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ABSTRACT
Configurable software lets users customize applications in
many ways, and is becoming increasingly prevalent. Re-
searchers have created techniques for testing configurable
software, but to date, only a little research has addressed
the problems of regression testing configurable systems as
they evolve. Whereas problems such as selective retesting
and test prioritization at the test case level have been exten-
sively researched, these problems have rarely been consid-
ered at the configuration level. In this paper we address the
problem of providing configuration-aware regression testing
for evolving software systems. We use combinatorial interac-
tion testing techniques to model and generate configuration
samples for use in regression testing. We conduct an empir-
ical study on a non-trivial evolving software system to mea-
sure the impact of configurations on testing effectiveness,
and to compare the effectiveness of different configuration
prioritization techniques on early fault detection during re-
gression testing. Our results show that configurations can
have a large impact on fault detection and that prioritization
of configurations can be effective.
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1. INTRODUCTION
User configurable software — software that can be cus-

tomized through a set of options by the user — is becom-
ing increasingly prevalent. Often these options are read at
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program start-up or can be changed at run-time, meaning
that configurations can be modified by users on-the-fly. A
single user configurable software application can often be in-
stantiated in an enormous number of ways. From a testing
perspective, each configuration may appear largely similar,
but the underlying execution of code for the same set of
test cases may differ widely across configurations [10]. This
increases the burden on software engineers, who must con-
sider not just which inputs to utilize in testing, but also
which configurations.

The impact of configurability can be particularly large in
the context of regression testing, which is performed each
time a system is modified and is often resource limited [2, 3,
19, 22]. To date, most regression testing research has treated
software systems as if they possessed a single homogeneous
configuration. A primary focus has been on techniques for
reducing test suite size (regression test selection) (e.g., [6,
23, 26, 27]) or on ordering test cases (test case prioritiza-
tion) (e.g., [13, 29, 32]). None of this research, however, has
explicitly considered issues involving configurations.

We term the collection of all possible configurations of
a software system the configuration definition layer (CDL)
for that system. The CDL sits on top of the normal set
of inputs to the system and therefore magnifies by a mul-
tiplicative factor the already large set of inputs needed for
testing. Arguably, all possible settings of the CDL should
be tested with each applicable input, but in practice this is
infeasible. Alternatively, a sampling technique can be used
to somehow“cover” the configurations in the CDL, and each
input can be utilized on each of the selected configurations.

Recent work suggests that combinatorial interaction test-
ing (CIT) may provide an effective way to sample config-
urations for testing [15, 18, 33]. Using CIT-based testing
approaches, faults occurring under the sampled configura-
tions can be revealed. Most of this prior work, however, has
focused on the testing of single versions of software systems,
rather than on the regression testing of consecutive versions
as a system evolves.

In this paper we address this lack of focus. We quan-
tify the impact of configurability on the effects of regression
testing, compare the effectiveness of CIT sampling to that of
random sampling in regression testing, and examine whether
we can improve early fault detection during regression test-
ing through configuration prioritization. To do this we study
several versions of the open source text editor vim. Our re-
sults show that the CDL is important, and that the choice of
configurations tested can impact the fault finding ability of



regression test suites by as much as 70%. We also show that
CIT test suites perform better than random ones based on
the same configuration model, and that there is justification
for configuration prioritization during testing.

2. BACKGROUND
We begin by providing background information on com-

binatorial interaction testing and test case prioritization.

2.1 Combinatorial Interaction Testing
CIT sampling models the inputs or configuration options

(factors) for a software system and their associated values
and combines these systematically so that all t-way (t > 1)
combinations of inputs or options are tested together [7].
Here, t is called the strength of testing, and when t=2, we
call this pair-wise testing.

CIT samples are defined by mathematical objects called
covering arrays. A covering array, CA(N ; t, k, v), is an N×k
array on v symbols with the property that every N × t sub-
array contains all ordered subsets from v symbols of size t
at least once [8]. Quite often in software testing the number
of values for each factor is not the same. Therefore, we use
the following expanded definition (often called a mixed level
covering array) that uses a vector of vs for the factors.

A covering array, CA(N ; t, k, (v1v2...vk)), is an N × k ar-

ray on v symbols, where v =
Pk

i=1 vi, where each column
i (1 ≤ i ≤ k) contains only elements from a set Si of size
vi and the rows of each N × t sub-array cover all t-tuples
of values from the t columns at least once. We use a short-
hand notation to describe these arrays with superscripts to
indicate the number of factors with a particular number of
values. For example, a pair-wise covering array with five
factors, three of which are binary and two of which have
four values, can be written as follows: CA(N ; 2, 3224). (We
remove the k since it is implicit). Covering arrays have been
shown to be effective test suites [4, 7, 17, 33].

To model software using CIT sampling we first need to de-
scribe the relevant factors and their associated values. One
way to do this is with the Test Specification Language (TSL)
[24], a specification based method for defining the combina-
tions of factors influencing program behavior that should
be tested together. TSL partitions the system inputs into
parameters and environment factors and within these into
categories. For each category, a set of choices is defined
based on equivalence classes.

Though TSL was created to define combinations of pro-
gram parameters and environment factors, it is not limited
to this. TSL can also be used to define factors for cov-
ering arrays from system configurations, each of which is
considered a category. Each of the choices in the categories
becomes a value in CIT terminology.

