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Abstract. Software product lines are families of products defined by
feature commonality and variability, with a well-managed asset base.
Recent work in testing of software product lines has exploited similar-
ities in different development phases to reuse shared assets and reduce
test effort. The use of feature dependence graphs has also been employed,
and there has been some work that aims to reduce duplication of par-
tial products during integration testing, but less that focuses on code
level analysis of dataflow between features. In this paper we present a
compositional symbolic execution technique that works in concert with a
feature dependence graph to extract the set of possible interaction trees
in a product family. It then composes these to incrementally and sym-
bolically analyze feature interactions. We experiment with two product
lines and determine that our technique can reduce the overall number
of interactions that must be considered during testing, and requires less
time to run than a traditional directed symbolic execution technique.

1 Introduction

Software product line (SPL) engineering is a methodology for developing families
of software programs through the managed reuse of a common and variable set
of assets [19]. Variability at the application level is expressed in terms of features
(functional units) that are included or excluded from the individual programs.
The result is a set of similar, but unique program instantiations. While unique-
ness arises from the different combination of variable features in each program,
similarity comes from both the commonality found in all instantiations, as well
as from matching subsets of features (i.e. partial products) between programs.

Variability, and the ability to generate many products from a core set of fea-
tures, provides flexibility and leverages reuse during development, but causes
problems for validation. Although individual features may be validated and
tested in multiple programs within the product line, this does not guarantee
that specific combinations of features will work properly when composed. Re-
search has shown that some faults – termed interaction faults – only occur under
specific combinations of features [3,14] and several SPL testing techniques have
attempted to account for this. For instance, Bertolino et al. [1] and Geppert et
al. [2] propose a specification based technique to concretize a parameterized use
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case (based on variability), but this is an exhaustive approach that tests each
product individually. This is a limitation, since the variability space grows ex-
ponentially with the number of features. Suppose we have 4 choices for each of
10 features. To test all possible combinations of features, we need to test 410 or
1, 048, 576 instantiation which may be infeasible.

Kim et al. [12] use a dependency analysis to determine which features are
relevant for each test within a test suite, reducing the number of products tested
per test case. This technique does not consider coverage of the entire feature
model, nor does it target the specific interactions; it only reduces the per-test
number products. A study by Reisner et al. [21] shows that in some configurable
systems – SPLs can be viewed as a type of configurable software system – analysis
of control flow can reduce the possible set of configuration options that should
be tested together. They do not consider other types of dependencies such as
data flow, nor do they apply their approach to product lines. And neither of
these studies targets specific interactions for test generation; they only reduce
the number of feature combinations that should not be tested together.

In our earlier research [4], we proposed a mapping between the variability
space of an SPL and a relational model in order to leverage ideas from combinato-
rial interaction testing (CIT), a model-based sampling technique that guarantees
to test all pairs or t-way combinations of features within the product line. Instead
of testing all program instantiations in the example above, we can test all pairs
of features with approximately 24 SPL instances, or all triples of features with
around 130, using a common CIT generation tool [3]. Since empirical evidence
suggests that lower order interactions are responsible for most interaction faults
this provides some justification for CIT sampling [14].

While CIT provides a notion of coverage of the variability space, it also suffers
from limitations. First, there is an expectation that all possible programs in the
product line can be composed. But there may be features or groups of features
that are not developed until later phases of the SPL lifetime. Second, since CIT
operates at the feature combination level there is no guarantee that testing of
an instance will execute the interacting code; this will depend on the quality
of the test. Finally, CIT does not consider the direction of the interactions in
its model, yet at the code level, interactions may happen between features in
different directions. For instance if we have three features (f1, f2, f3), there are
six directed 2-way interactions possible between these features.

When testing a software product line to uncover interactions, we should test
from a perspective that avoids these limitations. Uncovering interactions during
integration testing – where features are composed as partial products – appears
to make sense from a combinatorial sense. We can test only the interactions
themselves and combine products in a way that avoids redundancy. Uzuncaova
et al. [25] use this idea by reusing a partial product’s integration test results
to generate a smaller test suite for a larger partial product. And Reis et al.
[20] apply integration testing over an SPL at the specification level to avoid
redundantly testing common partial products. Finally, Stricker et al. [24] present
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the ScenTED-DF methodology which uses dataflow between products to drive
integration testing at the model level.

