Ordering Disks for Double Erasure Codes

Myra B. Cohen
Computer Science Department
University of Auckland
Private Bag 92019
Auckland, New Zealand

myra@cs.auckland.ac.nz

ABSTRACT

Disk arrays have been designed with two competing goals
in mind, the ability to reconstruct erased disks (reliability),
and the speed with which information can be read, written,
and reconstructed (performance). The substantial loss in
performance of write operations as reliability requirements
increase has resulted in an emphasis on performance at the
expense of reliability. This has proved acceptable given the
relatively small numbers of disks in current disk arrays. We
develop a method for improving the performance of write
operations in disk arrays capable of correcting any double
erasure, by ordering the columns of the erasure code to min-
imize the amount of parity information that requires updat-
ing. For large disk arrays, this affords a method to support
the reliability needed without the generally accepted loss of
performance.

1. INTRODUCTION

There has been a sustained exponential improvement in the
density and performance of semiconductor technology. This
has brought faster microprocessors along with larger and
faster primary memory devices. Improvements in secondary
storage systems have not kept pace. The performance of
RISC microprocessors has been increasing by more than
50% per year [18]; disk transfer rates have only improved by
about 20% each year [5]. This has transformed many CPU-
bound applications to I/O-bound. Amdahl [2] predicted
three decades ago that, unless accompanied by correspond-
ing increases in secondary storage performance, substantial
increases in microprocessor performance only bring about
marginal improvements in overall system performance. So-
lutions for this problem exploit parallelism. The most suc-
cessful of these is the disk array architecture. This organizes
many independent small disks into one large logical disk.
Disk arrays improve performance by employing data strip-
ing [19], which spreads data to multiple disks. A single I/O
operation at the user level is mapped by software into a num-

Charles J. Colbourn
Computer Science Department
University of Vermont
Burlington, VT 05405
US.A.

colbourn@cs.uvm.edu

ber of independent operations on the stripe units. Then I/O
requests can be processed in parallel by separate disks, im-
proving effective transfer rates. Disk striping also enhances
uniform load balance.

Many applications, such as database and transaction pro-
cessing systems, require both high throughput and high data
availability of their storage systems. The most demanding
of these applications require continuous operation. In terms
of a storage system, this requires that we satisfy all requests
for data even in the presence of disk failures. We must also
reconstruct the content of a failed disk onto a replacement
disk, restoring it to a fault-free state. The more disks we
have in a disk array, the higher the performance we obtain.
Unfortunately, large disk arrays have low reliability. These
requirements underpin the introduction of redundancy to
tolerate disk failures. Disk arrays which incorporate redun-
dancy are known as Redundant Arrays of Independent Disks
(RAID). Redundancy does not come without cost, however.
Typically, as we increase the reliability of our system, we
reduce the performance. This paper examines one method
of minimizing this cost when adding redundancy.

1.1 Reliability vs. Performance

When a disk suffers a catastrophic failure, its data is ren-
dered unreadable, and it is effectively erased. We therefore
call such a disk failure an erasure. For convenience, we also
call a set of k disk failures a k-erasure. Components in disk
arrays allow us to determine exactly where erasures have
occurred.

The performance of basic disk operations, reads and writes,
can be assessed by examining the user response time, the
largest component of which is the number and size of disk
accesses required. Arrays are typically designed under the
assumption that read operations in the absence of any disk
failures are the most common, while write operations in
fault-free mode are the next most common. Disk failures
do occur, however. Reliability assesses the ability of the
disk array to restore the contents of one or more erased
disks, but the performance issues now involve more than
reads and writes. When disks fail, performance is impacted
by the cost of reconstructing these disks, either online or
offline.

Multiple erasure disk arrays are often designed with the
primary goals of minimizing costs for reads and writes in

fault-free mode, and the secondary goal of minimizing re-
construction costs for erased disks. However, we argue that
an additional secondary goal should be to improve perfor-
mance of read and write operations further, by a judicious
choice of the erasure code used in the disk array. In this
way, reliability and performance objectives do not need to
be in disagreement.