In TSL the large combinatorial space formed by consid-
ering all combinations of categories and choices is reduced
through two approaches. The first approach sets specific
choices as single or error, meaning that these are tested
alone. The second approach adds properties to particular
choices and defines constraints that relate other choices to
these properties. These approaches can significantly reduce
the final set of combinations associated with a TSL specifi-
cation. In TSL all possible combinations are then generated
given the set of specified constraints. CIT techniques do not
directly use these methods, but rather reduce the combina-
torial space by systematically testing only t-way combina-

0textwidth:

1

78

2

8tabstop:

set nosta

set stasmarttab:

set noet

set etexpandtab:

Properties

Partial TSL for vim

08set nostaset et

28set staset noet

01set staset noet

21set nostaset et

781set nostaset et

788set staset et

textwidthtabstopsmarttabexpandtab

Pair-wise CIT Sample 

Figure 1: A CIT Test Suite Defined using TSL

tions. It is possible, however, to combine these techniques by
adding single test cases to the CIT test suite and to consider
constraints if certain combinations are illegal [7, 9].

Figure 1 shows an example of a partial TSL definition
(without any single or error notations, or constraints) for
the text editor vim, and an applicable pair-wise test suite.
The shaded boxes denote the 2-way combinations in which
value “set et” has been chosen for factor expandtab.

2.2 Test Case Prioritization
Commonly, test case prioritization is used in regression

testing, at the test suite level, with the goal of detecting
faults as early as possible in the regression testing process,
given a test suite inherited from previous versions of the
system. There are many techniques (e.g., [14, 20, 28, 30]) for
prioritizing test cases based on various forms of information
such as code coverage or modification history.

Just as test cases can be prioritized, so can configurations,
the motivation being to order the configurations in a man-
ner that helps meet testing objectives (e.g., fault detection)
earlier. To our knowledge this idea has not yet been sys-
tematically explored. Bryce and Colbourn [5] present an
algorithm to prioritize CIT test suites, but theirs is a gen-
eral algorithm that may or may not apply to configurable
software. Moreover, their approach does not address a key
aspect of prioritization, namely, how to weight the various
elements that drive prioritization on real software systems.

In [25], we examined prioritization of CIT test suites and
developed several ways to control the prioritization through
weightings. We used methods that utilize code coverage data
from prior releases, as well as one that is specification based.
Further, we observed that Bryce and Colbourn’s prioritiza-
tion technique is a combined generation and prioritization
technique, rather than pure prioritization, because it regen-
erates tests each time rather than simply reordering them.
We modified the algorithm to perform pure prioritization
and compared the two approaches. Our results showed that
prioritized test suites detected faults earlier than unordered
ones. We leverage this work in the rest of this paper, but
now focus on configurations rather than test cases.

3. PRIORITIZING CONFIGURATIONS
Since our configuration model is based on combinations

of configuration options, to prioritize configurations we need
techniques that use data on the importance of interactions
between options. In [25] we prioritized CIT test suites for
regression testing; there, we did not consider the system
configuration, but rather, ordered the test cases within a test
suite. We modify that strategy to work on configurations.



We use Bryce and Colbourn’s algorithm [5] to generate
prioritized configurations. The CIT samples generated are a
special kind of covering array called a biased covering array.
The algorithm uses the interaction benefit or importance of
individual factors and values to determine the final config-
uration order. The algorithm (see [5] for details) begins by
computing a total interaction benefit for each factor. The
factors are sorted in decreasing order of interaction benefit
and then filled as follows. First, the individual interaction
benefit for each of the factor’s values is computed; this se-
lects the value of the factor that has the greatest interaction
benefit. After all factors have been fixed, a single config-
uration has been created, and the benefits for factors are
recomputed and the process starts again. The algorithm is
complete when all pairs have been covered.

As observed earlier, this type of prioritization is really
a regeneration technique; it generates a new CIT sample
for each new version. The implication is that a new set of
configurations is tested each time we prioritize. In [25] we
extended the concept of interaction benefit to apply to pre-
viously generated test suites as a basis of prioritization. We
used the interaction benefit to simply order configurations
from a given CIT sample; the same set of configurations is
used each time. In this paper, we refer to the first technique
as regeneration and the second as pure prioritization.

One requirement for using interaction benefit to drive re-
generation or prioritization is to assign weights of impor-
tance to each factor and value in the CIT model. In [25] we
used code coverage data from the previous version to weight
the values of the model. Once we decided which test cases
contributed most to code coverage or to finding faults we cal-
culated the occurrence of the individual values in those test
cases and gave them the highest weights. Additionally, we
used a specification based approach and set weights based
on the current version’s specification. We take a similar ap-
proach at the configuration level.

In a configurable system our model is at a higher level
of abstraction than the test suite/test case level, so we first
describe some metrics that can help us assess how important
an individual configuration is.

3.1 Metrics for Fault and Block Coverage
In [10] we developed a set of metrics for measuring the

changes in a test suite’s fault detection behavior across con-
figurations. These metrics were derived from metrics devel-
oped by Elbaum et al. for code coverage [12]. We begin with
a block matrix B and a fault matrix F . Let B be a b× t ma-
trix, where b is the number of unique blocks in the program
and t is the number of test cases in the test suite. If cell
(i, j) in B contains a 1, this means that test case j executed
the code in block i, otherwise the cell contains 0.

Let F be an f×t matrix, where f is the number of unique
faults in the program and t is is the number of test cases in
the test suite. If cell (i, j) in F contains a 1, this means that
test case j detected fault i.