In this paper we present a new method of integration testing for software
product lines aimed at identifying at the dataflow level of abstraction, inter-
actions between features. We use ideas from CIT to drive coverage of feature
interaction tuples. We reduce the variability space through the use of a code-
based dependency analysis resulting in a set of directed interaction trees that
define the patterns of interactions possible between features for each interaction
level (i.e. pairs, triples, . . ., k-tuples). We then use symbolic execution to evaluate
each tree compositionally. The result is a method that generates constraints for
all partial products at a lower cost than a full symbolic execution of an SPL code
base. We also find, that by counting directed interactions, we have a more precise
model of what should be tested. Finally, if we consider the constraints arising
from symbolic execution, these can be used to inform a test generation technique
to focus on the parts of the system that may have faults. The contributions of
this work are: (1) a dataflow informed compositional symbolic integration testing
method for SPLs; (2) the first discussion of interaction testing that incorporates
directions; and (3) a feasibility study that shows we can reduce the number of
interactions to test, and that the compositional technique uses less time than
traditional symbolic execution.

2 Background

2.1 Feature Models

Software product lines are families of software systems designed for a specific
domain, with a managed set of assets and well defined variability model [19]. The
products all share some commonality, but are customized by variable elements
of the system. Product lines vary in when they are configured. Some may be
configured by the developer at build time, others allow changes through re-
compilation, while some use run-time constructs to change during execution.

A key artifact of a software product line is the feature (or variability) model.
This is one differentiator from a general configurable system. There are many
formalisms that have been developed to represent these. In this paper we use
the Orthogonal Variability Model (OVM) developed by Pohl et al. [19]. In OVM
Variation points (VP) are shown as triangles and variants (v) are shown as
rectangles. Variants will map directly to features in this paper. Dependencies
are shown as solid lines (mandatory) or dashed (optional). Alternative choices
are shown with arcs which are annotated with the the minimum and maximum
cardinality of that VP. When there is no annotation, exactly one variant can
be selected for the variation point. Additional constraints are allowed between
parts of the model in the form of excludes or requires.
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2.2 Symbolic Execution

Symbolic execution [13] is a path-sensitive program analysis technique that com-
putes program output values as expressions over symbolic input values and con-
stants. Symbolic execution of the code fragment:

y = x;

if (y > 0) then y++;

return y;

would use a symbolic value X to denote the value of variable x on entry to the
fragment. Symbolic execution determines that there are two possible paths (1)
when X > 0 the value X + 1 is returned and (2) when !(X > 0) the value X
is returned. The analysis represents the behavior of the fragment as the pairs
(X > 0,RETURN == X + 1) and (!(X > 0),RETURN == X). The first
element of a pair encodes the conjunction of constraints along an execution path
– the path condition. The second element defines the values of the locations
that are written along the path in terms of the symbolic input variables, e.g.
RETURN == X means that the original value for x is returned.

The state of a symbolic execution is a triple (l, pc, s) where l, the current
location, records the next statement to be executed, pc, the path condition, is
the conjunction of branch conditions encoded as constraints along the current
execution path, and s : M × expr is a map that records a symbolic expression
for each memory location, M , accessed along the path.

Computation statements, m1 = m2 � m3, where the mi ∈ M and � is
some operator, when executed symbolically in state (l, pc, s) produce a new state
(l+1, pc, s′) where ∀m ∈M −{m1} : s′(m) = s(m) and s(m1) = s(m2)�s(m3).
Branching statements, if m1 � m2 goto d, when executed symbolically in state
(l, pc, s) branch the symbolic execution to two new states (d, pc∧s(m1)�s(m2), s)
and (l + 1, pc ∧ ¬(s(m1) � s(m2)), s) corresponding to the “true” and “false”
evaluation of the branch condition, respectively.

