EventFlowSlicer: A Tool for Generating Realistic
Goal-driven GUI Tests

Jonathan A. Saddler, Myra B. Cohen
Department of Computer Science & Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115, USA
Email: saddler@huskers.unl.edu, myra@cse.unl.edu

Abstract—Most automated testing techniques for graphical
user interfaces (GUIs) produce test cases that are only concerned
with covering the elements (widgets, menus, etc.) on the interface,
or the underlying program code, with little consideration of test
case semantics. This is effective for functional testing where the
aim is to find as many faults as possible. However, when one
wants to mimic a real user for evaluating usability, or when
it is necessary to extensively test important end-user tasks of
a system, or to generate examples of how to use an interface,
this generation approach fails. Capture and replay techniques
can be used, however there are often multiple ways to achieve
a particular goal, and capturing all of these is usually too time
consuming and unrealistic. Prior work on human performance
regression testing introduced a constraint based method to filter
test cases created by a functional test case generator, however that
work did not capture the specifications, or directly generate only
the required tests and considered only a single type of test goal.
In this paper we present EventFlowSlicer, a tool that allows the
GUI tester to specify and generate all realistic test cases relevant
to achieve a stated goal. The user first captures relevant events
on the interface, then adds constraints to provide restrictions on
the task. An event flow graph is extracted containing only the
widgets of interest for that goal. Next all test cases are generated
for edges in the graph which respect the constraints. The test
cases can then be replayed using a modified version of GUITAR.

Index Terms—software test generation, graphical user inter-
faces, goal-based testing

I. INTRODUCTION

Automated test generation for Graphical User Interfaces
(GUISs) has been the subject of a large body of research [1]-[8].
Approaches include model-based techniques, which have led
to tools such as GUITAR [9], random techniques, or search-
based techniques that systematically explore the application
event-space to increase code coverage [3], [6]. However,
all of these methods for test generation, focus primarily on
functionality with the aim of exercising as many events (and
event sequences) on the interface as possible. While this is
effective for some types of testing, it fails to mimic real tasks
that a user might perform. Recent work on usability testing,
Human Performance Regression Testing (HPRT), proposed a
technique to automate test case generation that mimics the
various ways an expert user can perform some task based on
a stated goal [10]. This allows the interface designer to find
problematic paths in the interface. In HPRT, a set of widgets
on the interface that participate in the given task are first
enumerated and a set of constraints are added to ensure that

the task is realistic (i.e. it doesn’t open and close a window
before a useful action is performed). That work, however, has
several limitations. First, the types of tasks allowed are limited
to those which can be performed on the interface in different
ways, but with only minor structural differences (e.g. menus
versus buttons). Second, the user has to specify widgets and
constraints manually in a text file (with no tool support). Third,
the tests are not directly generated, but rather, are filtered from
the set of all possible functional tests on an event flow graph
which limits scalability.

Other approaches for realistic user testing include pattern
based testing [4], [11], however, that work differs in that it
uses a template for a specific goal and does not provide the
flexibility of generating tests for any type of test goal. Memon
et al. [12] used AI planning, however they generate a single
test case and require the user to specify the exact orders of
sequences of actions in the path. Zhang et al. [13] use static
analysis to extract the set of actions to perform a workflow
on the interface, but they do not generate replayable tests and
require access to the source code. There has also been some
work on generation of realistic test cases for web applications
[14]-[16], however they do not generate event sequences for
desktop GUI applications.