Figure 2 shows examples of a block matrix, B1, and two
fault matrices, F1 and F2. In this example, there are four
faults, three blocks and five test cases.

We use these block and fault matrices to define and cal-
culate two metrics: block coverage and fault detection. We
include two additional related metrics explained here and
used later in our experimentation, change across faults and
change across tests.
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Figure 2: Block and Fault Matrices

Block Coverage (BC)
BC measures the percentage of blocks covered by a given
test suite. In Figure 2, the BC for matrix B1=66.7%.

Fault Detection (FD)
FD measures the percentage of faults found by a given test
suite. Matrices F1 and F2 of Figure 2 have FD values of
50% and 75%, respectively.

Change Across Faults (CAF)
CAF compares a pair of fault matrices, F1 and F2, and mea-
sures the percentage of rows that differ between them. CAF
measures the sensitivity of faults across configurations. A
large CAF means that there is a large difference in the way
in which individual faults are detected by test cases across
configurations. If rows F1i and F2i have at least one cell
(i, j) that differs, diff Fcounti = 1. Then:

CAF =
Pf

i=1 diff Fcounti

f
× 100

The CAF value for matrices F1 and F2 in Figure 2 is 50%.
In our study, CAF is calculated for all

`
n
2

´
pairs of configu-

rations where n is the number of configurations.

Change Across Tests (CAT)
CAT compares two fault matrices, F1 and F2, and measures
the percentage of columns that differ between them. CAT
measures the sensitivity of test cases across configurations.
A large CAT means that there is a large difference in the
ability of individual test cases to detect particular faults
across configurations. If columns F1i and F2i have at least
one cell (j, i) that differs, diff Tcounti = 1. Then:

CAT =
Pt

i=1 diff Tcounti

t
× 100.

The CAT value for matrices F1 and F2 in Figure 2 is 40%.
In our study we examine all

`
n
2

´
pairs of configurations when

using this metric.

3.2 Computing Weights of Importance
To prioritize or re-generate configurations, we first need

to compute weights of importance for each value of the con-
figuration model. We use a four step process (Figure 3):

Step 1. Given block and fault matrices as just described, we
relate these metrics to our configuration specification model.
Initially we have one block and one fault matrix for each
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Figure 3: Setting the Weights for Interaction Benefit

configuration. We first aggregate these into configuration
matrices. Figure 2 shows how we combine two fault matri-
ces, F1 and F2, into a single configuration matrix CM1 (the
same can be done with block matrices). The rows of the
matrix are still faults (or blocks), but the columns are now
configurations. A “1” in a cell means that at least one test
case for that configuration found the fault (or covered the
block). We can determine an individual configuration’s FD
or BC by summing the columns of the configuration matrix
associated with that configuration. In the example, Config-
uration 2 (C2) has a higher FD than Configuration 1 (C1).

Step 2. Given a configuration matrix, we use an iterative
greedy approach to order our CIT sample in descending or-
der. We order the configurations until we reach a high per-
centage of the cumulative FD or BC coverage for the full set
of configurations (our threshold). This threshold is chosen
empirically as the point at which the rate of contribution
of new configurations is minimal. In our experiments the
threshold was 100% for FD and 95% for BC.

To gather as much information as possible about the im-
portance of individual values from the configuration model,
we aggregate configurations into equivalence classes. For
each selection of the next best configuration, we order our
CIT sample in descending order of FD or BC. If there is
more than one configuration that provides the best new cu-
mulative FD or BC we select all of the equivalent configura-
tions and put these into the same class. For example, if the
first configuration has an FD value of 45%, we find all other
configurations that also have this FD value. We then find
the next best configuration. If this adds 5% more FD we
find all other configurations with the same additional fault
detection, and so on. We select configurations without re-
placement (each can belong to only a single class). At the
end we have classes of configurations each associated with
the same additional contribution to the overall FD or BC.

Step 3. Next, we calculate weights for each value. We
sum the number of times a value occurs in each equivalence
class and divide this by the number of configurations in that
class. For example, if set sta occurs twice and we have four
configurations in the class, this value has a weight of 0.5, and
if set noet occurs twice this value has a weight of 1.0.

Step 4. In the final step, we first assign an importance, I,
to each of the equivalence classes as a normalization. The
importance is set to the cumulative FD or BC of that group

divided by the total FD or BC (i.e. it is the percentage of
FD or BC it provides in relation to the maximum for the
CIT sample). Finally, the weight of each value is multiplied
by its importance I in each of the classes, and the weights
are summed to obtain the individual weight for that value.

The final weights for each value of the CIT model are then
fed into the regeneration or prioritization algorithm, which
computes the interaction benefit [5].

3.3 Specification Based Weightings
There may be instances where we do not have prior code

coverage, but can prioritize based on the current system
specification. To account for such instances, in [25] we used
a specification based approach for prioritizing CIT test cases
for regression testing. Since we define our configuration
model using TSL we can use this for weighting as well. In
TSL based prioritization we have the advantage of not need-
ing a prior version; instead we rely on our existing version of
the software to produce information to direct prioritization.

To set weights, for each category in the TSL specification
we examine that category’s possible choices. In the case of
binary choices, where one choice turns a feature on and one
turns a feature off, we set the on option to a weight of 0.9
and the off option to 0.1. (Our intuition is that the on
option will cause more code to be executed.)

