Improving the Testing and Testability of
Software Product Lines

Isis Cabral, Myra B. Cohen, and Gregg Rothermel
{icabral,myra,grother}@cse.unl.edu

Department of Computer Science,University of Nebraska-Lincoln

Abstract. Software Product Line (SPL) engineering offers several ad-
vantages in the development of families of software products. There is
still a need, however, for better understanding of testability issues and
for testing techniques that can operate cost-effectively on SPLs. In this
paper we consider these testability issues and highlight some differences
between optional versus alternative features. We then provide a graph
based testing approach called the FIG Basis Path method that selects
products and features for testing based on a feature dependency graph.
We conduct a case study on several non-trivial SPLs and show that for
these subjects, the FIG Basis Path method is as effective as testing all
products, but tests no more than 24% of the products in the SPL.

1 Introduction

Software product line (SPL) engineering has been shown to improve both the
efficiency of the software development process and the quality of the software
developed, by allowing engineers to systematically build families of products with
well defined and managed sets of re-usable assets [4]. A large body of research on
SPL engineering has focused on reuse of core program assets [4,15,17], refined
feature modeling [8,9, 23], and code generation techniques [2,7]. There has also
been research on testing software product lines [3,6,10,24].

Despite this prior work, there still remains a need to improve reuse during
the software testing process. Kolb and Muthig [15] point out that testing has not
made the same advances as other parts of the SPL lifecyle and remains a bot-
tleneck in SPL development. Their work highlights issues related to testability
of SPLs, where testability is viewed as the ease with which one can incorporate
testing into the development cycle and increase reuse while retaining a high rate
of fault detection. They comment that the primary strength of SPL develop-
ment, variability, also has the greatest impact on reducing testability [15], due
to the combinatorial explosion of feature combinations that occurs as variabil-
ity increases [6,17]. In other related work, Jaring et al. [13] point out that the
testability of a product line can be viewed as a function of the binding time of
variability, and that providing early binding can increase the ability to test prod-
ucts early. McGregor [17] and Cohen et al. [6] have suggested ways to reduce
the combinatorial space by sampling products for testing using combinatorial
interaction testing [5]; this work does not address testability issues.

While all of this work aims at the core problem of software product line
testing, none of it specifically considers reuse by examining the feature model
and analyzing testability at a finer grain. In this work we consider testing from
this perspective. We drill down into the issue of variability and analyze different
types of variability, e.g. optional features versus alternative choice features, as
they relate to testability. We conjecture that while the alternative choice features
have a negative impact on testability by increasing the number of products,
optional choice features do not. We then propose a new black box approach for
testing software product lines that attends to these issues. We hypothesize that
our approach can reduce testing effort while retaining good fault detection in
the presence of alternative features.

Our approach, which we call the FIG Basis Path method, translates a feature
model into a feature inclusion graph that is, in essence, a feature model depen-
dence structure. We associate all features with sets of test cases and then walk
this graph to generate a subset of independent paths (or products) that cover
the graph for testing. This is analogous to the basis path approach for testing
software applications [26] which finds a “possibly minimal” set of paths to cover
all nodes in a program’s control flow graph.

We report results of a case study on two software product lines. In both SPLs
we can achieve the same fault detection results as we can testing all products.
Further analysis shows that we can also use a grouped variant of the Basis Path
algorithm to test subfamilies of the SPL as defined by the alternative features.

2 Background and Related Work

There has been a lot of work on feature modeling of which we present only a
small subset [1,2,14,19,21]. In a feature model, a product line can be represented
by mandatory and variable features. The variable features may be optional or
alternative choices. In their simplest form alternative choice features allow for
an exclusive or relationship. We can also have cardinalities assigned that allow
for 0...n or 1...n relationships where the first number is the lower bound and the
second number is an upper bound. An exclusive or alternative feature is usually
the default for alternative features in a model and is a 1...1 relationship.

We present a small product line to help to explain these ideas and to illus-
trate our techniques. The feature model for this product line (shown using the
Orthogonal Variability Model (OVM)) [19] is seen in Figure 1 on the left (the
right portion of this figure will be discussed later). This product line defines a
family of 42 calculator programs. It has a core set of features, Exit and Clear
and one optional feature, Backspace. Users can select one of three languages
(English, Chinese or Spanish) used in the menus, titles and help. Finally the
memory features include Memory Store and Recall.