In this paper we present our tool, EventFlowSlicer (EFS for
short), that solves the stated challenges of HPRT. EFS was first
described in [17], [18]. It allows users to specify and generate
test cases for a variety of goal types. The first type of test goal
is the most stringent and expects that the test cases differ only
in slight structural ways (such as by using a menu versus a
keyboard, or by switching the order of a task). Our example
task in this paper is structural. EFS also supports goals that
are functionally different. These types of goals have at least
two different ways to perform the same task that use very
different methods (such as using entirely different menus and
steps). An example of such a task used in our prior work is that
of search and replace in DrJava. The third type of goal that is
supported is an abstract goal. A user might specify a general
goal — that they want to change the look of some text. This
might include making the text a different font, or a different
color, or italicizing, etc. We can define such a test goal using
EventFlowSlicer and generate all of the test cases constrained
by a set of user defined rules. The task used in our running
example can be made into an abstract goal, by removing some

ran

Required [
Order
Repeat

)
Exclude | « o= c
Atomie | /8;ngJ < jo?)
°e L 7o 0 =

3. Model Setup

RMI: remote method
invocation

GUITAR: built on
GUITAR

25
-]
Vi

4. Generate Tests

3 vserioput
s~ automated

5. Replay Tests

Fig. 1. Overview of EventFlowSlicer

of our constraints. We used an abstract version of this goal
which generated 200 test cases in our prior work [17].

In EventFlowSlicer, the user is provided both with a capture
mechanism and a graphical constraint interface that walks
them through each part of the process. They then push a
button to extract a small event flow graph relevant only to their
task and to generate tests that satisfy their goal. Once gener-
ated, the tests can be replayed from within EventFlowSlicer.
EventFlowSlicer can also read inputs from prior steps, so
that the process can be started at any point and artifacts
reused. EventFlowSlicer utilizes the model-based approach of
the GUITAR framework for its ripping process and replay [9].
A video demonstration of EventFlowSlicer can be found at
https://youtu.be/hw7WYz8WYVU.

We begin next with an overview of the tool architecture and
discuss the targeted users. We then present a running example
of the use of each of the modules of the tool in Section III.
We follow with a discussion of our validation of EFS (Section
IV). Then we conclude and present future work in Section V.

II. SYSTEM ARCHITECTURE

Figure 1 shows an overview of EventFlowSlicer. It has five
primary modules labeled 1 to 5. The first module allows the
user to provide input via a capture tool that creates an initial
part of the goal specification. This part of the process uses
Java remote method invocation (RMI) to allow the application
to open and close in a separate process. Once the widgets are
captured, the second module provides a graphical interface for
the user that walks them through the process of defining the
sets of constraints for the given goal. There are five types of
constraints (described later), Requires, Order, Repeat, Exclude
and Atomic. Once the constraints are defined, the next phase is
to perform the model setup which creates an event flow graph
(a graph model of the events and their follows edges which are
dynamically extracted from an interface [19]). containing only
those widgets that are captured. This module is built on top
of the GUITAR ripper [9]. Once the model has been created,
the next step is to generate tests. The event flow graph is
explored in a depth-first manner, pruning edges that violate
constraints, and recording paths. All paths that satisfy all the
constraints are output as the set of tests. Last, the tests can be

replayed using a modified version of the GUITAR relayer. We
have retrofitted this module to use RMI. We will discuss each
module in more detail in the next section.

Envisioned Users EventFlowSlicer is developed both for
experienced testers who can use the command-line input
and directly modify the constraints files, as well as for less
experienced testers such as user interface designers, who want
to explore different ways to perform the same task on the
interface. We expect that the output of the test case replay
can be used in some existing performance prediction tools as
was done in HPRT [10]. We also envision that EFS can be
used to help discover ways to perform actions on a task for
a tester who iteratively interacts with the tool, relaxing and
adding constraints in the process.

III. EXAMPLE TOOL WALKTHROUGH

We use a small task (modified from [17]) based on a
Stack Overflow question. The user asked how to change the
stylization (specifically background color) of text typed into a
Java source file as a comment [20].