In cases where we have multiple choices for a category,
we use a greater number of features or higher complexity
of the choice as a proxy for higher code coverage. For in-
stance, in the subject vim that we use in our studies de-
scribed later, we have a category called laststatus which
determines when the last window will contain a status line.
There are three values: never, only when 2 windows and
always. We assign the highest importance (0.5) to the third
value, a medium importance to the second (0.3), and the
smallest importance (0.1) to the first. The absolute values
used in the prioritization algorithm are less important than
the relative values, therefore we have chosen these to reflect
a relative importance and have not fine tuned them to spe-
cific values. We realize that different heuristics and different
absolute values may impact the quality of this method. We
leave investigation of this for future work.

3.4 Pure Prioritization
This algorithm is the same as the approach used in [25],

but the object of prioritization is the configuration rather
than the test case. We iteratively select the configuration
with the highest interaction benefit. The interaction benefit
considers both the weights of values as well as which pairs
from the CIT sample have been covered. We calculate the
interaction benefit for each configuration at the start of each
iteration, by summing the product of each pair of weights for
the configuration (this differs from the approach used in [5]
because their regeneration algorithm calculates benefit only
for the factors and values). If a pair occurs in a configuration
that has already been selected, its interaction benefit is set
to zero. For instance, if a configuration has the values set

et, set sta, 8 and 78 with associated weights, 0.2, 0.3, 0.1,
0.5, and the pair 8,78 has already occurred in a previously
selected configuration, then the interaction benefit for this
configuration is 0.06+0.02+0.10+0.03+0.15+0.00 = 0.36.
When more than one configuration provides the highest in-
teraction benefit, we randomly select from among them. We
continue this until all configurations have been selected.



# changed faults
version # blocks loc methods hand+mut

v2 26,081 87,442 664 3+10
v3 30,217 105,225 830 3+10
v4 30,426 105,690 323 4+10
v5 30,553 106,391 317 4+10
v6 30,744 107,992 324 2+10
v7 30,764 105,944 311 3+10

Table 1: Object of Analysis

4. EMPIRICAL STUDIES
We have designed a set of empirical studies to investi-

gate the impact that the CDL has on regression testing, to
measure the applicability of using CIT as a sampling mech-
anism, and to assess the effectiveness of our prioritization
approaches. Our studies address the following research ques-
tions:

RQ1: What is the effect of changing configurations on
the outcome of regression testing across consecutive
versions of a program?

RQ2: Is CIT an effective method for sampling configura-
tions for testing?

RQ3: Can we improve fault detection effectiveness, when
resources are constrained, through prioritization of con-
figurations?

The rest of this section describes our objects of analysis, in-
dependent and dependent variables, methodology, and threats
to validity. Subsequent sections present results.

4.1 Objects of Analysis
As an object of analysis we selected vim, an open source,

multi-platform text editor extended from vi written in C
[21]. The object was obtained from the Software Infrastruc-
ture Repository (SIR) [11] and is augmented with a test suite
containing 975 test cases, organized into groups by function-
ality, and hand seeded faults (not seeded by the authors of
this study). We selected this object because it is highly con-
figurable, has a non-trivial code base and has both a default
configuration and a test suite that was not developed for
this study. This helps to reduce potential sources of bias.

We conduct our experiments on a set of consecutive ver-
sions of vim, including six releases of the software (version
2-7 from SIR). This corresponds to vim versions 5.3-5.8, de-
veloped over from 1998 to 2001.

Table 1 provides basic information on our object of analy-
sis, including the number of basic blocks in system versions
as calculated by gcov[16], the number of source lines of code
calculated by sloccount[31], and the number of methods
changed or added between versions. The number of faults
in each version is also shown. Since relatively few faults (2-
4) were seeded in any single version, we added 10 additional
faults in each through the use of a mutation testing tool [1].
To avoid a potential source of bias, we generated all possible
mutations for each version and then randomly selected (with
replacement) 10 modules for mutation, in which at least one
method had been changed between versions. (We focus only
on changed methods to simulate regression faults.) Within
each of these 10 modules a mutation from within the changed
methods was randomly selected and added to our subject.
Vim has a user configuration file, .vimrc, that controls

a set of between 146 and 187 user configurable options for
the different versions of the software. We used the online

documentation found at [21] along with the -setall option
within the software to list and model the system’s configu-
ration space, using TSL to specify the configuration options.
In each version there were some configuration options that
either did not allow certain test cases in the original suite to
run (for instance, an option that turns on interactive mode
will not work because our test cases run in batch mode),
or that we deemed to have little effect on the software un-
der test, such as modifying a path location for a specific
directory; we ignored these options. In total, we modeled
90 options in version 2, 93 options in versions 3, 4, 6, and
7, and 76 options in version 5. Note that in version 5, there
was a significant decrease in the configurable option space
which reduced the size of our model for this version.1

Next we used the TSL definition (following the process
reported in [25]) to generate a CIT configuration sample
for each version. Due to the size of the configuration space
and time required for testing (7 hours per configuration)
we used a strength 2 (or pair-wise) CIT sample. We used a
CA(60; 2, 277374263101) array for version 2, a CA(60; 2, 28037

4263101) array for versions 3, 4, 6, and 7, and a CA(60; 2, 265

364163101) array for version 5. Note that each sample cre-
ated has 60 configurations. We used a simulated annealing
algorithm [8] to generate the samples. The configurations
were then mapped to the .vimrc file for manipulation during
experimentation. In addition to the covering array samples
we generated a comparison sample of the same size for each
model consisting of 60 random configurations. The original
vim test suite from SIR was designed to be run with a single
default configuration. We tested this configuration as well
as the baseline.