Hellerstein et al. [11] pioneered the study of erasure-resilient
codes for large disk arrays. They examined structural con-
ditions which guarantee high erasure correction capability,
a theme which is pursued in [4, 7]. They also undertook
an analysis which reveals the need for multiple erasure cor-
rection when the number of disks is ‘large’. They showed
that an array of one thousand disks which protects against
one error, even with periodic daily or weekly repairs, has a
lower reliability than an individual disk. Their analysis as-
sumes that erasures are detected when they occur; the truth
for disk arrays is worsened if there are latent sector faults,
which may remain undetected for long periods; see [1]. As
arrays grow in size, the need for greater redundancy without
a reduction in performance becomes apparent.

Reliability is evidently a major concern. However, the trade-
off between reliability and performance has typically been
resolved in favor of performance, and consequently multi-
ple erasure systems are often dismissed as not commercially
viable. Most currently available systems handle only one
disk failure [16]. Improvements in the performance of re-
construction have been the subject of an excellent analysis
[20], but it is the ‘poor’ performance of basic read and write
operations in a fault-free environment which have limited
the practical use of multiple erasure systems. We therefore
focus on how the choice of erasure code, and the manner
in which it is used, affects performance of basic operations,
especially in fault-free mode.

2. PRELIMINARIES

First we introduce a general framework for erasure codes.
Let x = (z1,...,zn) € {0,1}". The weight of x, denoted
wt(x), is the number Y ., ;. The support of x, denoted
supp(x), is the set {i | z; = 1}. A stripe unit is the mini-
mum amount of contiguous user data allocated to one disk
before any data is allocated to any other disk. The size of
a stripe unit must be an integral number of sectors, and
is often the minimum unit of update used by system soft-
ware. Because of this, we can view each disk as a collec-
tion of (disjoint) stripe units. A parity stripe, or simply
stripe, is a selection of one stripe unit from each disk, usu-
ally at the ‘same’ physical address; see [10]. An [n,c, k]-
erasure-resilient code, or briefly an [n, ¢, k]-ERC, consists of
an encoding algorithm £ and a decoding algorithm D with
the following properties. Given an n-tuple S, £ produces
an (n + c)-tuple £(S) = (1(9),...,En+c(S)) (a stripe),
called a codeword, such that for any I C {1,...,n}, where
|I| = n+c—k, the decoding algorithm D is able to recover S
from (I,{&;(S) |i € I}). We call an [n,c, k]-ERC a k-ERC
when the parameters n and ¢ are not needed.

To see the relevance of [n,c, k]-ERCs to the protection of
data loss in a RAID, suppose that we have data which is
partitioned into an n-tuple S of stripe units. We encode S
into a codeword (£1(S), ... ,Entc(S)) using an [n.c, k]-ERC,

Then for 1 < i < n+c, we store £;(S) on disk i of a disk array
with n + ¢ disks. The definition of an [n, ¢, k]-ERC ensures
that we can reconstruct the original data in the presence of
up to k erasures.

For performance reasons, the codes that we study satisfy two
conditions, as in [11]. First, we restrict our attention to sys-
tematic codes. An [n,c, k]-ERC is systematic if £;(S) = S;
for 1 < i < mn, where S = (S1,...,Sn). The stripe units
&i(S), for n < i < n + ¢, are checks. Using a systematic
code, the encoding function leaves the data unmodified on
some disks, to avoid read penalties when there are no disk
failures. Secondly, we restrict ourselves to linear codes. En-
coding a stripe employs component-wise modulo two arith-
metic (exclusive-or, or parity) @, so that it can be performed
efficiently.

The first restriction allows us to separate disks into informa-
tion disks, which contain the original data, and check disks,
which contain the checks. In fact, the two restrictions to-
gether ensure that an [n, ¢, k]-ERC can be described in terms
of a ¢ x (n + ¢) matrix H = [C | I] over F», where I is the
¢ % ¢ identity matrix and C'is a ¢ x n matrix that determines
the equations for the checks. This is a well-known result in
the theory of error-correcting codes [15, 22]. The matrix H
is the parity-check matriz of the code; see Figure 1 for an
example, in which two different orderings of the columns of
the same parity check matrix are shown. Given the parity-
check matrix H = [C' | I] of a k-ERC, we can think of the
rows of C (as well as the rows and columns of I) as being
indexed by the check disks of a disk array, and the columns
of C as being indexed by the information disks. The content
of check disk ¢ is the modulo two sum of the content of the
information disks whose corresponding columns in C' have a
one in row .