We have defined our task to satisfy a specific (non-trivial)
goal that can be achieved many ways. The user wants to make
the text of the Java comment in jEdit to be bold and italic,
and to have a new background color. As part of our goal we
will allow the user to make these changes in any order and to
use both the mouse and keyboard to achieve the background
color changes. Each valid test case must have all three changes
made. Our task in [17] called Commented Text (BG) is similar
to this one, however it is abstract in that it did not require that
all three changes happen, but only at least one (hence there
were more ways to perform the task). More formally our goal
in this demonstration will be to enumerate all possible ways
the jEdit Style Editor can be opened and used to change the
commented text so that it is italicized, bold, and has a gray
background color. There are 12 ways to achieve the goal we
have stated. This task will be run on jEdit Version 5.1.0.

In order to make this task realistic when creating test cases,
we follow a few principles.

o The test case must not repeat any states or move to

unnecessary states leading to the goal state.

o The tester is always actively exploring new states of the

editor when they click the OK button.

o The test case must always make forward progress towards

achieving the goal.

To begin, we start EventFlowSlicer. We show the main
screen in Figure 2. Notice that some of the text fields are
filled in already for demonstration. At startup these are empty,
but can be auto-filled by using command line arguments and
passing the —gui flag. EventFlowSlicer has five steps (#1-5,
circled in red) that are performed in order. Most of these steps
can be skipped by providing input files such as a constraints
file which will skip step #1 and #2, or a set of tests which
will allow one to move directly to step #5. As input to start
the application, the tester provides an output directory and
location of the application. This can be a .jar file (shown in
the figure) or can be a class file. Optional virtual machine and

https://youtu.be/hw7WYz8WYVU

Edit

EventFlowSlicer

Generate Test Cases

Start

Edit Constraints
5. Replay
Repra e test cases
(leave blank to select all)

0

Stop

Rip Application
Start

Output Directory low_slicer/programs/results

Application File event_flow_slicer/JEdit.jar

Custom Main Class Name

App Arguments File ent_flow_slicer/JEditArgs.txt

VM Arguments File went_flow_slicer/JEditVM.txt

Constraints File m
Rip Configuration File Wflguranm
Input GUI Structure File
Input Event Flow Graph File

Input Test Case Directory

Fig. 2. EventFlowSlicer main screen

application specific arguments can be provided as input files.
No other input is needed to begin step #1.

A. Capture

Once the initial information is provided to EFS, the capture
button is clicked and the application under test will open. We
show jEdit open during the capture phase in Figure 3. The
jEdit Style Editor is not initially visible to the tester from
the main editor window — it must be revealed by clicking a
menu item in the main window’s [Utilities] menu. The tester
opens this window via the menu (which is being captured by
EFS) and upon entering this window they click on each of the
widgets that are involved in the task. In this case they will
click on the Italics, Bold and Background color checkboxes.
This can be done in any order. They will ignore the text color
picker, since this is not needed for the task and should not
be captured. Once the background color checkbox is selected,
another color picker becomes accessible. They will click on
that and they are taken to a color window where they can
select the background color either by clicking on a cell with
the mouse or by using the keyboard. The tester will capture
both actions (again in either order). The following widgets will
be captured by EventFlowSlicer:

o “Utilities” menu

e “Quick Settings” submenu

o “Edit syntax style” menu item

o “Italics” check box

o “Bold” check box

e “Background color” check box and push button

o the “Light-gray ” swatch button using mouse

o the “Light-gray ” swatch button using the arrow keys +

space bar

File Edit Search Markers Folding View Utilities Macros Plugins Help

DEdE & 9¢ XA e raB@ DNEDE:FE &# @
@ | O CommentedText java (~/Desktop/Researchlnputs /JEditinput/) s
1

o Style Editor

File Browser 4

Token type COMMENT2
() ralics

Bold
Text color: ==

Background color.

B | cance

1,1(0/16) (java,none,UTF-8) UGHE1/82MB 1:35 PM

Fig. 3. The JEdit Style Editor Window, Nothing Selected

e Pick a Color “OK” button
o Style Editor “OK” button

During capture the tester visually selects the widgets and
the labels are printed to the console to help identify what
actions EFS is capturing. When done, he or she hits the Stop
Capture button and the widgets are recorded to a file. The
file containing all these widgets is automatically used in the
next phase (and added to the interface in the field labeled
Constraints file). The tester can manually edit this XML file
if some incorrect widgets were selected.