4.2 Independent Variables
Our independent variables for RQ1 and part of RQ2 are

the individual configurations in our covering array samples
or random samples generated without replacement from all
possible configurations of the TSL model. We refer to the
original unprioritized covering arrays as ca and refer to the
sample of 60 random configurations as rand.

To answer part of RQ2, and for RQ3, we use the prioriti-
zation techniques described in Section 3 as well. We refer to
these techniques in terms of both the weighting technique
and whether or not the array was prioritized or regener-
ated: pure-BC and regen-BC for block coverage weight-
ing, pure-FD and regen-FD for fault-detection weighting.
The last two techniques, pure-TSL and regen-TSL, reflect
the method that uses only the TSL to determine weightings
for interaction benefit.

4.3 Dependent Variables
To address RQ1 and RQ2, we measure block coverage

(BC), fault detection (FD), change across faults (CAF)
and change across tests (CAT) as described in Section 3.
For RQ2 we also compare the minimal number of configu-
rations in an unordered sample needed to detect the same
number of faults detected by all configurations in that sam-
ple (NCF).

1On further analysis, it appears that version 5 was set up
by default to use a minimal subset of options, but that the
other options are still available within the software. We
chose to ignore this in order to maintain the integrity of
our model developed through documentation, rather than
by examination of source code.



Finally, to address RQ3, we examine the Normalized Per-
centage of Faults Detected (NAPFD) which was first de-
scribed in [25]. In prior work [14, 28], a metric that has been
commonly used for prioritization is the Average Percentage
of Faults Detected or APFD. This metric measures the area
under the curve when the percentage of faults found is plot-
ted on the y-axis against the percentage of the test cases
(in our case configurations) run on the x-axis. The diffi-
culty with APFD, however, is that it assumes that the total
number of configurations and the total number of faults de-
tected in each sample is the same. This is often not the case
when we regenerate CIT samples. Therefore NAPFD nor-
malizes this metric to reflect the area under the curve when
we have differing numbers of configurations or faults (see
[25] for more details). The NAPFD formula is as follows:

NAPFD = p− CF1 + CF2 + ... + CFm

m× n
+

p

2n

In this formula, n represents the number of configurations
we are able to run within budget, and m represents the total
number of faults found by all configurations. Proportion p
represents the number of faults detected by the set of con-
figurations within our budget divided by the total number
of faults detected in all of the configurations. CFi stands
for the index of the configuration (when testing in prioriti-
zation order) in which Fault i was found. If a fault i is never
detected, CFi = 0.

To illustrate, Figure 4 shows a fault matrix with five con-
figurations and eight faults. Suppose that the ordering of
the configurations is C3, C5, C2, C4, C1. The first configura-
tion (20% of the configurations) finds three faults. After the
first three configurations (60% of the configurations) have
been executed, five faults have been found (62.5%). If we
are able to run the entire CIT sample, m = 8, n = 5, p = 1,
CF1 = CF3 = 4, CF2 = CF4 = CF7 = 1, CF5 = CF6 = 2
and CF8 = 5, the NAPFD value is 0.6. But if we have a bud-
get sufficient only to run 3 configurations, then n changes
to 3 and CF1, CF3 and CF8 change to 0. Now the NAPFD
value is 0.44.

C1 C2 C3 C4 C5

F1 x
F2 x x
F3 x
F4 x x
F5 x
F6 x
F7 x x
F8 x

Figure 4: Configuration Order: C3, C5, C2, C4, C1

4.4 Study Methodology
For our first set of experiments we run the entire test

suite on each configuration without any faults, letting out-
puts serve as the oracle, and then we turn on each fault in-
dividually and measure fault detection. This alleviates the
potential masking of one fault by another. For each model,
we run each set of experiments under each configuration as
is defined by the covering array or random array, as well as
the default configuration (not created by us) from SIR. We
collect block coverage on the fault free version using gcov.

For the prioritization experiments that use weights based
on block coverage and fault detection ability, we use the
prior version of the program to prioritize configurations for
the current version, but for the TSL based weightings we use
data on the current version as the source for prioritization
information. When collecting data on the unordered CIT or
random samples for NCF and for the unordered prioritiza-
tion results, instead of using a single number we randomly
select 50 orders and use the average of the results. This
reduces sources of bias from the generation process.

4.5 Threats to Validity
Empirical studies are subject to threats to validity. We

have attempted to reduce these through our experiment de-
sign, however, we outline the major threats here. With re-
spect to external validity (or the difficulty of generalizing to
other objects), we have examined only one software system,
written in C, and results obtained with other systems may
not match these. Similarly, we have utilized only one uncon-
strained TSL definition. The faults used in this study were
both hand seeded and generated by mutation. We did not
separate these out for our study because there were too few
hand seeded faults to draw conclusions, but we note that
the results shown follow those of the mutation faults alone
which have been suggested by others as being sufficient to
represent realistic faults [1].

With respect to internal validity (the possibility that fac-
tors other than variance in our independent variable is re-
sponsible for our results) our greatest concern is problems
with our instrumentation, and thus we have manually cross-
validated our analysis programs on small examples and man-
ually validated random selections from the real results.

With respect to construct validity (the validity of mea-
sures), there may be other metrics that are more accurate in
measuring the cost-benefits of regression testing techniques.

5. RESULTS
We now analyze the results of our study with respect to

our three research questions.