2.1 Metrics

One metric of an erasure-resilient code is particularly im-
portant: The update penalty is the number of check disks
whose content must be changed when an update is made in
the content of a given information disk. If m check disks are
involved in a write, then the parallelism of the disk array
is reduced by a factor of m + 1. So update penalties must
be kept as small as possible. The update penalties of an
erasure-resilient code with parity-check matrix H = [C | I]
are the column sums of C. Since updates of data are usually
much more frequent than the reconstruction of data due to
erasures, the update penalties are typically of most concern.

If an erasure-resilient code is able to tolerate all k-erasures,
then every update must affect the content of at least k + 1
disks (one information disk and k check disks). Thus, the
update penalties of a k-ERC are at least k. (A more gen-
eral result is proved in [20].) In view of the importance of
minimizing update penalties, we consider only those k-ERCs
for which the update penalties are all equal to k, the mini-
mum possible. We speak, therefore, of the update penalty,
instead of the update penalties of an erasure-resilient code.
The corresponding parity-check matrix H = [C | I] has col-
umn sums for C all equal to k.

Various multiple erasure systems employ an underlying era-
sure code, but aggregate multiple logical disks onto a single

0123456 78910111213 14
10(0010010110{1 0 0 0 O
1110001001010 1 0 0 O
1201100010010 0 1 0 O
13(0101100010{0 0 0 1 O
14(1001011000{0 0 0 0 1

0123456 7809|1011 1213 14
1011000001101 0 0 0 0
1100000110110 1 0 0 0
1200011011000 0 1 0 0
13)0110110000/0 0 0 1 0
1410110000010 0 0 0 1

Figure 1: Parity Check Matrices for the Full 2-Code, ¢ =5

physical disk in order to reduce the cost of I/O accesses [3,
23]; in this paper, we assume that the logical disks in the
erasure code are in one-to-one correspondence with the phys-
ical disks of the array in assessing numbers of disk accesses,
however.

To set the stage, we note that this update penalty for which
we have optimized the code is the true penalty when one
stripe unit is written in fault-free mode. Yet, in actual op-
eration of a disk array, striping data means that we are typ-
ically reading from (and writing to) a selection of logically
consecutive disks. The fundamental question, which seems
not to have been addressed, is whether we can reduce the
update cost per disk, by taking advantage of our knowledge
that many consecutive disks are being written. (For infor-
mation on sizes of typical disk writes, see [17], for example.)

3. DISK OPERATIONS

Our goal is to examine performance, particularly user re-
sponse time, in a disk array employing a k-erasure code. To
do this, it is essential to determine how the basic I/O oper-
ations are completed. Each I/O operation maps the logical
data to a location spanning one or more disks. This begins
by determining the stripe or stripes employed.

3.1 Read operations

For each stripe involved, the relevant information disks in
that stripe are also computed. A disk read is issued for each
information disk needed. If none is erased or otherwise un-
available, these reads provide all of the needed data and no
translation is required. In the event that disks have been lost
or erased, the erasure code is then used to determine a set of
further disks whose contents are sufficient to reconstruct the
contents of all lost disks on that stripe, if such a set exists.
Then reading these further disks, and employing their con-
tents to reconstruct the lost disks, we have completed the
read operation. Normally, the check or parity disks are only
examined for read operations when an information disk has
failed and the equation for reconstruction requires the parity
disk. This can lead to a severe problem with latent errors on
parity disks, since a parity disk failure may lie undetected
until an information disk failure requires access to that par-
ity disk. Rotation of the placement of parity information
alleviates this problem when a whole disk is failed, but does
not address the latent failure of individual sectors. From a
performance viewpoint, the critical issue in the absence of
erasures is the determination of a suitable block size within
the stripe; when erasures are present, reconstruction costs
are dominated by the group size (number of disks required in
a reconstruction), although multiple erasure correction re-
quires the determination of the smallest set of further disks
sufficient to permit reconstruction; see, for example, [6, 9].