An automated decision procedure is used to check the satisfiability of the
updated path conditions and, when a path condition is found to be unsatisfiable,
symbolic execution along that path halts. Decision procedures for a range of
theories used to express path conditions, such as, linear arithmetic, arrays, and
bit-vectors are available, e.g., Z3 [6].

2.3 Symbolic Method Summary

Several researchers [9, 18] have explored the use of method summarization in
symbolic execution. In [9] summarization is used as a mechanism for optimizing
the performance of symbolic execution whereas [18] explores the use of summa-
rization as a means of abstracting program behavior to avoid symbolic execution.
We adopt the definition of method summary in [18], but we forgo their use of
over-approximation.

The building block for a method summary is the representation of a single ex-
ecution path through method, m, encoded as the pair (pc, w). This pair provides
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Fig. 1. Conceptual Overview of Compositional SPL Analysis

information about the externally visible state of the program that is relevant
to an execution of m at the point where m returns to its caller. As described
above, the pc encodes the path condition and w is the projection of s onto the
set of memory locations that are written along the executed path. We can view
w a conjunction of equality constraints between names of memory locations and
symbolic expressions or, equivalently, as a map from locations to expressions.

Definition 1 (Symbolic Summary [18]). A symbolic summary, for a method
m, is a set pairs msum : P(PC × S) where

∀(pc, w) ∈ msum : ∀(pc′, w′) ∈ msum − {(pc, w)} : pc ∧ pc′is unsatisfiable.

Unfortunately, it is not always possible to calculate a summary that com-
pletely accounts for the behavior of all methods. For example, methods that
iterate over input data structures that are unconstrained cannot be analyzed
effectively – since the length of paths are not known. We address this using the
standard technique of bounding the length of paths that are analyzed.

3 Dependence-driven Compositional Analysis

Our technique exploits an SPL’s variability model and the inter-dependence of
feature implementations to reduce the cost of applying symbolic execution to
reason about feature interactions. Figure 1 provides a conceptual overview.

As explained in Section 1 an SPL is comprised of a source code base and
an OVM. The OVM and its constraints (e.g., the excludes between f2 and f3)
defines the set of features that may be present in an instance of the SPL.

Our technique begins (step are denoted by large bold italic numerals in the
figure) by applying standard control flow and dependence analyses on the code
base. The former results in a control flow graph (CFG) and the latter results in a
program dependence graph (PDG). In step 2, the PDG is analyzed to calculate a
feature dependence graph (FDG) which reflects inter-feature dependences. The
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edges of the FDG are pruned to be consistent with the OVM, e.g., the edge from
f2 to f3 is not present.

Step 3 involves the calculation, from the FDG, of the hierarchy of all k-way
feature interaction trees. The structure of this hierarchy reflects how lower-order
interactions can be composed to create higher-order interactions. For instance,
how the interaction among f1, f2, and f4 can be constructed by combining f1
with an existing interaction for f2 and f4.

The interaction tree hierarchy is used to guide the calculation of symbolic
summaries for all interaction trees in a compositional fashion. This begins, in
Step 4, by applying symbolic execution to the source code of the individual fea-
tures in isolation. When composing two existing summaries, for example f1 and
f3, to create a 2-way interaction tree, a summary of the behavior of the com-
mon SPL code which leads between those summaries must be calculated. Step
5 achieves this by locating the calls to the features in the CFG and calculating
a chop [22] – shown as the shaded figure in the CFG – the edges of the chop are
used to guide a customized symbolic execution to produce an edge summary. In
step 6, a pair of existing lower-order interaction summaries and the edge sum-
mary are composed to produce a higher-order summary – such a summary is
illustrated at point 7 in the figure.

In step 8, summaries can be exploited to detect faults, via comparison to fault
oracles, or to generate tests by solving the constraints generated by symbolic
execution and composition.

We describe the major elements in the remainder of this section.

3.1 Relating SPL models to implementations

An SPL implementation can be partitioned into regions of code that implement
each feature; the remaining code implements the common functionality shared
by all SPL instances. There are many implementation mechanisms for realizing
variability in a code base [11], but for our purposes it suffices to view features
as methods where common code makes calls on those methods.