The mandatory features in our sample product line are Core and Language.
Within each of these there is some variation. Store is an Or feature from Memory
and it is required only if the Memory Recall feature is selected.

Feature models have been used for generative programming [2,7,23], provid-
ing a model based approach to the realization of product lines. Feature models

Calculator SPL Memory

\
\ 7\
Backspace
EI P | Language 7 \‘z‘emol-yvp

Clear(C) - ?‘1s1\ Store ™

- ! ~
E Chinese E anish

English

oreVP
A

il N

Fig. 1. Calculator SPL Feature Model

have also been used to model the product space for instantiating products for
testing [3,6,24]; for instance, the work of Uzuncaova et al. [24] transforms the fea-
ture model into an Alloy specification and uses this to generate test cases, while
the work of Cohen et al. [6] uses the feature model to define samples of prod-
ucts that should be included in testing. Similarly, the PLUTO methodology [3]
uses the feature model to develop extended use cases that contain variability
which can formulate a full set of test cases for the family of products. Schiirr
et al. [22] use a classification tree method for testing from the feature model.
Other extensions of feature models have been for staged generation [8] or mod-
eling constraints [9]. None of this work explicitly uses the feature model as we
do, in a graph based representation, that can be used to select products (and
test cases) for testing. The work of Bachmeyer et al. [1] also uses a graph based
representation of a feature model, but they do not use this in the testing process.
Other work on software testing product lines includes that of Denger et
al. [10] who present an empirical study to evaluate the difficulty of detecting
faults in the common versus variable portions of an SPL code base concluding
that the types of faults found in these two portions of the code differ. They use
both white and black box techniques but do not test from the feature model.

3 Leveraging Redundancy for Testing via Feature Models

We begin with the conjecture that black box testing of software product lines can
be made more efficient and effective by designing the product line architecture
(and resulting feature model) in a manner that supports reuse of product line
testing results across different products. Others have argued that variability
decreases testability [15], but we believe that there should be a finer grained
examination of this argument. Both optional and alternative features can be
viewed as points of variability in a software product line, yet we believe they

may behave differently from a black box testing approach and provide different
opportunities to reduce testing effort, as we explain next.

Our methodology involves the following steps: (1) transform the feature
model into a feature inclusion graph; (2) associate use cases with each feature;
(3) develop test cases for each use case; (4) Select basis paths on this graph; and
(5) for each path (product), run all test cases for the included features.

3.1 Feature Inclusion Graph

In this section we present a transformation of the feature model into a graph that
we call a feature inclusion graph (FIG), which represents feature dependencies
derived from the feature model. In a FIG, all features that appear on a non-
branching path are included in the same product, while branches represent the
variability in feature composition. We view the FIG as having a loose connection
to the control flow graphs used in software testing; a control flow graph shows
explicit flow of control in a program and can be used to select test cases for
white box testing. Harrold [12] has suggested that regression testing techniques
can be applied to different abstractions of software artifacts as long as they
can be represented as a graph and tests can be associated with edges. In our
scenario we do not have control flow; rather, our paths represent a combination
of features and its dependencies, but we use a common method from control flow
based testing to find a basis path set [26] for the graph — a set of independent
paths through the program graph.

The FIG contains all features of the SPL. We next show how it is derived
using different parts of a feature model from OVM [19]. In OVM, the core con-
cepts of an SPL model are the variation points and variants. Each variation
point (VP) has at least one variant and the edges between VPs and variants in-
dicate dependencies. In a FIG we apply the same OVM concepts. A FIG has two
main components, features and edges. The edges represent the variability of our
diagram making explicit all possible paths that we can traverse to generate the
minimum set of products. The features are classified as Mandatory, Optional, or
Alternative. Next, we describe how each feature and edge are represented in the
FIG and how they interact with each other.

