD Detected NAPFD

1 8 0.04 29 0.15 29 0.15
5 21 0.14 56 0.42 66 0.44
10 34 0.20 75 0.55 80 0.59
15 52 0.29 81 0.63 85 0.67
20 72 0.37 96 0.69 88 0.72
25 83 0.45 98 0.75 94 0.76
30 89 0.52 99 0.79 97 0.79
35 100 0.58 100 0.82 100 0.82

Table 3. Fault Detection by Technique

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14

F
a
u
lt
 D

e
te

c
ti
o
n
 R

a
te

Cumulative Cost (weeks)

Factor-Value

Cost-Based

Unordered

Figure 5. Cumulative Fault Detection By Week

ent time periods, 6 weeks and 13 weeks. We have chosen 6
weeks because that is when the cost-based technique com-
pletes and 13 weeks to allow for the completion of all other
techniques. As can be seen the NAPFDc for the cost-based
technique is the highest for both graphs after some initial
time period. For the first few percentage points of time,
factor-value outperforms cost-based, but then at some point
we see an inversion (around 30% for 6 weeks and 10% for
13 weeks). The factor-value prioritization is always better
than the unordered samples.
RQ2: Summary For this question we believe that the an-
swer is yes. There is a cost-benefit tradeoff that should not
be ignored if significant time is incurred in setting up and
configuring individual environments for testing. This can
be viewed by graphing faults vs. cost and through our new
metric, the NAPFDc.

6. Related Work

There has been a considerable body of literature on test
case prioritization [5, 6, 7, 16, 17, 19]. We focus on a few
related threads of work. Do et al. [5, 6] present an eco-
nomic model of cost for prioritization and conduct empiri-
cal studies to to examine how different time constraints af-
fect the performance of test case prioritization techniques.
Their model considers multiple costs and benefits, includ-
ing the cost of test setup, test execution, and revenue. In our

work, we also address different time constraints, but focus
on configurations (not test cases) and measure only the cost
of configuration setup. Walcott et al. [19] examine time-
aware test case prioritization to find an ordering which will
always run within a given time limit and will have the high-
est possible fault detection based. The work focuses on the
test case rather than the configuration and it assumes that
each test case costs the same to run.

Yilmaz et al. [20] sample the configurations space with
CIT techniques and conduct fault characterization on the
results. Their work considers only a single version of a sys-
tem and does not prioritize. In a related thread Robinson et
al. [15] propose a technique to detect latent faults based on
configuration changes. Configuration changes are mapped
to the underlying code and tests are then selected or created
that cover the impacted areas. This work only addresses
configuration relevant faults in a single version of a system.
Our own work on configuration prioritization [13] presents
different prioritization techniques at the configuration level
however it does not consider the cost variance of changing
between different configurations.

Kimoto et al. [11] compare two algorithms to generate
CIT samples for configurations that minimize the change
cost. Their work is similar to ours in that they consider the
time to switch configurations. However, they only present
algorithms for minimizing the sample size and evaluate
them on synthetic data. They do not consider fault detec-
tion or compare with other prioritization techniques.

7. Conclusions and Future Work
In this paper we have presented a case study on two ver-

sions of an enterprise software system. We have shown that
we can prioritize the configurations based on prior fault his-
tory to improve early fault detection. We have also shown
that the traditional view of configuration prioritization does
not hold when dealing with system configurable software
that has involved setup between each configuration. In fact
we have shown that the time to install and configure config-
urations between consecutive system test runs must be con-
sidered when time is limited. By examining prioritization
in this new light we see that the actual time to run the same

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
a
u
lt
 D

e
te

c
ti
o
n
 R

a
te

Proportion of Time

Factor-Value

Cost-Based

Unordered

 0.81

 0.69

 0.30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

!"!# !"$# !"%# !"&# !"'# !"(# !")# !"*# !"+# !",# $"!#

F
a

u
lt
 D

e
te

c
ti
o

n
 R

a
te

Proportion of Time

Factor-Value

Cost-Based

Unordered

0.92

 0.85

 0.6

Figure 6. NAPFDc: 6 Week (left) and 13 Week (right) Budget

numbers of configurations varies greatly depending on the
order in which we run them.