In the remainder of this section, we assume the existence of a mapping from
in the OVM to methods in a code base; we use the name of a feature to denote
the method when no confusion will arise. Features can be called from multiple
points in the common code, but to simplify the presentation of our technique,
we assume each feature is called from a single call site.

Given a pair of features, f1 and f2, where the call to f2 is reachable in the
CFG from the call to f1, their common region is the source code chop [22] arising
when the calls are used as the chop criterion. This chop is a single-entry single-
exit sub-graph of the program control flow graph (CFG) where the entry node is
the call to f1 and the exit node is the call to f2. The CFG paths within the chop
overapproximate the set of feasible program executions that can lead from the
return of f1 to the call to f2. These chops play an important role in accounting
for the composite behavior of features as mediated by common code.
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3.2 Calculating Feature Interactions

We leverage the concept of program dependences, and the PDG [17], to deter-
mine inter-feature dependences. A PDG is a directed graph, (S,EPDG), whose
vertices are program statements, S, and (si, sj) ∈ EPDG if si defines the value
of a location that is subsequently read at sj . A feature dependence graph (FDG)
is an abstraction of the PDG for an SPL implementation.

Definition 2 (Feature Dependence Graph). Given a PDG for an SPL,
(S,EPDG), the FDG, (F,EFDG), is a directed graph whose vertices are features,
F , and (fi, fj) ∈ EFDG iff ∃si, sj ∈ S : si ∈ S(fi)∧ sj ∈ S(fj)∧ (si, sj) ∈ EPDG

where S(f) is the set of statements in feature f .

We capture the interaction among features by defining a tree that is embed-
ded in the FDG. The intuition is that the root is the sink of a set of directed
paths that represent the computation performed by a set features and the com-
mon code that links them. The output values of that root feature are then defined
in terms of the input values of the features that form the leaves of the tree.

Definition 3 (Interaction Tree). Given an FDG, (F,EFDG), a k-way inter-
action tree is an acyclic, connected, simple subgraph, (F ′, E′), where F ′ ⊆ F ,
E′ ⊆ EFDG, |F ′| = k, and where ∃r ∈ F ′ : ∀v ∈ F ′ : r ∈ v.(E′)∗. We call the
common reachable vertex the root of the interaction tree.

The set of all k-way interaction trees for an SPL can be constructed as shown
in Algorithm 1. The algorithm uses a constructor tree() which, optionally, takes
an existing tree and adds edges to it expanding the set of vertices as appropriate.
For a tree, t, the set of vertices is v(t) and the root is root(t). Before adding a
tree, the set of features in the tree must be checked to ensure they are consistent
with the OVM; this is done using the predicate consistent().

The algorithm accepts k and an FDG and returns the set of k-way interac-
tions. It builds the set of interactions incrementally. For an i-way interaction, it
extends an i−1-way interaction by adding a single additional vertex and an edge.
While other strategies for building interaction trees are possible, this approach
has the advantage of efficiency and simplicity. Based on our case studies, re-
ported in Section 4, this approach is sufficient to enable significant improvement
over more standard analyses of an SPL code base.

Interaction trees can be organized hierarchically based on their structure.

Definition 4 (Interaction Hierarchy). Given a k-way interaction tree, tk =
(F,E), where k > 1, we can define a pair of interaction trees ti = (Fi, Ei) and
tj = (Fj , Ej), such that Fi ∩ Fj = ∅, |Fi|+ |Fj | = k, and ∃(fi, fj) ∈ E. We say
that tk is the parent of ti and tj and, conversely, that ti and tj are the children
of tk.

The base case of the hierarchy, where k = 1, is simply each feature in isola-
tion. There are many ways to construct such an interaction hierarchy, since for
any given k-way interaction tree cutting a single edge partitions the tree into two
children. As discussed below, the hierarchy resulting from Algorithm 1 enjoys
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Algorithm 1 Computing k-way Interaction Trees

interactionTrees(k, (F,E))
T := ∅
for (fi, fj) ∈ E
T ∪ = tree(fi, fj)

for i = 3 to k + 1
for ti−1 ∈ T ∧ |ti−1| = i− 1
for v ∈ F − v(ti−1)
if (root(ti−1), v) ∈ E ∧ consistent(v(ti−1 ∪ v) then
T ∪ = tree(ti−1, (root(ti−1), v))

else
for (v, v′) ∈ E ∧ v′ ∈ v(ti−1)
if consistent(v(ti−1 ∪ v) then T ∪ = tree(ti−1, (v, v

′))
endif

return T end interactionTrees()

a structure that can be exploited in generating summaries of interaction pat-
tern behavior. The parent (child) relationships among interaction trees can be
recorded at the point where the tree() constructor calls are made in Algorithm 1.