5.1 RQ1: The Effect of Configurations on Re-
gression Testing

To address RQ1 we examine the fault detection ability
and code coverage of test suites under different configura-
tions across the sequence of vim versions, by measuring the
FD and BC data values for each configuration. Figures 5
and 6 provide box plots for FD and BC across all versions
of vim. Table 2 shows the detailed FD data. In Figure 5 the
dot on each box plot is the FD value for the default con-
figuration provided from SIR. In most versions the default
configuration has a level of performance well below that of
the best configuration. For all versions, the FD values range
from about 30% to 100%, representing a range of almost
10 faults, although the BC values are fairly constant. The
lack of variance in BC may be due to the weakness of block
coverage adequacy.

The CAF (Figure 7 and Table 3) and CAT (Figure 8 and
Table 4) results are used to distinguish behaviors relative to
individual faults and tests, focusing on a different granular-
ity of our measures. The data shows a great deal of variation
in CAF values. This means that some configurations match
closely in fault detection effectiveness across versions while
others vary greatly. The average CAF value for each ver-
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Figure 6: Block Coverage

Min Max Mean Median StdDev
v2 30.77 100.00 58.46 53.85 17.76
v3 30.77 100.00 61.15 57.69 21.22
v4 28.57 100.00 65.48 64.29 20.72
v5 28.57 100.00 58.81 57.14 21.70
v6 33.33 100.00 63.75 58.33 21.47
v7 23.08 100.00 60.00 61.54 21.84

Table 2: Statistics for FD
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Figure 7: Change Across Faults

Min Max Mean Median StdDev
v2 0.00 100.00 59.55 61.54 24.23
v3 0.00 100.00 74.02 76.92 21.33
v4 7.14 100.00 75.23 78.57 22.29
v5 0.00 100.00 69.21 71.43 23.41
v6 0.00 100.00 73.96 75.00 24.06
v7 7.69 100.00 74.66 76.92 22.18

Table 3: Statistics for CAF
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Figure 8: Change Across Tests

Min Max Mean Median StdDev
v2 0.00 7.18 2.79 2.87 1.82
v3 0.00 11.08 3.99 3.59 2.50
v4 0.00 97.33 45.41 6.05 46.41
v5 0.00 9.02 2.10 1.74 1.52
v6 0.00 7.28 2.66 2.97 1.55
v7 0.00 7.69 3.32 3.54 1.70

Table 4: Statistics for CAT

sion is between 60% and 75%. The CAT values exhibit a
much smaller difference, averaging only around 3% except
on version 4 which exhibits a large fluctuation.

Our results bring us to the conclusion that the CDL plays
an important role in fault detection on this system, and
which configuration is tested greatly impacts the result of
regression testing. There are large differences in fault de-
tection at the test suite level, although there are only small
differences in block coverage. We see the greatest fault de-
tection variation at the test suite level of granularity.

5.2 RQ2: Effectiveness of CIT for Testing Con-
figurations

To examine our second research question, we first compare
fault detection abilities between two sets of configurations:
our CIT sample and a randomly generated sample of the
same size based on the same TSL model.

Both of these samples detect all seeded faults when all con-
figurations are tested cumulatively. However, there are some
differences in the distribution of fault detection effectiveness
abilities for individual configurations. Figure 9 provides a
box plot comparison of the two sets of configurations. We
can see that the CIT sample seems to be distributed more
towards the higher fault finding end.

We examined this further by finding the number of con-
figurations needed to detect all faults within each sample if
we were to just run each sample in an unprioritized order
(NCF). The box plot in Figure 10 shows 50 randomly se-
lected orders for each sample. We show this for all versions.

We also applied the Wilcoxon two sample test on each
version, with an α level of 0.05, to examine whether there is a
significant difference between these two groups (see Table 5).
Our data shows a significant difference.

We can come to only a weak conclusion on this research
question. Overall, CIT does appear to provide some bene-
fits. The results of fault detection using CIT generated con-
figurations show that in most cases, the median fault finding
ability of the CIT sample is similar to or higher than that of
the default SIR configuration with respect to the number of
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Wilcoxon Two-Sample Test
Statistic 1843.5000

Normal Approximation
Z -4.7360
One-Sided Pr < Z < .0001
Two-Sided Pr > |Z| < .0001

t Approximation
One-Sided Pr < Z < .0001
Two-Sided Pr > |Z| < .0001

Table 5: Wilcoxon Test Results for v2

faults detected. Half of the CIT configurations detect more
faults than the default SIR configuration. Though the cu-
mulative fault detection effectiveness of the random sample
is the same as that of the CIT sample, individually the CIT
configurations appear to have slightly better fault detection
capabilities.

5.3 RQ3: The Effectiveness of Prioritization
RQ3 examines whether prioritized CIT configurations yield

faster fault detection than unprioritized ones.
We provide the NAPFD values for some of the prioriti-

zation techniques we considered in Table 6. (We omit the
regenerated FD prioritization results since they closely fol-
low those of the regenerated BC metric.) Recall that higher
NAPFD value represent earlier detection of faults.