B. Constrain

This step specifies how these widgets work together to
achieve the goal. It will add constraints related to the captured
widgets. During this phase a GUI walks the tester through
each constraint in order, and provides a list of the possible
widgets which can participate in this rule to make the tester’s
job easier. Any of the captured widgets are allowed to be added
into constraints groups, and test case generation will enforce
that the test cases adhere to these rules.

To briefly review from our previous work [17], the five con-
straints the tester can work with in the currently implemented
version of EventFlowSlicer are shown below. We assume that
W = {wy,ws,...,w,} is the set of captured widgets.

e Requires: Given a set R C W,3w; € R appearing in
each generated test case.

 Exclusion: Given the set E C W, V{w;,w;} € E,w; #
wj, at most one of w; and w; can appear in any generated
test case.

o Repeat: Given a set P C W and a minBound and
maxBound, Yw; € P, w; may occur up to r times
in a generated test case where minBound < r <
mazxBound'.

e Order: Given a sequence, of n sets S=<O1, O3, ..0,>,
0O; C W and V{O“Oj},ol n Oj =0, and i < 7, Yw; €
O;, w; appears before all w; € O; in every test case. This
is a partial order on widgets.

I'Without specifying any constraint, minBound = 0, maxBound = 1

e Atomic: A sequence, S =<w;,wj,..w,> where w; €
W. This is an exact order of widgets.

Each of these rules can be used repeatedly. For instance, we
can require three separate groups of widgets by adding 3 re-
quires rules. In our running example, the following constraints
were employed:

1) Three Requires constraints, one for each of the “Italics”,
“Bold”, and “Background Color” checkboxes. This will
force all three to appear in a test case for it to be valid.
(Note: We can also add all three to a single requires
constraint, meaning that at least one must be present in
a test case — creating a more abstract goal.)

2) One Exclusion constraint containing both the keystroke
and click option for selecting a color. This means test
cases will only use one of these methods to change the
background color.

3) An Atomic constraint that states that the “Background
color checkbox” is clicked before its selector button is
clicked. If we were to change this to an order constraint
stating the “checkbox” appear only at some time prior
to selecting a color, we would more than double the
number of test cases generated. We bind these two ac-
tions together for the sake of an understandable working
example. EFS supports both options.

An example constraint tool window is show in Figure 4. The
possible widgets are on the left, the current constraint in the
display is the Requires constraint. As each widget is selected
for this rule it will be added on the right. We require only a few
Requires rules to obtain a suite that is focused on just the three
formatting widgets we mentioned. In the jEdit application, the
“Italics”, “Bold”, and “Background color” buttons can only be
found in the Style Editor window, shown in Figure 3, and they
are also among the few widgets we captured in the first step.
Thus, having required that each test case use one of these
widgets, we force every test case to first navigate down the
menu path to the Style editor (the one denoted by “Utilities”,
“Quick Settings”, and “Edit Syntax Style”.

The space of test cases generated is limited to realistic,
expert-user test cases, based on global constraints (see [10])
which will hold as long as constraints specified in the Con-
straints Tool don’t override them. Test cases will not open a
window, or click to enter a tab in a tabbed selection panel,
and then immediately close the window or panel to perform
actions elsewhere. Each event will be used only once in each
test case (in absence of overriding Repeat rules), and all tasks
will end and begin in the main window the application opened
when launched. Without global constraints, the test case might
continually check and uncheck the italic or bold option, or
leave the Style Editor without changing the state at all.

We are now done specifying our test suite to the genera-
tor. EventFlowSlicer allows us to immediately transition into
letting the program handle the rest of the work.