3.3 Composing Feature Summaries

Our goal is to analyze program paths that span sets of features in an SPL to sup-
port fault detection and test generation. Our approach to feature summarization
involves two distinct phases: (1) the application of bounded symbolic execution
to feature implementations in isolation to produce feature summaries, and (2)
the matching and combination of feature summaries to produce summaries of
the behavior of interaction patterns.

Phase (1) is performed by applying traditional symbolic execution where the
length of the longest branch sequence is bounded to d – the depth. For each
feature, f , this results in a summary, fsum, as defined in Section 2.

When performing symbolic execution of f there are three possible outcomes:
(a) a complete execution of f which returns normally as analyzed within d
branches, (b) an exception, including assertion violations, is detected before d
branches are explored, and (c) the depth bound is reached. In our work, we only
accumulate the outcomes falling into (a) into fsum.

Case (b) is interesting, because it may indicate a fault in feature f . The
isolated symbolic execution of f allows for any possible state on entry to the
feature, however, it is possible that a detected exception is infeasible in the
context of a system execution. In future work, we will preserving results from
case (b) and attempt to determine their feasibility when composed in interaction
patterns with other features – this would reduce and, when interaction patterns
are sufficiently large, eliminate false reports of exceptions.

For phase (2) we exploit the structure of the interaction hierarchy resulting
from the application of Algorithm 1 to generate a summary for a k-way inter-
action. As discussed above, such an interaction has (potentially several) pairs of
children. It suffices to select any of those pairs.
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Within each pair there is a k − 1-way interaction, i, which we assume has
a summary isum = (pci, wi), and single feature, f , summarized as fsum =
(pcf , wf ), which is connected by a single edge connected to either root(i) or
one of i’s leaves, l. To compose isum and fsum we must characterize the behav-
ior of the FDG edge.

The existence of an edge (f, f ′) means that there is a common region begin-
ning at the return from f and ending at the call to f . Calculating the chop that
circumscribes the CFG for this region allows us to label branch outcomes that
lie within the chop and to direct the symbolic execution along paths from f that
reach f ′.

Algorithm 2(left) defines this approach to calculating edge summaries. It
consists of a customized depth-bounded symbolic execution that only explores a
branch if that branch lies within the chop for the common region. The algorithm
makes use of several helper functions. Functions determine whether an instruc-
tion is a branch, branch(), the target of a branch, target(), and the symbolic
expression for a branch given a symbolic state, cond(). Functions to calculate the
successor of an instruction, succ(), the set of locations written by an instruction,
write(), and updating the symbolic state based on an instruction, update(), are
also used. The SAT () predicate determines whether a logical formula is satisfi-
able. Finally, the π() function projects a symbolic state onto a set of locations.

eSum(Echop, succ(f), f ′, true, ∅, ∅, d) returns the symbolic summary for edge
(f, f ′) where the parameters are as follows. Echop is the set of edges in the CFG
chop bounded by the return of f and the call to f ′, succ(f) is the location at
which initiate symbolic execution and f ′ is the call that terminates symbolic
execution. true is the initial path condition. The next two parameters are the
initial symbolic state and the set of locations written on the path – both are
initially empty. d is the bound on the length of the path condition that will be
explored in producing the summary.

To produce a symbolic summary for the k-way interaction, we now compose
isum, fsum, and the edge summary computed by eSum(). There are two cases
to consider. If the feature, f ′, is connected to root(i) with an edge, (root(i), f ′)
we compose summaries in the following order: isum, (root(i), f

′)sum, f
′
sum. If the

feature, f ′, is connected to a leaf of i, li, with an edge, (f ′, li) we compose
summaries in the following order: f ′sum, (f

′, li)sum, isum.