In future work we plan to apply this method to a newer
release of the system to discover if this works in practice.
We also plan to examine other costs of system testing and
to apply this to other configurable systems.

Acknowledgments
This work was supported by IBM and in part by the Na-

tional Science Foundation through award CCF-0747009, by
the Air Force Office of Scientific Research through award
FA9550-09-1-0129 and the Defense Advanced Research
Projects Agency, award HR0011-09-1-0031. We thank G.
Rothermel for comments on a draft of this work.

.
References

[1] B. Boehm and V. Basili. Software defect reduction top 10
list. In IEEE Computer, pages 135–137, Jan. 2001.

[2] R. Bryce and C. Colbourn. Prioritized interaction testing for
pair-wise coverage with seeding and constraints. Journal
of Information and Software Technology, 48(10):960–970,
2006.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pat-
ton. The AETG system: an approach to testing based on
combinatorial design. IEEE Transactions on Software Engi-
neering, 23(7):437–444, 1997.

[4] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mu-
gridge. Constructing test suites for interaction testing. In
International Conference on Software Engineering, pages
38–48, May 2003.

[5] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An
empirical study of the effect of time constraints on the cost-
benefits of regression testing. In ACM SIGSOFT Symposium
on Foundations of Software Engineering, pages 71–82, Nov
2008.

[6] H. Do and G. Rothermel. Using sensitivity analysis to cre-
ate simplified economic models for regression testing. In
International Symposium on Software Testing and Analysis,
pages 51–62, Jul 2008.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporat-
ing varng test costs and fault severities into test case priori-
tization. In International Conference on Software Engineer-
ing, pages 329–338, May 2001.

[8] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Transac-
tions on Software Engineering, 28(2):159–182, Feb 2002.

[9] D. E. House and W. F. Newman. Testing large software
products. SIGSOFT Software Engineering Notes, 14(2):71–
77, 1989.

[10] IEEE. IEEE, Standard 610.12-1990,IEEE Standard Glos-
sary of Software Engineering Terminology. 1990.

[11] S. Kimoto, T. Tsuchiya, and T. Kikuno. Pairwise testing in
the presence of configuration change cost. In International
Conference on Secure System Integration and Reliability Im-
provement, pages 32–38, 2008.

[12] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault in-
teractions and implications for software testing. IEEE Trans-
actions on Software Engineering, 30(6):418–421, 2004.

[13] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-
aware regression testing: An empirical study of sampling
and prioritization. In International Symposium on Software
Testing and Analysis, pages 75–85, Jul 2008.

[14] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial in-
teraction regression testing: A study of test case generation
and prioritization. In International Conference on Software
Maintenance, pages 255–264, Oct 2007.

[15] B. Robinson and L. White. Testing of user-configurable soft-
ware systems using firewalls. In International Symposium
on Software Reliability Engineering, pages 177–186, Nov.
2008.

[16] G. Rothermel and M. J. Harrold. Analyzing regression test
selection techniques. IEEE Transactions on Software Engi-
neering, 22(8):529–551, Aug. 1996.

[17] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Prior-
itizing test cases for regression testing. IEEE Transactions
on Software Engineering, 27(10):929–948, Oct. 2001.

[18] H. Srikanth, L. Williams, and J. Osborne. System test case
prioritization of new and regression test cases. In Interna-
tional Symposium on Empirical Software Engineering (IS-
ESE), pages 63–73, 2005.

[19] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time-aware test suite prioritization. In International
Symposium on Software Testing and Analysis, pages 1–11,
Jul 2006.

[20] C. Yilmaz, M. B. Cohen, and A. Porter. Covering ar-
rays for efficient fault characterization in complex configu-
ration spaces. IEEE Transactions on Software Engineering,
31(1):20–34, Jan. 2006.