To simulate a resource-constrained testing environment in
relation to this research question, we selected “budgets” of
configurations in increments of five configurations for anal-
ysis. Each budget represents the maximum number of con-
figurations that we are allowed to run. We calculated the

pure regen
version unordered FD BC TSL BC TSL

Budget: 5
v3 .76 .78 .78 .81 .90 .90
v4 .76 .90 .90 .90 .90 .90
v5 .74 .71 .69 .68 .90 .90
v6 .73 .90 .90 .90 .90 .90
v7 .76 .90 .73 .90 .90 .90

Budget: 10
v3 .88 .89 .89 .90 .95 .95
v4 .88 .95 .95 .95 .95 .95
v5 .86 .81 .79 .79 .95 .95
v6 .85 .95 .95 .95 .95 .95
v7 .88 .95 .87 .95 .95 .95

Budget: 15
v3 .92 .93 .93 .94 .97 .97
v4 .92 .97 .97 .97 .97 .97
v5 .91 .87 .86 .86 .97 .97
v6 .91 .97 .97 .97 97 .97
v7 92 97 .91 .97 .97 .97

Budget: 60
v3 .98 .98 .98 .99 .99 .99
v4 .98 .99 .99 .99 .99 .99
v5 .98 .97 .97 .97 .99 .99
v6 .98 .99 .99 .99 .99 .99
v7 .98 .99 .98 .99 .99 .99

Table 6: NAPFD Values for Different Budgets

NAPFD for each method at each budget level. For instance,
as the table shows, the NAPFD values for the unordered
sample when we are allowed to run only five configurations
ranged from .73 to .76, but the NAPFD values for regener-
ated CIT samples were higher at .90, indicating that priori-
tization was effective. After the 15th configuration (Budget
15), all faults are found in all versions, so NAPFD values
stabilize and are very close to those measured for the full
budget of 60; thus, we do not show the data for increments
in between 15 and 60.

For all versions except version 5, the prioritized and regen-
erated configurations exhibited better NAPFD values than
unordered CIT configurations, although the difference de-
creases as we run more samples in the configuration. We see
very little difference between the different weighting schemes
for pure prioritization. The regenerated samples, however,
always seem to provide the highest NAPFD values.

Our results suggest that both prioritized and regenerated
configurations detect faults earlier than unordered configu-
rations and that the regeneration techniques work better for
early fault detection in application to our object of study.
The choice of a specific prioritization technique seems less
important than whether we choose pure prioritization or re-
generation.

6. DISCUSSION AND FURTHER ANALYSIS
In this section, we provide additional discussion and anal-

ysis of the results just described. We also analyze some
specific faults in detail to help further explain the results.

6.1 Configuration Dependent Faults
Inspecting our results and data further, it is apparent that

some faults are found by every configuration while other
faults are found by only some. To better understand this
trend we plotted the faults for two versions of vim to show
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Figure 11: Fault Density

their distribution across configurations. Figure 11 shows the
data for versions 4 and 6. On the y-axis we number the con-
figurations and on the x-axis we list the individual faults.
In version 4 the first four faults are hand seeded while the
rest are mutants. In version 6 the first two faults are hand
seeded. The size of the dots represents the number of test
cases that detected a specific fault. The graphs show, for
instance, that Faults 1, 2, 11 and 12 in version 4 are found
during testing in all configurations. However, while Fault
12 seems very evenly handled across configurations, Fault
1 exhibits some variation. Other faults such as Fault 7 in
version 4 are found with great frequency in some configu-
rations but completely missed in others. We call the first
type of fault configuration-independent and the second type
configuration-dependent.

Note that there may be two definitions of configuration-
independence, one at the test suite level and one at the test
case level. It is possible for all configurations to find the
same fault with at least one test case, but the actual test
cases which find these may differ. This has implications for
test case selection, since it implies that different test subsets
may behave differently even when full test suites do not. All
of the configuration-independent faults found in our subject
are of the first type: they are configuration-independent at
the level of test suites.

We next examine some specific faults to understand what
makes them independent or dependent. Fault 11 in version
4, located in a routine named window.c, is a configuration
independent fault. The faulty code incorrectly tests to see
whether a buffer is NULL. The code is called uncondition-
ally, and its execution status has no connection with any
options that can be tuned by users. The test case that de-
tects this fault under each configuration belongs to those
that test program startup behavior, and thus it is run in
each configuration.

Fault 7 in version 4 is configuration dependent; in fact,
this fault plays a large role in the unusual fluctuation of
the CAT metric for this version. This fault is located in
a function named my_sync() in file memfile.c. This func-
tion is used to synchronize output of changed parts of the

memory file to disk. Fault 7 is a particularly easy fault to
find when its enclosing function is executed because it does
not occur inside any conditional statements. Thus, we ana-
lyzed the functions that call mf_sync() and found that they
are all called under certain conditions, controlled by the pa-
rameters p_uc or b_may_swap which relate back to our TSL
model. The first parameter is associated with the number
of synchronized characters, which is set by the configurable
option updatecount, and the latter decides whether or not
a swap file can be opened, which is turned on/off by another
user configurable option called swapfile. In other words, if
a swap file is not permitted by set updatecount=0 and set

noswf, then mf_sync() will never be executed and the fault
will not be detected.

Now consider the alternative case where updatecount>0.
The function ml_open_file(), which also calls mf_sync(),
is called by another function, set_bool_option(). The
set_bool_option() function is executed in any program
run, because it is used to set Boolean options on startup.
Hence, if we ever execute set_bool_option(), we will al-
ways execute mf_sync(), the faulty code, and detect the
fault. Therefore, it is not surprising that a large proportion
of test cases detect this fault when the required configurable
options are set.

6.2 Analysis of Data Outliers
There are two places in our data that warrant further

examination. First, in version 4 we see an unusual variation
in the CAT metric. Second, we see an inverse in the results
of NAPFD in version 5 for smaller budgets in the purely
prioritized samples. We examine each of these in turn.