3.2 Writes in single erasure systems

Write operations are substantially more complicated, as a
result of the fundamental need to keep the parity informa-
tion current. In systems that correct a single erasure, two
methods of writing have been extensively studied, based on
an observed difference between ‘small’ and ‘large’ writes; see
[12], for example. Again, we consider only the portion of a
write which lies within a single stripe. In the simplest case,
suppose that we are writing new contents to an informa-
tion disk fo, and there is a check disk co whose contents
are defined by co = @f;é fi- Let co and fo denote the disk
contents prior to the write operation, and ¢ and fo be the
desired contents afterwards. We must calculate ¢p, and are
provided with fo.

A stripe write

1. reads all information disks fi,..., fe—1;
2. writes fo;
3. calculates ¢ = fo ® @f;ll fi; and

4. writes Cg.

This requires ¢ — 1 disk reads, and two disk writes.

A read-modify-write

1. reads ¢p and on;
2. writes fo;
3. calculates ¢g = J?o @ éo D %; and

4. writes cg.

This requires two disk reads and two disk writes. Evidently,
when writing a single block, read-modify-write appears to
have a substantial performance advantage. However, when
multiple disks are to be written, this advantage is less clear.
If, for example, the disks fo, ..., fs—1 are all being written,
and c is the only parity disk involved, then stripe write re-
quires the same number of disk accesses, replacing s —1 disk
reads by disk writes. However, read-modify-write requires
s —1 additional reads and s — 1 additional writes, for a total
of 2s + 2 disk accesses. Thus when 2s +2 > £+ 1, we can
expect read-modify-write to involve more disk accesses than
does the stripe write. See, for example, [12, 14].

For the stripe write and the read-modify-write, it is cru-
cial that a method be available for caching or buffering the

contents of the disks accessed within the stripe. We assume
throughout the presence of a buffer which is capable of hold-
ing the contents of the stripe across all disks (see [18]); oth-
erwise, writes of each disk within the stripe must be treated
as independent, and in general check disks are written and
rewritten for each information disk written (see [7, 21]).

3.3 Writes in multiple erasure systems

When multiple erasure codes are used, analogues of the
stripe write and read-modify-write appear not to have been
analyzed. We look at these next. We assume throughout
that a k-erasure code is in use, and that the update penalty
is k for each information disk (i.e., that each information
disk participates in the equations of exactly k parity disks).
We suppose that, within a certain stripe, information disks
fir--., fi+s—1 are being written, and that there are no failed
disks at present. Each of the information disks to be written
participates in k equations in the erasure code, and so the
number u of check disks to be updated must be at least k
and at most sk. A read-modify-write need only read the
current contents of the u check disks to be updated and the
current contents of the s information disks being updated,
compute the new contents of the parity disks (including, in
the exclusive or computation, the old and new contents of
all information disks checked by this check disk), and then
write back to the s information and u check disks. See Fig-
ure 2 for a depiction of the read-modify-write operation in
accessing information disks 4 and 5, using the full 2-code
shown at left in Figure 1. In this case, disks 4, 5, 10, 11, 13,
and 14 are read, new parities are calculated, and the same
disks written. A total of 2(s + u) disk accesses is made in
general.

A stripe write (more properly, an equation write) initially de-
termines, for all equations involving at least one of f;, . ..
the u check disks and all ¢ information disks other than
fiy--., fi+s—1 which participate in these equations. Figure
3 shows a stripe write, again writing information disks 4 and
5 using the full 2-code shown at left in Figure 1. In this case,
disks 0, 1, 2, 3,6, 7, 8, 9, 10, 11, 13, and 14 are read; then
disks 4, 5, 10, 11, 13, and 14 are written. A stripe write in
general requires ¢ disk reads, the computation of the u new
parity disk contents, and disk writes to s information and
u parity disks. Hence a total of ¢ + s + u disk accesses are
employed. It follows that, when ¢t < s + u, a stripe write
is preferable (assuming that disk accesses dominate perfor-
mance) to a read-modify-write.

Optimizing performance involves selecting the appropriate
occasions to do stripe write or read-modify-write, and this
can be calculated ‘on the fly’ by determining the parameters
t and w for making the comparison above. However, it in-
volves more. While s is fixed as a function of the user write
request, the parameters ¢ and u are properties of the specific
erasure code chosen.