In a FIG, a variation point is represented as a triangle and variants are
represented as rounded rectangles. A Mandatory dependency is represented by a
solid edge between a VP and variant, while an optional dependency uses a dashed
edge. A diamond represents the variability of optional and alternative features.
Figure 2 shows an example of Mandatory and Optional features represented
in the OVM language and FIG diagram, respectively. In this example we see
on the left (Figure 2) two mandatory features in OVM (B and C). These are
both required in the same flow of control therefore we put them on a single
non-branching edge of our FIG (lower bottom of figure). Note that either B or
C can come first since the dependency is only important at the branches (e.g.
this is a partial order). On the right (Figure 2) we show two optional features
(again B and C). Here we have added three branched edges. The middle edge
represents the case in which neither feature is included, while each of the other

s
Vs
s

~
<
\

B C E

A Exit EI Backspace ‘
“ Clear(C) 1 N
1
T e
OOy
\ \A/ ,
Fig. 2. Mandatory and Optional Features Fig. 3. Calculator Example

edges allow for the inclusion of either feature. We also include a back edge for
each feature since it is possible to include a second feature. Assuming that we
allow only one instance of a feature for a single product, we can see that there
are four possibilities in this graph: we can have no optional features, one of B or
C, or both B and C.

From a testability perspective we view this type of variation to be more
testable than some other types of variation, since we can include both features (B
and C) in a single product. With two optional features we have a 75% reduction
in the number of products that we must instantiate in order to test all features.
We can apply this to the Core Variation Point and its variants in the calculator
SPL. The Core Variation Point has two mandatory features (Exit and Clear
(C)) and one optional feature shown in Figure 3. As we can see in this case the
optional feature (backspace) can be included in the first product tested providing
us with a single instance.

Fig. 4. Alternative Features

Alternative features are features that are mutually exclusive and present a
more difficult challenge for testability. We argue that these are the true deter-
rents to testability since only one feature can be present in an SPL at a time.
Even with these types of variation points we may still gain some benefit in re-
usability. Figure 4 shows three examples of alternative features in OVM (top)

and its corresponding FIG (bottom). The first example has cardinality 0...1, i.e.,
this is really an optional feature and we can include at most one of the two al-
ternatives. In this case we expect to see a small benefit from the optional feature
characteristics. We need two of the three possible products to cover all features.

The second example (middle) shows the exclusive or 1...1 relationship. This
is the least testable type of variation since it forces the combinatorial space to
increase. Here we have two dashed edges to B and C, no back edges and no
middle edge. We have two possible products and need to test both to cover the
features of this graph. We see no reduction.

The last example (right) is when we have a 1...n relationship; the figure shows
a 1...2 relationship. We have a back edge from each feature, and we can cover
all features using a single product even though there are three products (B, BC,
and C), by including both B and C in our product for testing.

The graphs do not explicitly incorporate constraints in the representation.
We maintain a separate set of constraints that we can check during our graph
traversal, to ensure consistency, but will examine this in future work.

3.2 Selection Algorithms

In this section we present four methods for selecting products for testing. The
first two use the FIG and the second two do not. The first algorithm is our
core algorithm called the FIG Basis Path algorithm. The idea is to select a set
of independent paths in the program that cover all features in the graph. We
then present a variant of this called the FIG Grouped Basis Path algorithm, that
tests subfamilies of the product line grouped by the alternative features in the
SPL. We believe that this algorithm will be incorporated into the development
process more smoothly, where one particular subfamily is created at a time. The
third algorithm does not use the FIG, but is used in our empirical comparison
as a method that we believe will be less expensive; we call this the All Features
algorithm. This algorithm greedily chooses products until all features in the
product line have been included at least once. The last method we discuss is
also used as a basis for comparison. We expect that it will be stronger than the
other comparison method, but also perhaps more expensive. This is the Covering
Array method suggested by McGregor [17] and Cohen et al. [6]. In this method
we select a subset of products from the feature model that cover all pairs of
features in the SPL. We describe each method in more detail next.