C. Model Setup

The next step is to create the models from which to derive
test cases. The generator takes the captured output and the

Edit

EventFlowSlicer
Fitting Tool

Back 1. Edit Requires Constraints. Next

Background color: (push button_..
Bold (check box_Bold)

Edit syntax style of token under ...
Italics (check box_ltalics) >
OK [Pick a C...] (push button_OK) <
OK [Style Ed...] (push button_OK)
Quick settings (menu_Utilities|Q...
Swatches (mouse panel_Swatches)

Background color: (check box_B...

Add a Widget
Add | Eventld: Add Emwes ?u:a ;
equires Rule
LTary
Remove
Type:
Window:

Add

Action: Remove

Parameter:

Input Event rapl

Input Test Case Directory

Fig. 4. The EventFlowSlicer Constraints Tool

output of the constraints selection, both combined into one file,
and gathers necessary data from the interface using a GUITAR
rip operation and creates an event flow graph (EFG), a graph
where nodes represent the events in the application and edges
indicate a node can follow another one. The rip operation is
explained in detail in [19]. The resulting EFG does not provide
a complete graph of the interface, but instead only rips the
widgets that were captured and are contained in the constraints
file [19]. We show the full EFG for jEdit in Figure 5(a). This
has hundreds of nodes and thousands of edges. By contrast, the
EFG that is ripped using EventFlowSlicer is shown in Figure
5(b). This is further reduced in the first part of test generation
(Shown as Figure 5(c)).

EventFlowSlicer uses a GUITAR filter to prune widgets that
are not captured. If a widget sits under a menu item that wasn’t
explicitly captured, the path to it is left in the EFG to ensure
proper test cases can be generated. The result of “extra hidden”
widgets is reported by EventFlowSlicer at the end of the Model
Setup step.

D. Generation

Once the model is created, the tester can select Generate
Test Cases. The first step makes sure that the Constraints
file and EFG file were generated for the same application.
Each main element in the constraints file is checked for a
unique mapping to an event in the EFG. The second step is
to reduce the EFG to remove some edges based on the global
rules (see [10], [17] for more information). In particular the
NoRepeats rule implies that widgets should by default not
be repeated in test cases, so the reduction removes any self
edges from the EFG (and other edges which traversing would
automatically imply illegal breaking of global rules in a test
case). There are three such reductions we make, RepeatSelf,
WindowOpencloseCannotHappen, and ExpandToChild. They
are described in [17], [18]. We have experimented with various
orderings of these three reductions (since the last reduction is
impacted by the former) and have found that the different

(b) EFG of Captured Widgets

(a) JEdit Full EFG (c) Constrained EFG

Fig. 5. 3 phases of the EFG reduction. Unconstrained ripping to obtain jEdit’s
full EFG is shown in (a). EventFlowSlicer will produce a reduced EFG from
its rip shown in (b). The test generation phase will reduce the EFG further
by removing edges for the global rules, just before generation (c)

orderings of reductions have an insignificant effect, but that
reductions overall are useful in reducing graphs to nearly half
their size on average, which reduces test generation time. The
resulting event flow graph after the global rules are removed
in our example is shown in Figure 5(c).

Once these reductions and mappings are made, the generator
then starts systematically traversing the EFG from the widgets
that exist on the main window. When a test case containing
all Requires widgets is found, (and that does not violate other
constraints) it is returned as a test case. The traversal then
continues, avoiding branches that violate constraints as it goes.
In the end, all specified test cases are generated.

E. Test Cases

Our working example will result in 12 test cases. There are
six different tests that account for each of the possible orders
for Italic, Bold and Background Color, and for each of these,
there are two ways to change the background color (mouse or
keyboard).