Minimizing ¢ appears not to have been studied. However, in
an erasure code with group size £, when writing s consecu-
tive disks involving u check disks, an obvious upper bound
is t < uf. Since ¢ is fixed by the code, the minimization of ¢
is, in some sense, related to the minimization of the number
u of check disks. The number u of parity disks to be up-
dated affects the performance both of stripe writes and of

7fi+-9—17

read-modify-writes, although the effect in the latter appears
to be more pronounced. It is therefore sensible to ask for
erasure codes to minimize this parameter u. Naturally, v is
a function of the number of (consecutive) disks to be read,
and so we write us to be the average number of check disks
updated when s consecutive information disks are updated.
Evidently, u1 = k, the update penalty. Thus “* can be
thought of as the observed update penalty per disk when s
consecutive disks are updated. Now us > us—1 for all s > 1,
and so us > k.

In [7, 8], the following strategy is followed: Select an erasure
code with the desired erasure correction properties, and then
order the columns of the parity check matrix to minimize us
for small values of s. This can be expected to improve small
writes, and hence the read-modify-write, primarily. See Fig-
ure 1 for two column orderings. To make the discussion
more concrete, consider 2-erasure codes. As Hellerstein et
al. [11] note, a code with minimum update penalty two is
obtained by having each information disk checked by two
check disks, with no two information disks sharing the same
two check disks. Treating check disks as vertices in a graph,
each information disk can be viewed as an edge connecting
the two check disks that check the information disk. Thus a
2-erasure code with minimum update penalty can be repre-
sented as a graph. They further observe that, to minimize
check disk overhead, the best graph is the complete graph
(containing all possible edges) since repeated edges violate
the requirement that a double erasure be recoverable. They
call the erasure code arising from the complete graph the
full 2-code. Figure 1 is the full 2-code from the complete
graph on five vertices, K.

For the full 2-code, we can determine t precisely. Suppose
that there are c check disks in total. Then there are (5) infor-
mation disks. Now suppose that s consecutive information
disks are to be written, and that these s information disks
participate in u of the equations in the code. The essential
property of the full 2-code is that every two check disks share
exactly one information disk (i.e., that one which forms the
edge between the vertices corresponding to the two check
disks). Hence since the group sizes are all equal to c—1 (the
degree of a vertex in the complete graph on c¢ vertices), we
can calculate t + s = u(c — 1) — (). Using Figure 1, it can
be verified that every two rows have exactly one column in
which both have a 1 entry, and that this column is different
if a different pair of rows is selected. Hence if u rows are
selected, and all columns containing a 1 entry in these rows
counted, we can compute the total number of 1’s (u(c — 1))
and subtract one for each of the (;) columns containing two
1 entries within the u chosen rows.

Thus ¢ is an increasing function of w in the range 2 < u < ¢;
minimizing w therefore also minimizes t. As with single
erasure correcting codes, the appropriate point at which to
transition from read-modify-write to stripe or equation write
can be determined precisely. To prefer stripe write, we re-
quire that u(c—1)— (3) —s < s+u; i.e., that u(2c—u—3) <
4s. When all check disks are involved (u = c), this requires
that s > @, so stripe write is preferred when (slightly
less than) half the information disks, or more, are being
written.

READ-MODIFY WRITE —- Disk 4 and 5

58..88..

Information

Do

1. Pre—read information disks and check disks
2. Compute change in parity by the xor of new data with old data and old parity.

3. Write new data and check disks.

Total I/O operations: 6 reads, 6 writes = 12

Figure 2: Read-Modify-Write

STRIPE WRITE —- Disk 4 and 5

Information

LB EE

el

Check

Equations that need to be calculated before a write to the check disks can occur:

Check Disk10=20 5 @ 7@
Check Disk 11=00 4 & 7

Check Disk13=1 3 @ 4@
Check Disk 14=00 3 @ 5@

Total I/O operations: 8 reads, 6 writes = 14

8
9
8
6

Figure 3: Stripe write

We have found that, both for stripe write and for read-
modify-write, the number of disk accesses for the full 2-code
is minimized by the smallest choice for u, the number of
check disks to be updated. Hence it is natural to ask how
the code can be ordered so as to minimize this observed
update penalty. We treat this next.

4. THE ORDERING PROBLEM

We consider the scenario in which all update penalties are
two, and double erasure correction is supported. In order
to minimize the fraction of storage assigned to redundant
information, the appropriate erasure code is a full 2-code.
However, we are free to reorder the columns (either phys-
ically or logically) of the parity check matrix. Further, in
order to minimize write cost using either stripe writes or
read-modify-writes of s consecutive disks, our basic task is
to minimize u,. Let us translate this into graph-theoretic
vernacular.