The FIG Basis Path Algorithm (Algorithm 1) is based on the basis path
algorithms in [26]. In this algorithm we assume that the FIG is built and that
we have a set of constraints on the features. We begin by setting the basis path
set (BP) to be empty. We then iterate through all paths in the FIG in a depth
first traversal order (to ensure we find the longest paths first).In the algorithm
we reference the authors use a breadth first search, but our objective is slightly
different. For each path we check the constraint set to see if the path is feasible.
If it is, we then check if it is linearly independent with the other paths in BP.
(In our study we performed this step manually, however, it can be automated
with a constraint solver.) If it is independent we add it to BP. For example,

Algorithm 1 FIG Basis Path Algorithm
BasisPath(FIG)

BP =0
for all paths, P, € FIG (using DFS order) do
if P is feasible then
if LinearlyIndependent(P, BP) then
add P to BP
end if
end if
end for

suppose we want to select the minimum set of products in the calculator SPL.
We show the FIG on the right portion of Figure 1. For each path, we evaluate if
it is feasible by checking existing constraints. In this case, all paths that include
the Memory Recall variant and do not include the Store variant will be removed
from the final set of paths (Products). We next begin our selection. In the first
path, 6 variants are selected, containing all of the mandatory features (Exit, and
Clear (C)) and optional features (Backspace), one language - Spanish - and two
variants from the Memory variant point: Store (M+) and Recall. The second
path substitutes the Store variant from the previous path (M+) to MS. The
third and fourth paths change only the Language variant.

The FIG Grouped Basis Path Algorithm is a modification of the FIG
Basis Path algorithm, in which subfamilies of the product line are grouped based
on the alternative features. We begin by generating all of the paths in the FIG
in depth first order and check each for feasibility. We then group all feasible
paths by alternative feature groups, where all paths that include a particular
alternative feature are included in its group. If there are paths that contain no
alternative features, we create an additional group to hold these. For example,
suppose we want to group based on the language VP in the calculator SPL. In
this case we would find all paths that contain Spanish and put them into one
group. All that contain Chinese go into in another, and the rest that contain
English are put into another. Once we have the grouping, we use the Basis Path
algorithm for each group where the FIG is replaced with the set of paths in the
group. We can skip checking feasibility since this has already been performed.

Our third algorithm, the All Features Algorithm, does not require a FIG.
This algorithm is less expensive than the first two because it does not involve
enumerating paths and walking the graph. Instead its goal is to include a set of
products that just cover all features. We begin by placing all features into one of
two sets, Mandatory and all others. We include additional constraints to enforce
our alternative features, then we order features in descending order based on the
the number of constraints on that feature. We keep a set we call used features
which starts as empty. For each product, we greedily add features (putting them
in the constraint order described) into a product, skipping those that are already
in the used feature set (unless mandatory or part of a requires constraint), or
that violate a constraint, until we have a product including the greatest number
of unused features. We then update the used features set. Once all features have
been included in at least one product we are done. For the calculator SPL,

we create 3 products. The first product contains the mandatory features, the
Chinese language and all variants associated with the Memory variant. The
second and third products do not include any variant from Memory, but the
Language variant is changed to English and Spanish, respectively.

Our fourth algorithm, the Covering Array Method uses a pair-wise ap-
proach and covers all pairs of features in at least one product. This technique
tests interactions between features and has been shown to be effective in testing
many types of configurable software [20]. The base object used to select the sam-
ple is a covering array. A few differences can be noted between this and our other
methods. First, in the Covering Array method we consider optional features as
being both included and not included. Therefore we would not be able to simply
test a product with both A and B but would need to test A with and without B,
and B with and without A as well as neither feature. While possibly a stronger
testing criterion we expect that this method will be more expensive and may
not be helped by improved testability as we have described it.

4 Case Study

To gain insights into the operation of the FIG basis path approach we conducted
a case study, comparing the approach to the three other approaches described
in Section 3. Our goal is to address the following research questions:

RQ1: How does the FIG basis method compare with other test methods?
RQ2: Can we reduce the effort required to test groups of products through the
grouped basis method?

4.1 Study Objects

As objects of study we selected two software product lines, both developed by
other researchers and used in previous studies of SPLs. The first SPL is a Graph
Product Line (GPL) created by Lopez-Herrejon and Batory [16]; it is built us-
ing the AHEAD methodology and implemented as a series of .jak files [2] (an
extension of the Java language). The second SPL is a Mobile Software Product
Line [11] created by Lancaster University and widely used in previous studies.