Order matters in composing summaries because the set of written locations
of two summaries may overlap and simply conjoining the equality constraints on
the values at such locations will likely result in constraints that are unsatisfiable.
In our composition approach, we honor the sequencing of writes and reads of
locations that arise due to the order of composition.

Consider the composition of summary s with summary s′, in that order.
Let (pc, w) ∈ s and (pc′, w′) ∈ s′ be two elements of those summaries. The
concern is that dom(w)∩dom(w′) 6= ∅, where dom() extracts the set of locations
used to index into a map. Our goal is to eliminate the constraints in w on
locations in dom(w)∩dom(w′). In general, pc′ will read the value of at least one
location, l, and that location may have been written by the preceding summary.
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Algorithm 2 Edge Summary (left) and Composing Summaries (right)

eSum(E, l, e, pc, s, w, d)
if |pc| > 0
if branch(l)
lt := target(l, true)
if SAT (cond(l, s)) ∧ (l, lt) ∈ E
eSum(E, lt, e, pc ∧ cond(l, s), s, w, d− 1)

lf := target(l, false)
if SAT (¬cond(l, s)) ∧ (l, lf ) ∈ E
eSum(E, lf , e, pc ∧ ¬cond(l, s), s, w, d− 1)

else
if l = e
sum ∪ = (pc, π(s, w))

else
s := update(s, l)
w ∪ = write(l)
eSum(E, succ(l), e, pc, s, w, d)

endif
endif
if pc = true return sum

end eSum()

cSum(s, s′)
sc := ∅
for (pc, w) ∈ s
for (pc′, w′) ∈ s′
eq := true
for l ∈ read(pc′)
if ∃l ∈ dom(w)
eq := eq ∧ input(s′, l) = w(l)

if SAT (pc ∧ eq ∧ pc′)
for l ∈ dom(w′)
if ∃l ∈ dom(w)
w := w − (l, )

endfor
sc ∪ = (pc ∧ eq ∧ pc′, w ∧ w′)

endif
endfor

end cSum()

In such a case, the input value referenced in pc′ should be equated to w(l).
Algorithm 2(right) composes two summaries taking care of these two issues.

In our approach, the generation of a symbolic summary produces “fresh”
symbolic variables to name the values of inputs. A map, input(), records the
relationship between input locations and those variables. We write input(s, l) to
denote a summary s and a location l to access the symbolic variable. For a given
path condition, pc, a call to read(pc) returns the set of locations referenced in
the constraint – it does this by mapping back from symbolic variables to the as-
sociated input locations. We rely on these utility functions in Algorithm 2(right).

The algorithm considers all pairs of summary elements and generates, through
the analysis of the locations that are written by the first summary and read by
the second summary, a set of equality constraints that encode the path condition
of the second summary element in terms of the inputs of the first. The pair of
path conditions along with these equality constraints are checked for satisfia-
bility. If they are satisfiable, then the cumulative write effects of the summary
composition are constructed. All of the writes of the later summary are enforced
and the writes in the first that are shadowed by the second are eliminated –
which eliminates the possibility of false inconsistency.

3.4 Complexity and Optimizion of Summary Composition

From studying the Algorithm 2 it is apparent that the worst-case cost of con-
structing all summaries up to k-way summaries is exponential in k. This is due
to the quadratic nature of the composition algorithm.
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In practice we see quite a different story, in large part because we have
optimized summary composition significantly. First, when we can determine that
a pair of elements from a summary that might potentially match we ensure that
for any shared features the summaries agree on the values for the elements
of those summaries; this can be achieved through a string comparison of the
summary constraints which is much less expensive than calling the SAT solver.
Second, we can efficiently scan for constraints in one summary that are not
involved in another summary and those can be eliminated since they were already
found to be satisfiable in previous summary analyses.

4 Case Study

We have designed a case study for evaluating the feasibility of our approach that
ask the following two research questions. (RQ1): What is the reduction from our
dependency analysis on the number of interactions that should be tested in an
SPL? (RQ2): What is the difference in time between using our compositional
symbolic technique versus a traditional directed technique?