Let G = (V, E) be a graph on n = |V| vertices and m = |E|
edges. Let d < m be a positive integer, called the window.
The window represents the number of (consecutive) stripe
units involved in a typical write. Let E = {eo,e1,...,€m—1}.
An edge ordering of G is a permutation 7 of the edge indices
{0,1,...,m — 1}. For the graph G with edge ordering ,
and window d, define the m + 1 — d graphs {Gf’d :0<i <
m — d} by setting GT'? to be the graph containing edges
{ex@), en(it1)s---s€n(i+d—1)}- Then, when sets of d edges
that are consecutive under the ordering 7 are accessed, the

graphs {Gf’d} represent the possible subgraphs accessed.

A Ladder Ordering: [AB, AC, BC, CD, BD, AD]

c B window =3
Other Ordering: [AB, BC, AD, AC, BD, CD]

A A
Original Graph B
c B C
D
Triangle Star

Figure 4: Edge ordering

Figure 4 shows a complete graph for ¢ = 4 on the left and two
different edge permutations, 71 and m2. The 3-access cost
for the first ordering is Lf”“ = %, while the 3-access
cost for the second ordering is Lﬁ““ = %. The cost of
accessing a subgraph of d consecutive edges is measured by
the sum of the number of edges and the number of vertices of
nonzero degree in the subgraph. Since each has d edges, any
reduction in access cost results from varying the numbers of
vertices. Hence we define nf’d to be the number of vertices of
nonzero degree in Gf’d. The d-access cost of graph G under

m—d m,d
ordering 7 is defined to be %

of K, is precisely the parameter u4 for the full 2-code with
(%) information disks, under the ordering 7 on the columns.

. The d-access cost

Hence we can transform the column ordering problem for
codes to an edge ordering problem for graphs.

We have examined the existence of optimal edge orderings
for small values of d [8]. When d = 3, the access cost for
a specific subgraph is at least 3, and at most 6. Access
cost 3 occurs when three consecutive edges induce a tri-
angle; only triangles yield this minimum. However, when
{ei, €it+1,eit2} forms a triangle, {e;_1,e;,e;4+1} cannot also
form a triangle unless n = 3, since e;_1 = e;y2 is necessary
if both are triangles. Now when three consecutive edges do
not form a triangle, the fewest vertices induced is four, which
can be realized by a path or a star on three edges. Figure
4 shows the first triangle and the first star of the ladder or-
dering for K4. These correspond to the first two windows.
If you continue to the next window, beginning with the edge
BC, you find another triangle. The minimum 3-access cost
of K, is at least 3.5 when () =0 (mod 2), and is at least

3.5 — ———— when (}) =1 (mod 2).

The goal is to produce an edge ordering for K, which re-
alizes this minimum when d = 3. The specific question
addressed is: When can the (’2’) edges of the complete graph
K, be ordered by a permutation 7, so that among the (’2’) -2
subgraphs {GT*}, at least 1(n® —n—6) subgraphs form tri-
angles? Such an ordering of the edges of K, is a ladder or-
dering of pairs. When (g) is even, this requires that for any
three consecutive edges e;,eit1,€i4+2 with 0 <7 < (’2’) -3,
the subgraph induced by these three edges contains three
vertices when i is even, and four vertices when i is odd.

In [8], we have proved:

THEOREM 1. A ladder ordering of pairs for K,, exists ez-
cept possibly when n € {15,18,22}.

This has an immediate application to the determination of
maximum access cost:

LEMMA 1. There is an edge ordering of K, with (2f —4)-
mazimum access cost less than or equal to f.

In general, this does not lead to a low maximum access cost
for large values of d. Nevertheless, in order to assess the
value of edge orderings in improving the performance of
fault-free writes, it provides an optimal method for ordering
the full 2-code for small values of d. In [8], it is established
that the 3-access cost can range from 3.5 to 6, and so one
ought to anticipate a genuine reduction in disk accesses if
the better ordering is chosen.

This theory supports our statement that an erasure code
need not incur an update penalty in writing d disks that is
d times the update penalty on a single disk. However, it is
certainly within reason to ask whether the theory is reflected
in a more practical setting.