Table 1 lists, for each of our software product lines, the total number of lines
of code excluding comments (LOCs), the number of classes present (Classes),
the number of products that can be created (Products), the number of faults
present (Faults), the number of variants classified as Optional, Alternative, and
Or (Variants) and the number of constraints classified as Require and Exclude
(Constraints). The total number of lines of code (LOCs) corresponds to the
product that has the most features selected.

The Graph Software Product Line (GPL) is an SPL that implements a fam-
ily of graph algorithms in which each product is a type of graph. The code base
includes 1435 lines of jak code and consists of 15 features. A graph is either
directed or undirected. Edges can be weighted or unweighted. A graph product
requires at most one search algorithm: depth-first search (DFS) or breath-first

Table 1. Objects of Study

Variants Constraints
LOCs [Classes|Products|Faults|Opt.|Alt.|Or|Require|Exclude
GPL 1435 (jak)| 12 38 60 0 4 |1 10 1
MobileMedia - V5 2220 37 16 10 4 0|0 0 0
MobileMedia - V6 2173 38 24 10 4 0|1 4 0

search (BFS), and at most one or more of the following algorithms: vertex num-
bering, connected components, strongly connected components, cycle checking,
minimum spanning tree and single-source shortest path. The GPL feature model
contains a total of 80 instances without constraints. After reading the documen-
tation for the GPL we created a feature model for it, as shown in Figure 5. To
create this model we needed to resolve some ambiguity in the documentation
and we also reduced the possible cardinality for combinations for the variant
point Alg. Ultimately we obtained 38 possible instances of the product.

Drriwer

El Connected

Src

GTP |
Je S|
Vi ~

1.1
™ [N ~ Addinfa
E sight \ i s ~ 1
Eunwelght ! ED" EEFSE DFS e
! - ~o
Elundir ECvc\e ElNumber

Fig. 5. Graph SPL Feature Model

Mobile Media is an SPL that implements mobile applications that manipulate
media (photos, music and video) on mobile devices. Mobile Media has evolved
since 2005 to support several types of media. Mobile Media has nine releases
implemented in two paradigms: aspect oriented and object oriented.

For our study, we selected two versions of Mobile Media that were developed
using the object oriented paradigm, versions 5 and 6. In version 5, users are
allowed to manipulate image files in different mobile devices as well as send mes-
sages, set favorite pictures, copy images and perform other operations. Version
6 is a refactored version of version 5 and it includes one more variation point.
In this version, users are allowed to manipulate two different types of media:
photo and music. Both versions share a few operations but they have different
underlying code bases due to the refactoring. The Mobile Media Feature Model
allows us to derive a total of 16 and 24 instances for version 5 and 6, respectively.
Figure 6 presents the feature model for Mobile Media and its evolution.

=
Photoffamagertell = =~ —— _ _ _

EI GopyPhoto

Copyhedia i SMSTransfer

Basic
SMS Gperations

Basic
Gperations

SMS_Operations

GeatePhoto ViewPheto SendPhoto

DeletePhoto EditPhotoLabel ReceivePnoto

(Mobile Media - V5) (Mobile Media - V6)

Fig. 6. Mobile Media SPL Feature Model

4.2 Test Suites

To conduct our study test suites were developed by associating each feature with
its correlated use case requirements. For each feature, we developed concrete test
cases that cover the primary scenario as well the alternatives use cases. We used
the documentation provided with the object to generate these. All test cases
were created by other researchers in our group not including the authors of this
paper. For the GPL product line, the test suites are command line test cases. For
Mobile Media the test cases are GUI based and implemented using a combination
of two open source testing tools, Microemulator [18] and Abbot [25].

4.3 Fault Seeding

In the Mobile Media application, during the course of working with the system,
we found 10 actual faults that caused the system to working improperly.We
corrected each fault based on the requirements provided with the application
and then re-seeded each fault into a single faulty version. We thus had 10 faulty
versions of this application for both version 5 and 6.