4.1 Objects of Analysis

We selected two software product lines. The first SPL is based on the implemen-
tation of the Software Communication Architecture-Reference Implementation
(SCARI-Open v2.2) [5] and the second is a graph product line, GPL [12,15] used
in several other papers on SPL testing.

The first product line, SCARI, was constructed by us as follows. First we
began with the Java implementation of the framework. We removed the non-
essential part of the product line (e.g. logging, product installation and launch-
ing) and features that required CORBA Libraries to execute. We kept the core
mandatory feature, Audio Device, and transformed four features that were writ-
ten in C (ModFM, DemodFM, Chorus and Echo), into Java. We then added 9
other features which we translated from C to Java from the GNU Open Source
Radio [8] and the Sound Exchange (SoX), site [23]. Table 1 shows the origin of
each feature and the number of summaries for each. We used the example func-
tion for assembling features, to write a configuration program that composes the
features together into products. The feature model is shown in Figure 2(a).

!"#$%&'()$$
!*#$+,-$

Fig. 2. Feature Models for (a) SCARI and (b) GPL
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Features Origin LOC No. Summaries

Chorus [5] 30 6

Contrast [23] 14 5

Volume [23] 47 5

Repeat [23] 12 3

Trim [23] 11 6

Echo [5] 31 5

Reverse [23] 14 4

Fade [23] 9 4

Swap [23] 27 4

AudioDevice [5] 13 3

ModFM [5] 19 4

ModDBPSK [8] 6 2

DemodFM [5] 18 4

DemodDBPSK [8] 6 3

Total 257 58

Table 1. SCARI Size by Feature

Features LOC No. Summaries

Base 85 56

Weighted 32 148

Search 35 19

DFS 23 41

BFS 23 6

Connected 4 8

Transpose 27 3

StronglyConnected 19 9

Number 2 2

Cycle 40 19

MSTPrim 92 4

MSTKruskal 106 3

Shortest 102 3

Total 590 321

Table 2. GPL Size by Feature

The graph product line (GPL) [15] has been used for various studies on SPLs.
We start with the version found in the implementation site for [12]. To fit our
prototype tool, we re-factored some code so that every feature is contained in a
method. We removed several features because either we could not find a method
in the source code or because JPF would not run. We made the method Prog
our main entry point for the program. We did not include any constraints for
simplicity. Figure 2 shows the resulting feature model and Table 2 shows the
number of lines of code and the number of summaries by feature.

4.2 Method and Metrics

Experiments are run on an AMD Linux computing cluster running CentOS 5.3
with 128GB memory per node. We use Java Pathfinder (JPF) [16] to perform
SE with the Choco solver for SCARI and CVC3BitVector for GPL. We adapt
the information flow analysis (IFA) package [10] in Soot [26] for our FDG. In
SCARI we use the configuration program for a starting point of analysis. In GPL
we use the Prog program, which is an under-approximation of the FDG.

For RQ1 we compute the number of possible interactions (directed and undi-
rected) at increasing values for k, obtained directly from the feature model. We
compare this with the number that we get from the interaction trees. For RQ2, we
compare the time that is required to execute the two symbolic techniques on all
of the trees for increasing values of k. We compare incremental SE (IncComp)
and a full direct SE (DirectSE). We set the depth for SE at 20 for IncComp
and allow DirectSE k-times that depth since it works on the full partial-product
each time, while IncComp composes k summaries each computed at depth 20.

4.3 Results

RQ1. Table 3 compares the number of interactions obtained from just the OVM
with the number of interaction trees obtained through our dependency analysis.
We present k from 2 to 5. The column labelled UI is the number of interactions
calculated from all k-way combinations of features. In SCARI there are only
three true points of variation given the model and constraints, therefore we see
the same number of interactions for k = 3, 4 and 5. The DI column represents
the number of directed interactions or all permutations (k!×UI). The next two
columns are feasible interactions obtained from the interaction-trees. Feasible
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Subject k UI DI Feasible UI Feasible DI UI Reduction DI Reduction