We have verified that the test cases generated from Event-
FlowSlicer for this instance achieve the desired result, by
manually examining each test case. We present examples of
two test cases in Figure 6. The left side lists the steps for
both of the test cases while the right side shows a portion of
the actual test case XML for the first test case which is in
a modified GUITAR format. The GUITAR generator creates
widget IDs using a 10-digit hash value. As a design decision,
EventFlowSlicer test cases are relabeled with English language
descriptions of the widgets, so that the tester can readily see
what the test cases are doing, before having to replay the test
case. This is useful for a number of reasons:

o The tester need not run the test cases in order to under-
stand what it is doing.

o Scripts can utilize this information to mine data about the
widgets in each test case.

« Reasoning about the validity of each test case to achieve
the desired goal is possible by looking at a visualization
of the EFG relabeled in the same manner and studying
paths taken to achieve the generated test cases.

FE Replay

The last phase of EventFlowSlicer is test case replay. The
tester can replay all tests in the test suite, or select a subset by

Test Case One

1. menu_Utilities_CLICK

2. menu_Utilities|Quick settings_CLICK

3. menu item_Utilities|Quick settings|Edit
syntax style of

jon="1.0" encoding="UTF-8" standalone="yes?>

token under caret_CLICK
. check box_Italics_CLICK
. check box_Bold_CLICK
check box_Background color:_CLICK
. push button_Background color;_CLICK
. page tab list_Swatches_SELECT[0]
. mouse panel_Swatches_CLICK][Click_19_4]
10. push button_OK_CLICK

€3365297604:menu_Utilities_CLICK</Eventid>
ingStep>false</ReachingStep>

€2640108148:menu_Utilities|Quick settings_CLICK</Eventid>
chingStep>false</ReachingStep>

©ENDO A

Step>
<Eventld>e3469068240:menu item_Utilities|Quick settings|Edit syntax sty
caret_CLICK</Eventid>
<ReachingStep>false</ReachingStep>
</Step>

11. push button_OK_CLICK <Step>
<Eventld>e519002124:check box_ialics_CLICK</Eventid>
Test Case Two ping
1. menu_Utilities_CLICK <Eventid>e3876132034:check box_Bold_CLICK</Eventid>
-~ - . <ReachingStep>false</ReachingStep>
2. menu_Utilities|Quick settings_CLICK s>
3. menu item_Utilities|Quick settings|Edit syntax hventid>e2524057168:check box_Background color:_CLICK</Eventld>
Sty|e of (/<Rea(mngSmp>la\s!</Rea(hmgsxep>
4 :;?clmie%%%e‘éﬁlég <5T§in:a>;zzufs‘aso/%..sn:.m;n,mwm(.,\.,,,cum/wm
X Bold_ <ReachingStep> false</Reachingstep>
5. check box_Background color:_CLICK priing
. push bu;t?_n_BSackgfundsﬁcér(::_TC[é]ICK RevthngScps e eacnngiieps Tl
. page tab list_Swatches_!
8. typing panel_Swatches_SELECT[Cursor_0_0]
9. typing
panel_Swatches_SELECT[Command_[Right]: Exa”_‘rp'e ?S‘ Cgse XML
[Space] 0_0] (Test Case One)

10. push button_OK_CLICK
11. check box_ltalics_CLICK
12. push button_OK_CLICK

Fig. 6. Our running example produces test cases that bold, italicize, and
change the background color of text, in any order. The atomic constraint
ensures that the background color activation checkbox is checked immediately
prior to the color selection window being opened in every test case. On the
left we show two abstract test cases consisting of just the steps. On the right
we show the partial XML for the first test case.

number. The output from the generation step is a set of test
case files that can be executed on the application. In this step,
the application is opened by EFS, and sent events mapping to
the descriptions given in the test case file. Some Java Swing
applications are intolerant to “soft closing” of an application’s
windows by test automators. (Applications may block the user
from doing so at certain stages where other forms of input like
text input are required, or the app may hold up the system in
order to write files to the file system). Choi et al. [21] point this
out as a problem when testing GUI’s. We use remote method
invocation (RMI) to avoid this problem. Since EFS opens the
application in a subprocess, it has control over restarting the
application for the next test case, and prevents the underlying
system under test from interfering with this process.