For the GPL application, we provided six students in our laboratory, who
were not involved with the study itself and had no knowledge of the approaches
being studied, with a document on an approach for doing fault seeding and
subsets of the .jak files. We asked each student to seed 10 faults into their set of
files. This yielded 60 faulty versions of this application.

4.4 Study Conduct

To conduct our study we applied each of the four testing approaches to each of
our fault free objects. We executed these test cases on our faulty versions, and
to determine whether a test case detected a fault, we compared the output of
the faulty version under that test with the output of the original (non-faulty)
version of the object under that test. All of our executions were performed on a
1.8GHz Intel Pentium M with 1GB of system memory running SuSE Linux 10.1
platform equipped with the Java 1.5 JDK.

5 Results

In this section we examine the results of our research questions. We begin with
RQ1 which asks how the FIG Basis Path method compares with other methods.
Table 2 shows the data for both applications. The first column shows the number
of products tested, followed by the number of test cases run. The rightmost
column shows the number of faults detected by each technique.

In considering this research question we examine three methods: the Cover-
ing Array method, the All Features method, and the Basis Path method, and
we compare these to an All Products method which performs an exhaustive
enumeration of all products. (The Grouped Basis Path method is considered for
RQ2.) As the table shows, in the GPL of the 60 faults inserted, 54 were found
when we tested all products. Both the Covering Array method and the Basis
Path method also found 54 faults, however the Basis Path method used fewer
than half as many products as the Covering Array method and 39.7% of the
test cases. The least expensive method was All Features (5 products and 26 test
cases); however, this technique missed 3 faults when compared with the other
techniques.

Table 2. Number of Test Cases and Faults Detected by Technique: Mobile Media SPL

Graph SPL
Total Number of Products: 38
Total Number of Faults: 60
Method # Products Test Cases Faults Detected
Covering Array 20 141 54
All Features 5 26 51
Basis Path 9 56 54
All Products 38 256 54
Mobile Media 5 Mobile Media 6
Total Number of Products: 16 Total Number of Products: 24
Total Number of Faults: 10 Total Number of Faults: 10
Test | #Faults #Test|# Faults
Method # Products| Cases |Detected||# Products|Cases|Detected
Covering Array 5 190 7 6 201 10
All Features 1 49 7 2 71 10
Basis Path 1 49 7 2 85 10
All Products 16 348 7 24 839 10

We next consider the results for the two versions of Mobile Media. In this case
we see that all methods found all of the faults in both versions. For version 5,
the All Features and Basis Path methods required only one product and 49 test
cases, compared with 348 test cases for the All Products method and 190 test
cases for the Covering Array method. For version 6, the All Features and Basis
Path methods required only two products with 71 and 85 test cases respectively,
compared with 839 test cases for the All Products method and 201 test cases
for the Covering Array method. We discuss the implications of these results in
the next section.

To answer RQ2 we examine data shown in Table 3. This table shows the
data grouped by the alternative features of each SPL. The left side of the table

- e
o . —
>
—_ —_
o
3 E
3 3
w 8 - —_—r w
3 3 -~
H - ©
H 1 2
2 ! &
©
w |
w -
1
1
1
<4 L
T T T T T T T
SSSP ScC CcC MSTK MSTP Photo Music
Graph SPL Products Mobile Media Products

Fig. 7. Number of Test Cases and Faults Detected Grouped by Alternative Features

shows data for all feasible paths in each group, including the number of products,
number of test cases, and number of faults detected. The right side of the table
shows the same data for the selected products using the Basis Path method.
In every group of products we see that we can reduce the number of products
tested while retaining the fault detection capability. For GPL, our reduction in
products ranges from 67% (CC) to 33% (Shortest, MTSP, MSTK). In addition
we have used between 37% and 79% of the test cases required for all feasible
paths, resulting in at least a 20% reduction in the required test cases. For Mobile
Media, we had a reduction of between 71.2% and 77.7% of the test cases and
75% (Music) to 80% (Photo) of the products.