5. SIMULATION RESULTS

RaidSim [12, 13, 14] is a simulation program written at the
University of California at Berkeley [13]. Holland [12] ex-

tends it to include declustered parity and online reconstruc-
tion. The raidSim program models disk reads and writes
over time. The modified version described in [12] is used as
the starting point for our experiments. The original RAID
and declustered parity code is left intact. RaidSim is ex-
tended to include mappings for the full 2-code, to tolerate
multiple disk failures, and to detect the existence of unre-
coverable erasures of three or more disks.

The preliminary experiments reported here use a full-2 code
with ¢ = 9, having 36 information disks and 9 check disks.
The group size is 9. Since writes across a small number
of disks are simulated, they are implemented only as read-
modify writes. A physical rotation scheme similar to RAID
5 is used to ensure an even balance on all disks.

The performance experiments are run with a (simulated)
user concurrency level of 500. This is chosen to guarantee a
sufficiently heavy load on the system. We employ workloads
that are pure reads, pure writes, and a mixture of 82% reads
and 18% writes. The access sizes are aligned on 24K blocks.
We experiment with I/O sizes that span 3, 4 and 5 disks
at a time. Approximately 15 tests are run for each of these
configurations. Each of these workloads is tested in fault free
mode and then with one, two, three and four simultaneous
failures. All disk failures occur at the start of the experiment
and remain for the entire test. Information is reconstructed
(if possible) each time that a read is issued on an erased
disk. Runs which include an uncorrectable erasure with at
least three failures are excluded from the statistics. Once we
move beyond two failures the results should be interpreted
with caution, since unrecoverable situations do arise.

We experimented with three separate orderings of the parity
check matrix. The first is a ladder ordering which provides
the greatest overlap of check disks. The second is a disjoint
or pessimal ordering that provides us with a maximum of
disjoint consecutive edges. The last ordering was the full
2-code in lexicographic order. By the nature of its gen-
eration, this ordesring provide some overlap of consecutive
disks. Figure 5 shows graphs of two sample experiments for
straight write workloads, the first writing three consecutive
information disks, the second five.

These experiments bear out the conclusion predicted by the
theory; the improvement in user response time of the best
ordering over the worst is not only dramatic, but is con-
sistent with our assumption that numbers of disk accesses
dominate the user response time performance. We see simi-
lar, but not as dramatic results, with mixed workloads. For
the read workloads, as expected we see no difference in per-
formance in fault-free mode, but begin to see a similar but
less pronounced separation when we introduce faults.

6. CONCLUDING REMARKS

We have shown that by buffering disk blocks within a stripe,
we can obtain a substantial reduction in the number of disk
accesses needed in both small and large writes for double
erasure codes. Indeed, the general technique applies to k-
erasure codes which are linear and systematic, provided that
suitable column orderings to maximize overlap among the
check disks accessed can be produced. For the full 2-code,
we have established that writes to three consecutive disks

Response Time For Straight Writes of 3 Disks

4600 : . . . i ‘
Ladder Ordering —+— R X
4400 Pessimal Ordering ---%--- X]
Lexicographic Ordering ----%---
X
4200 - |
P X
@
£ 4000 |-]
£
£
% 3800 [|
% x
*
& 3600 |-]
&, R
I
§ 3400 |
<

3000 4
~15 experiments/data point
2800
05 1 15 2 25 3 35 4 45
Number of Failures
Response Time For Straight Writes of 5 Disks
7000 T T T T
Ladder Ordering —— - X
6500 - _ Pessimal Ordering ------ T |
Lexicographic Ordering ----* X
7 e
£ 6000 | g J
£
.;
*
% 5500 - " 1
4 e
o
I
T 4
>
<

;15 expe(i‘mentydala‘x point

. . . .
0 05 1 15 2 25 3 35 4 45
Number of Failures

Figure 5: User response times

can be optimized to produce an effective update penalty of
1.16 per disk, while writing to each disk stripe individually
must incur an update penalty of 2. We have also established
similar improvements for writes across larger numbers of
disks, but do not report these results here.

The technique developed demonstrates that multiple erasure
disk arrays need not suffer the performance loss over single
erasure systems in the basic read and write operations, and
hence shows promise for supporting disk arrays of one thou-
sand or more disks while ensuring acceptable reliability.