The output from this operation is a set of snapshots that
demonstrate all of EventFlowSlicer’s actions. Borrowing from
techniques used in [10], EFS executes an action, and then
takes a visual snapshot to provide a graphical story of what
happened during the test case. Images from a variant of our
running example, jEdit Commented Text, were used to help
verify the over 200 test cases we got back from one of our
tasks [17].

IV. VALIDATION

In our initial work [17] we validated EventFlowSlicer on
a set of tasks comprising 21 user goals on four different
applications. These include both structural only goals, as
well as those which have functional differences and which
are abstract. The first twelve (structural) were taken from
prior work on human performance regression testing [10] for
LibreOffice. There were four core tasks (two on Writer, one

for Calc and one for Impress). Each of these was performed
on three different versions of the system, one that had only
menus, one that had menus and keyboard shortcuts, and one
with menus, keyboard shortcuts and toolbar buttons). Using
this study, we were able to confirm that we generated the
exact same test cases that the HPRT generator would produce
when fed similar inputs.

Furthermore, we evaluated the generation of nine newer
goal-based test suites (six that were based on Stack Overflow
questions and three that we created for other applications).
We used three applications: jEdit, DrJava and TerpWord.
For each of these tasks we performed the full workflow of
EventFlowSlicer, beginning with capture. The test case count
of these test suites ranged from 3 to 200 (average of 38).
Test generation times (after capture and constraints) ranged
from 5 seconds (4 test cases) to 19.6 seconds (200 test cases).
For this study, we validated each test case against the test
cases generated via the HPRT technique (in the 12 instances
where we mimicked their goal). For the other test cases
we manually examined the test cases. The runtime for test
generation of EventFlowSlicer showed a 63.1% reduction over
the HPRT test generation technique. The goal used in the
running example here is a restricted version of the Commented
Text, BG task?.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented EventFlowSlicer, a goal-based
tool for test specification and generation. EventFlowSlicer
allows the tester to capture relevant widgets for a task, specify
constraints and then automatically extract a model, generate
tests and replay them. All intermediate artifacts are saved so
the tester can start at any point in the process, and/or edit them
manually. We have examined the use of EventFlowSlicer, in
helping with the task of exploring the space of all possibilities
in a goal (changing commented text’s background color, and
making it bold and italic in jEdit). The user performs the
manual steps of capture and defining constraints as input to
the generator, which then creates a test suite of 12 test cases
covering all intended manners of accomplishing our goal.

In future work we will make EventFlowSlicer available
for others to use and extend. We also plan to develop a
method to construct a graph of the outcome of a test suite
replay operation. One use of this graph is to help interface
designers weed out pathologically long scenarios that users
would have trouble executing. A second use when paired with
our snapshots, would be to visualize where bugs appear in an
interface, and to help localize faults to certain usage scenarios.
We also intend to evaluate the usability of the tool and evaluate
the difficulty of defining constraints.

VI. ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation grants CCF-1161767, CNS-1205472 and CCF-
1745775.

2 Artifacts from our validation study [17] can be found at: http://cse.unl.
edu/~myra/artifacts/EventFlowSlicer/

[1]

[2]

[3

[t

[4]

[5

=

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

A. M. Memon and Q. Xie, “Studying the fault-detection effectiveness
of GUI test cases for rapidly evolving software,” IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 884-896, Oct. 2005.

G. Bae, G. Rothermel, and D.-H. Bae, “On the Relative Strengths of
Model-Based and Dynamic Event Extraction-Based GUI Testing Tech-
niques: An Empirical Study,” in International Symposium on Software
Reliability Engineering (ISSRE), Nov. 2012, pp. 181-190.

F. Gross, G. Fraser, and A. Zeller, “Search-based system testing: High
coverage no false alarms,” International Symposium on Software Testing
and Analysis (ISSTA), pp. 67-77, 2012.