Table 3. Number of Test Cases and Faults Detected by Alternative Variants

Graph SPL

All Feasible Paths Grouped Basis Path
Variant |#Product|#TC|#Faults||#Product|#TC|#Faults
Shortest 3 19 27 2 13 27
SCC 4 34 28 2 17 28
CcC 6 46 21 2 17 21
MSTP 3 14 26 2 11 26
MSTK 3 29 29 2 24 29

Mobile Media v6

All Feasible Paths Grouped Basis Path
Variant |#Product|#TC|#Faults||#Product|#TC|#Faults
Music 4 139 10 1 40 10
Photo 5 220 10 1 49 10

In an additional analysis we wanted to determine whether any subset of n
paths could have been selected with the same fault detection results within each
group. For GPL, we performed a pair wise comparison between products since
we have selected two products for each group. For each group we combined all
combinations of 2-paths and calculated the fault detection. We show this data in
the form of a box plot (Figure 7). In each plot we see a range of fault detection,

indicating that the Basis Path method is providing the best fault detection (we
know that it is at the top of the box plot since all basis path results provided
the same fault detection as the full set of feasible paths in that group). Since the
Grouped Basis Path for Mobile Media selected only one product from the whole
set of feasible products, we evaluated the fault detection for all products that
belongs to the same group. The data in Figure 7 shows that there is a range
of fault detection between products in the Photo variant, but products with
the Music variant selected have the same fault detection. This confirms that we
cannot randomly select a subset of products within groups and necessarily be
assured of the same fault detection.

5.1 Discussion

For RQ1, based on this data we believe that the FIG Basis Path method is
efficient at finding faults and is at least as effective as other techniques. In the
product line that we define as less testable due to the alternative features (GPL)
we see that the Basis Path method performed the best. It found as many faults
as the other techniques for 60% fewer test cases than the CA technique, and
55% fewer products. In the Mobile Media application, where we believe we have
a more testable product due to the small number of alternative features, we see
that the FIG Basis Path was as effective at finding faults as all other methods,
and costs the same as the least expensive method, All Features. It was less
expensive than the covering array method as well. Given these results we suggest
that although the cost of computing the FIG Basis Path may be slightly higher
than that for All Features, the technique appears to work well for both types of
feature model elements (alternative and optional), therefore it is the more robust
technique. Further evaluation is needed to understand the efficiency of using a
FIG with higher granularity variants. We believe there is a correlation between
the granularity in the feature models and the efficiency of our technique. We also
have analyzed where the faults lie within our applications and many faults were
located in the mandatory and optional features. We need to further analyze the
impact of faults that are embedded inside of the variant portions of the code to
fully understand the effectiveness of these techniques.

For RQ2, we see that it is possible to test parts of the product space more
efficiently using the Grouped Basis Path method when the feature model has
alternative variant points. In the GPL application, where we believe we have a
less testable product due to the variability and a large number of requirements
constraints, we were able to select a small set of products that revealed all our
faults with fewer test cases and products. Furthermore, the boxplots tell us that
we cannot simply select the paths to test randomly. This suggests a further
use of the FIG Basis Path method, where we want to focus on parts of the
SPL at a time or where development is taking place in stages, based on specific
variation points. Conversely, the Grouped Basis Path method did not show any
improvement over the FIG Basis Path method in the Mobile Media application.
We believe the small number of constraints of the Mobile Media application has
some influence over the method. We conclude for RQ2 that we can use FIG
Grouped Basis Path to reduce test effort.

6 Conclusions and Future Work

In this paper we have used the feature model to drive test case selection and
have asked if we can reduce test effort while retaining fault detection capability
through a graph-based selection algorithm. Using the FIG Basis Path method
we were able to detect the same number of faults as we did when testing all
products, by testing as few as 6% and no more than 24% of products in our
SPLs, and running only 10% of the test cases as All Products in the best case.
The most effective non-graph technique, the Covering Array method, required
us to test between 13% and 54% of products respectively in the same systems. In
the subject with only optional features, we see that our method does as well as
all other techniques in fault detection and costs no more than the least expensive
technique, All Features.

In future work we plan to examine this technique on larger software product
lines with more complex faults. We will also examine other variations of the
feature model such as 1...n relationships and the impact of constraints on our
model.