7. ACKNOWLEDGMENTS

Research of the authors is supported by the Army Research
Office (U.S.A.) under grant DAAG55-98-1-0272 (Colbourn).

8. REFERENCES
[1] G. A. Alvarez, W. A. Burkhard, and F. Cristian.
Tolerating multiple failures in RAID architectures
with optimal storage and uniform declustering. In
Proceedings of the 24th Annual ACM/IEEE
International Symposium on Computer Architecture,
pages 62-72. IEEE, June 1997.

[2] G. M. Amdahl. Validity of the single processor
approach to achieving large scale computing
capabilities. In Proceedings of the AFIPS 1967 Spring
Joint Computer Conference, volume 30, pages
483-485. AFIPS, April 1967.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon.
EVENODD: an efficient scheme for tolerating double
disk failures in raid architectures. IEEE Trans.
Computers, 44(2):192-202, February 1995.

[4] Y. M. Chee, C. J. Colbourn, and A. C. H. Ling.
Asymptotically optimal erasure-resilient codes for
large disk arrays. Discrete Applied Mathematics,
102(1-2):3-36, May 2000.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. RAID: High-performance, reliable
secondary storage. ACM Computing Surveys,
26(2):145-188, June 1994.

[6] M. B. Cohen. Performance analysis of triple erasure
codes in large disk arrays. Master’s thesis, University
of Vermont, 1999.

[7] M. B. Cohen and C. J. Colbourn. Optimal and
pessimal orderings of Steiner triple systems in disk
arrays. Theoretical Computer Science, To appear.

[8] M. B. Cohen and C. J. Colbourn. Ladder orderings of
pairs and raid performance. Submitted for publication
2000.

[9] M. B. Cohen and C. J. Colbourn. Steiner triple
systems as multiple erasure codes in large disk arrays.
In Proceedings of IPCCC 2000 (19th IEEE
International Conference on Performance, Computing
and Communications), pages 288-294. IEEE,
February 2000.

[10] G. A. Gibson. Redundant Disk Arrays, Reliable
Parallel Secondary Storage. MIT Press, 1992.

[11] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz,
and D. A. Patterson. Coding techniques for handling
failures in large disk arrays. Algorithmica,
12(2-3):182-208, Aug-Sept 1994.

[12] M. C. Holland. On-Line Data Reconstruction in
Redundant Disk Arrays. PhD thesis, Carnegie Mellon
University, 1994.

[13] E. K. Lee. Software and performance issues in the
implementation of a RAID prototype. Technical
Report Technical Report CSD-90-573, University of
California at Berkeley, 1990.

[14] E. K. Lee. Performance Modeling and Analysis of Disk
Arrays. PhD thesis, University of California at
Berkeley, 1993.

[15] F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error-Correcting Codes. North Holland, 1997.

[16] P. Massiglia. The RAID Book, A Storage System
Technology Handbook, 6th Edition. The RAID
Advisory Board, 1997.

[17] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis,
and M. L. Best. File-access characteristics of parallel
scientific workloads. IEEE Trans. Parallel Distrib.
Systems, 7(10):1075-1089, Oct 1996.

[18]

[19]

[20]

D. A. Patterson and J. L. Hennessy. Computer
Organization and Design: The Hardware/Software
Interface. Morgan Kaufmann, 1994.

K. Salem and H. Garcia-Molina. Disk striping. In
Proceedings of the 2nd International Conference on
Data Engineering, pages 336-342. IEEE, February
1986.

E. J. Schwabe and I. M. Sutherland. Flexible use of
redundancy in disk arrays. Theory Comput. Systems,
32(5):561-587, Sept-Oct 1999.

[21]

[22]

[23]

D. Stodolsky, G. Gibson, and M. Holland. Parity
logging: Overcoming the small write problem in
redundant disk arrays. Computer Architecture News,
21(2):64-75, May 1993.

S. A. Vanstone and P. C. van Oorschot. An
Introduction to Error Correcting Codes with
Applications. Kluwer Academic Publishers, 1989.

L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner.
Low density MDS codes and factors of complete
graphs. IEEE Trans. Information Theory,
45(6):1817-1826, Sept 1999.