In version 4, there is a moderate range of CAF values but
a very large range of CAT values. In fact, this metric varies
from almost 100 down to 6 (see Table 4). We illustrate
how this is possible. Suppose we have four test cases, three
faults and two configurations as shown in the fault matrices
in Table 7. In this case the value of CAF is 1/3 and the value
of CAT is 1. The difference is caused by Fault 0. None of
the test cases detect this fault under Configuration 1 but all
four test cases detect it under Configuration 2. Hence this



F/T t0 t1 t2 t3 F/T t0 t1 t2 t3
f0 0 0 0 0 f0 1 1 1 1
f1 1 0 0 0 f1 1 0 0 0
f2 1 1 0 0 f2 1 1 0 0

Fault Matrix for c1 Fault Matrix for c2

Table 7: Fault Matrices for Configuration 1 and 2

suggests that if there is a small range of CAF values but a
large range of CAT values, there may exist faults that are
triggered primarily by configuration options. This explains
the phenomenon seen in version 4: Fault 7 is detected by
more than 70% of the test cases under some configurations
but never detected under others.

Finally, we examine the anomaly in prioritization for ver-
sion 5. As can be seen in Table 6, this version has lower
NAPFD values than the unordered samples; but we see this
only for the purely prioritized sample, not for the regener-
ated one. Between version 4 and version 5 a large number
of options were deleted from the model (this was based on
documentation of the tool). Since we use version 4 to priori-
tize version 5 for the pure prioritization, a lot of information
is lost. During the calculation of the interaction benefit we
may have many options that do not contribute to the order
of version 5. In the regenerated version we use the documen-
tation from the current version, therefore, our prioritization
seems to work as well as on the other versions.

6.3 Practical Significance
We believe that the results presented here provide some

practical guidance for testers. In our study, we began with
a test suite and a single configuration from SIR that corre-
spond to an actual testing scenario set up for that system.
By running the same set of test cases using additional con-
figurations, we were able to uncover faults previously unde-
tected. In practice, testers should consider configurations.

There is a trade-off, however, between the time needed to
run additional configurations and the new faults that may
be found by running them. The time required (over seven
hours for a single configuration) to run all test cases of vim
means that in practice, running configurations is an expen-
sive proposition. We thus believe that prioritizing configu-
rations will be most beneficial when resources are limited,
such that testing effort may be foreshortened.

In our study we also found that only a relatively small
percentage of configurations were needed to reach fault de-
tection levels comparable to much larger percentages; there-
fore, other techniques for sampling configuration spaces may
also work in practice. This implication, however, may be de-
pendent on the object program considered, and the type of
faults. In vim, for example, we observed the best priori-
tization results using regenerated CIT samples; in practice
this means that we tested different configurations each time.
Since our configurations did not require recompilation, but
rather just a modification of a single file, we believe that this
is the better approach to follow with this system. Systems
that require extensive compilation or other mechanisms to
change configurations, however, may find pure prioritization
to be less expensive.

Finally, we did find that the CIT sample size is larger
for regenerated CIT samples (65-95); when the full set of
configurations must be run this may limit the regeneration
approach.

7. RELATED WORK
There has been a large body of work on regression testing

for both regression test selection (e.g., [6, 23, 26, 27]) and
test case prioritization (e.g., [13, 29, 32]). Most of this work
has focused on the test suite or test case as the object of
selection or prioritization. Our work differs in that it focuses
on prioritizing configurations.

Other work on CIT for testing configurable systems [15,
18, 33] examines the effectiveness of CIT to model configu-
rations for testing, but it considers fault detection or local-
ization only in single versions of a system, and does not try
to quantify the impact on the CDL. In [10] we examine the
impact of configurations on the CDL, but this is a prelimi-
nary study on a single subject for a single version of a web
browser; it does not use prioritization or leverage CIT.

Recent work on prioritization of CIT test suites for evolv-
ing systems was reported in [25]. This is closely related to
the current work, where we have used similar prioritization
techniques. However, the object of prioritization in [25] is
the test suite.

Finally, there has been some work on prioritization algo-
rithms [5] for CIT. An algorithm from that work is used in
our own work; however [5] does not present any empirical
results of using the algorithm, nor does it provide methods
for assigning weights to calculate interaction benefits.

8. CONCLUSIONS
In this paper we have presented the results of an empirical

study to examine the effects of changing configurations on a
user configurable system, vim, across multiple versions. We
see compelling evidence that the CDL plays an important
role in fault detection on this software subject: as many as
10 faults might be missed if the “wrong” configurations are
omitted from testing. We see the greatest fault detection
variation at the test case level, which may have implications
for regression test selection. Not one of the faults in our
study were detected by an equivalent subset of test cases
across all configurations. We have also examined the effec-
tiveness of CIT in sampling the configuration space. We con-
clude that it is effective, but the effects are not particularly
strong. Finally, we have evaluated several techniques for
CIT configuration prioritization. Our results suggest that
both prioritized and regenerated configurations may detect
faults earlier than unordered configurations and that the
regeneration based techniques outperform the pure prioriti-
zation techniques.

In future work, we intend to examine additional config-
urable systems and apply these techniques. We are exam-
ining additional heuristics to be used for prioritization and
examining the difference between random and CIT samples
more thoroughly. We are also considering techniques for pri-
oritizing higher strength covering arrays, and grouping ho-
mogeneous options for generating variable strength arrays.
Finally, we are examining the differences between configu-
ration dependent and independent faults.
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