Acknowledgments

We thank B. Gavin, T. Yu, S. Huang, A. Sung, S. Kuttal and W. Xu for help
in seeding faults and W. Motycka for developing the test suite for the subjects
used in this work. We also thank Eduardo Figueiredo for providing us the source
of Mobile Media Software Product Line. This work was supported in part by
NSF under grants CCF-0747009 and CNS-0454203, and by the AFOSR through
award FA9550-09-1-0129.

References

1. R. C. Bachmeyer and H. S. Delugach. A conceptual graph approach to feature
modeling. In Intl. Conference on Conceptual Structures, pages 179-191, 2007.

2. D. Batory. Scaling step-wise refinement. [EEE Transactions on Software Engi-
neering, 30(6):355-371, 2004.

3. A. Bertolino, A. Fantechi, S. Gnesi, and G. Lami. Product line use cases: Scenario-
based specification and testing of requirements. In Lecture Notes in Computer
Science, pages 425-445, 2006.

4. P. Clements and L. M. Northrop. Software Product Lines: Practices and Patterns.
Addison Wesley, 2001.

5. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system:
an approach to testing based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437-444, 1997.

6. M. B. Cohen, M. B. Dwyer, and J.Shi. Coverage and adequacy in software product
line testing. In Workshop on the Role of Architecture for Testing and Analysis,
pages 53-63, July 2006.

7. K. Czarnecki. Overview of generative software development. In Unconventional
Programming Paradigms, pages 313-328, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through special-
ization and multilevel configuration of feature models. Software Process: Improve-
ment and Practice, pages 143—169, 2005.

K. Czarnecki, S. She, and A. Wasowski. Sample spaces and feature models: There
and back again. In Intl. Software Product Line Conference, pages 22-31, 2008.

C. Denger and R. Kolb. Testing and inspecting reusable product line components:
First empirical results. In Intl. Symposium on Empirical Software Engineering,
pages 184-193, 2006.

E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia,
S. Soares, F. Ferrari, S. Khan, F. Castor Filho, and F. Dantas. Evolving soft-
ware product lines with aspects: an empirical study on design stability. In Intl.
Conference on Software Engineering, pages 261-270, 2008.

M. J. Harrold. Architecture-based regression testing of evolving systems. In Work-
shop on the Role of Architecture for Testing and Analysis, pages 7377, July 1998.
M. Jaring and J. Krikhaar, R. L.and Bosch. Modeling variability and testability in-
teraction in software product line engineering. In Intl. Conference on Composition-
Based Software Systems, pages 120-129, 2008.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, November 1990.

R. Kolb and D. Muthig. Making testing product lines more efficient by improving
the testability of product line architectures. In Workshop on Role of Software
Architecture for Testing and Analysis, pages 22—27. ACM, 2006.

R. E. Lopez-Herrejon and D. S. Batory. A standard problem for evaluating product-
line methodologies. In Intl. Conference on Generative and Component-Based Soft-
ware Engineering, pages 10-24, 2001.

J. D. McGregor. Testing a software product line (cmu/sei-2001-tr-022). Technical
report, Carnegie Mellon Software Engineering Institute, 2001.

MicroEmulator. http://www.microemu.org/, 2010.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering.
Springer, Berlin, 2005.

X. Qu, M.B.Cohen, and G.Rothermel. Configuration-aware regression testing: An
empirical study of sampling and prioritization. In International Symposium on
Software Testing and Analysis, pages 75-85, July 2008.

P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: A survey and
a formal semantics. In Intl. Requirements Engineering Conference, pages 136-145,
2006.

A. Schiirr, S. Oster, and F. Markert. Model-driven software product line testing:
An integrated approach. In Theory and Practice of Computer Science, pages 112—
131, 2010.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product
lines. In Intl. Conference on Generative Programming and Component Engineering,
pages 95-104, 2007.

E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing software product
lines using incremental test generation. In Intl. Symposium on Software Reliability
Engineering, pages 249-258, 2008.

T. Wall. Abbot Java GUI test framework.
http://abbot.sourceforge.net/doc/overview.shtml, 2010.

J. Yan and J. Zhang. An efficient method to generate feasible paths for basis path
testing. Information Processing Letters, 107(3-4):87 — 92, 2008.