T. Monteiro and A. C. R. Paiva, “Pattern Based GUI Testing Modeling
Environment,” in International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW), Mar. 2013, pp. 140-143.
X. Yuan, M. Cohen, and A. Memon, “GUI interaction testing: Incor-
porating event context,” I[EEE Transactions on Software Engineering,
vol. 37, no. 4, pp. 559 =574, 2011.

S. Carino and J. H. Andrews, “Dynamically Testing GUIs Using
Ant Colony Optimization,” in International Conference on Automated
Software Engineering (ASE), Nov. 2015, pp. 138-148.

L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “AutoBlackTest:
Automatic Black-Box Testing of Interactive Applications,” in Interna-
tional Conference on Software Testing, Verification and Validation, Apr.
2012, pp. 81-90.

S. Bauersfeld and T. E. J. Vos, “GUITest: A Java Library for Fully
Automated GUI Robustness Testing,” in International Conference on
Automated Software Engineering (ASE), 2012, pp. 330-333.

B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR:
an innovative tool for automated testing of GUI-driven software,”
Automated Software Engineering, vol. 21, pp. 65-105, 2013.

A. Swearngin, M. B. Cohen, B. E. John, and R. K. Bellamy, “Human
performance regression testing,” International Conference on Software
Engineering (ICSE), pp. 152-161, 2013.

R. M. L. M. Moreira and A. C. R. Paiva, “PBGT Tool: An integrated
modeling and testing environment for pattern-based GUI testing,” in
International Conference on Automated Software Engineering (ASE),
2014, pp. 863-866.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI
test case generation using automated planning,” IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 144-155, Feb. 2001.

S. Zhang, H. Lii, and M. D. Ernst, “Automatically Repairing Broken
Workflows for Evolving GUI Applications,” in International Symposium
on Software Testing and Analysis (ISSTA), 2013, pp. 45-55.

M. Bozkurt and M. Harman, “Automatically generating realistic test in-
put from web services,” in International Symposium on Service Oriented
System (SOSE), Dec. 2011, pp. 13-24.

P. McMinn, M. Shahbaz, and M. Stevenson, “Search-Based Test Input
Generation for String Data Types Using the Results of Web Queries,”
in International Conference on Software Testing, Verification and Vali-
dation, Apr. 2012, pp. 141-150.

L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Link: Exploiting
the Web of Data to Generate Test Inputs,” in International Symposium
on Software Testing and Analysis (ISSTA), New York, NY, USA, 2014,
pp. 373-384.

J. Saddler and M. B. Cohen, “EventFlowSlicer: Goal based test gen-
eration for graphical user interfaces,” in International Workshop on
Automating Test Case Design, Selection, and Evaluation (A-TEST),
2016, pp. 8-15.

J. A. Saddler, “EventFlowSlicer, a goal-based test case generation
strategy for graphical user interfaces,” Master’s thesis, University of
Nebraska, Lincoln, 2016.

A. M. Memon, “An event-flow model of GUI-based applications for
testing,” Journal of Software Testing, Verification and Reliability, vol. 17,
pp. 137-157, 2007.

(2014, April) Highlight comments background in Jedit.
[Online]. Available: https://stackoverflow.com/questions/27180136/
highlight-comments-background-in-jedit

W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android
Apps with Minimal Restart and Approximate Learning,” SIGPLAN Not.,
vol. 48, no. 10, pp. 623-640, Oct. 2013.

http://cse.unl.edu/~myra/artifacts/EventFlowSlicer/
http://cse.unl.edu/~myra/artifacts/EventFlowSlicer/
https://stackoverflow.com/questions/27180136/highlight-comments-background-in-jedit
https://stackoverflow.com/questions/27180136/highlight-comments-background-in-jedit

	Introduction
	System Architecture
	Example Tool Walkthrough
	Capture
	Constrain
	Model Setup
	Generation
	Test Cases
	Replay

	Validation
	Conclusions and Future Work
	Acknowledgments
	References