SCARI

2 188 376 85 85 54.8% 77.4%
3 532 3192 92 92 82.7% 97.1%
4 532 12768 162 162 69.5% 98.7%
5 532 63840 144 144 72.9% 99.8%

GPL

2 288 576 21 27 92.7% 95.3%
3 2024 12144 29 84 98.6% 99.3%
4 9680 232320 31 260 99.7% 99.9%
5 33264 3991680 20 525 99.9% 100.0%

Table 3. Reduction for Undirected (U) and Directed (D) Interactions (I)

UI, removes direction, counting all trees with the same features as equivalent.
Feasible DI is the full tree count. The last two columns give the percent reduction.
For the undirected interactions we see a reduction of between 54.5% and 99.9%
across subjects and values of k. The reduction is increasing as k grows and is
more dramatic in GPL (92.7%-99.9%). If we consider the directed interactions,
which would be needed for test generation, there is a reduction ranging from
77.4% to 100%. In terms of absolute values we see a reduction in GPL from over
3 million directed interactions at k = 5, down to 525, an order 4 magnitude of
difference.
RQ2. Table 4 compares the performance of DirectSE and IncComp in terms
of time (in seconds). It lists the number of directed (D) and undirected (U)
interactions (I) for each k, that are feasible based on the interaction trees. Some
features in the feature models may have more than one method. In RQ1, because
we were comparing feature interactions from the OVM, we reported interactions
only at the method level. However in this table, we give a more precise count of
the interactions, and list all of the interactions (both directed and undirected)
between features. The next two columns present time. For Direct SE we re-start
the process for each k, but for the IncComp technique we use cumulative times
because we must first complete k − 1 to compute k. Although both techniques
use the same time for single feature summaries, they begin to diverge quickly.
DirectSE is 3 times slower for k = 5 on SCARI, and 4 times slower on GPL.
Within SCARI we see no more than a 3 second increase to compute k + 1 from
k (compared to 14-35 seconds for DirectSE) and in GPL we see at most 750 (12
mins). For DirectSE it requires as long as 3160 (1̃ hour).

The last column of this table shows how many feasible paths were sent to the
SAT solver (SAT). We see (but don’t report) a similar number for DirectSE which
we attribute to our depth bounding heuristic. The number for SMT represents
the total number of possible calls that were made to the SAT solver. However,
we did not send all of these, because our matching heuristic culled out a number
which we show as Avoided.

5 Conclusions and Future Work

In this paper we have presented a compositional symbolic execution technique
for integration testing of software product lines. By incrementally composing
summaries we can build interaction trees that account for the possible interac-
tions between features. We consider interactions as directed which gives us a
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Subject
k Feasbile UI Feasible DI DirectSE IncComp

SCARI

Time (sec) Time (sec) SAT (SMT + Avoided) Calls
1 14 14 6.75 6.75 58
2 85 85 14.48 9.63 430 (1780+0)
3 92 92 17.67 10.06 844 (2226+1587)
4 162 162 36.09 10.93 1505 (2909+3442)
5 144 144 35.87 11.70 2075 (3523+5696)

GPL

1 49 49 41.77 41.77 321
2 60 76 67.25 56.28 663(985+0)
3 81 310 184.76 82.00 1441(1901+1809)
4 82 1725 727.34 216.63 5814 (7342+5396)
5 52 8135 3887.23 965.92 27444(34147+19743)

Table 4. Time comparisions for SCARI and GPL

more precise notion of interaction than previous research. In a feasibility study
we have shown that we can (1) reduce the number of interactions to be tested by
a factor of between 54.8 and 99.9% over an uninformed model, and (2) we reduce
the time taken to perform symbolic execution by as much as factor of 4 over a
directed symbolic execution technique. Another advantage of this technique is
that since our results and costs are cumulative, we can keep increasing k as time
allows, making our testing stronger, without any extraneous work along the way.

As future work we plan to exploit the information gained from our analysis to
perform directed test generation. By using the complete paths we can generate
test cases from the constraints that can be used with more refined oracles, and
for the paths which time out, we will develop ways to characterize these paths,
and generate tests to explore the behavior which is otherwise unknown.
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