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ABSTRACT
Highly configurable software, such as web browsers, databases
or office applications, have a large number of preferences
that the user can customize, but documentation of them
may be scarce or distributed. A user, tester or service tech-
nician may have to search through hundreds or thousands of
choices in multiple documents when trying to identify which
preference will modify a particular system behavior. In this
paper we present PrefFinder, a natural language framework
that finds (and changes) user preferences. It is tied into an
application’s preference system and static documentation.
We have instantiated PrefFinder as a plugin on two open
source applications, and as a stand-alone GUI for an indus-
trial application. PrefFinder finds the correct answer be-
tween 76-96% of the time on more than 175 queries. When
compared to asking questions on a help forum or through
the company’s service center, we can potentially save days
or even weeks of time.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Configurable Systems; Testing; Debugging

1. INTRODUCTION
Many software systems today are highly configurable. Users

can customize the program’s behavior by choosing settings
for a large number of preferences. Preferences control which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2643009.

features are used (or excluded) during the program execu-
tion, and most systems support the selection of these at both
compile time and runtime. During development, testing,
maintenance and when providing end-user technical sup-
port, engineers need to manipulate a system’s preferences
to mimic user behavior and ensure that correct execution
occurs under a wide range of user profiles.

Most large real systems provide multiple ways to access
and modify preferences [14]. On the user interface there may
be a preference menu that is easily accessible, containing a
core set of preferences. For advanced users who want to
manipulate the less common options, or who need to auto-
mate the configuration process, changing preferences can be
achieved by modifying values in preference files, or through
interaction with a runtime API which connects to the active
preference database [14].

Despite the flexibility and availability of configuring and
manipulating how a program runs, it is often non-trivial to
determine which preference is tied to a specific behavior (or
to a specific element of code). For instance, if a developer
knows that a preference in the Firefox browser found on a
menu is called Always show the tab bar, he or she may not be
able to quickly determine what the real preference name is in
the preference database or files ( i.e. browser.tabs.autoHide).
And if a user wants to change the tab bar behavior, they may
spend a long time searching through menus to find out where
such an option can be modified. In recent work, Wiklund
et al. reported that the majority of the impediments for
novice testers were in configuring the testing tools to use
the correct parameters and environment [16].

Rabkin and Katz highlight the lack of documentation that
exists for preferences, including knowing the valid value do-
mains for each of the preference options [30]. Making this
worse, we have observed in recent work [14] that the loca-
tions for manipulating configurations within a system are
often distributed and only a limited number can be manip-
ulated by the menu (e.g. only 126 of 1957 Firefox prefer-
ences are accessible from the menu). We see similar trends
in industrial systems, such as those studied at ABB. To ad-
dress this issue, Rabkin and Katz developed a static analysis
technique that reverse engineers the configuration options
from code either for configuring systems or for diagnosing
errors [29, 30]. Zhang and Ernst have developed another
analysis to identify which configuration option causes a fail-



ure [44] or has caused the system behavior to change in an
undesirable way due to evolution [45], but this is limited to
situations where the differing behaviors are known and can
be demonstrated.

Both of these approaches identify preferences at the source
code level, but it is non-trivial to map them back to the
preference database names and/or to the menu items [14].
Furthermore, the use of static analysis means that these
techniques are programming language dependent and many
of the highly configurable systems like Firefox are written in
multiple programming languages with preference code dis-
tributed throughout [14].

Some programs provide built-in search utilities tied into
their documentation (as in an ABB system), or to the run-
time preference database (as in Firefox), but these primar-
ily use keyword searches forcing the user to know exactly
what they are looking for. Consider a preference found in
Firefox, browser.download.DownloadDir. It determines the
default download directory when users save a file. There
is no menu setting for this option, but Firefox provides a
utility, about:config, to look for this. If the user happens
to search using the keyword download, they will find this
option and can then modify its settings. If instead, they
search for directory, they will not (because the keyword is
dir). Browsing through all preferences in about:config is
not useful with over 1900 in the current versions. And if the
user is working on a system like LibreOffice, they have a hier-
archical directory to search that has over 30,000 choices [14].
Instead, there is the need for a more natural way to interact
and find preferences in highly configurable systems.

In this paper, we present a natural language processing
(NLP) based framework called PrefFinder. In PrefFinder, a
query is an input in natural language. PrefFinder first parses
both the preferences and the user query, informed by dictio-
naries and lexical databases. The queries and preferences
are then matched, ranked and returned to the user. We can
tie this into the runtime APIs of the applications to provide
descriptions of the returned preferences and to allow directly
modification of the chosen preference. PrefFinder has been
instantiated on two open source and one industrial applica-
tion. In a case study on more than 175 real queries from
users and developers across these three systems, we show
that PrefFinder is effective and has potential to save time
over existing techniques.

The contributions of this work are:

1. PrefFinder: An extensible framework to provide natu-
ral language interactive querying of preferences

2. An implementation for three different applications

3. A case study on more than 175 queries demonstrating
its potential usefulness

The rest of this paper is laid out as follows. In the next
section, we provide a motivating example. We then present
PrefFinder in Section 3. In Sections 4 and 5 we evaluate
and show the results of our case study. In Section 6 we
describe related work. We end with our conclusions and
discuss future work in Section 7.

2. MOTIVATION
We motivate our research with two open source applica-

tions, Firefox and LibreOffice using data from [14]. Firefox
is a web browser that contains approximately 10 million lines

of code. Like many modern applications, it is developed us-
ing various programming languages including C++(41%), C
(21%), JavaScript (16%), Java (3.1%), and Assembly(1.2%).
In addition it uses XUL, a markup language for interface
functionality and this is where some preference options are
manipulated. It is highly configurable with 1957 preferences
in the cited version (Ubuntu, Firefox version 27.0a1). In ad-
dition, the browser can be extended by installing third party
extensions, which can introduce an arbitrary number of ad-
ditional preferences. LibreOffice [6] is an office productivity
suite of tools that includes a word processing, spreadsheet
and presentation module. It is written in C++ (82%), Java
(6%) and uses additional scripting languages such as python.
The number of preferences associated just with the Writer
application is 656. There are similar numbers of preference
for each of the other applications in addition to ones com-
mon to all applications [14].

Since both of these applications are written in multiple
languages this presents challenges for analyses targeted at
one language, such as Java (i.e. [29, 30, 44, 45]). In systems
like these, there are two common approaches for customiz-
ing preferences. One is to make changes via an option (or
preference) menu, by clicking buttons, selecting check boxes,
and checking radio buttons, etc. This approach is intuitive
to use for novice users, but as mentioned, the option menu
only contains the most commonly used set of preferences
and it is only a small subset. In Firefox, if one wants the
tabs to appear above the URL bar rather than below, there
is an option browser.tabs.onTop which can be set to true.
But this option is not available in the preferences menu. In
fact, the removal of this from the user menu is the subject
of a post and user complaint on the Firefox forum.1

The second approach is to modify preferences directly via
the preference files and/or a preference utility. Firefox main-
tains its preferences for persistence via a set of preference
files at various locations (and during runtime via a hash ta-
ble in memory). At startup it reads these files and stores
the contents in memory. Firefox has by default 11 such
files [14]. LibreOffice maintains a directory of preferences
for external storage that it reads at startup as well (over
190 of them). In LibreOffice, for instance, there are many
directories such as soffice.cfg with files such as menubar.xml
that can be modified to determine which buttons appear on
which toolbar.

Both applications provide runtime APIs which can ex-
amine the internal/available preferences [23, 39]. Firefox’s
about:config utility uses a regular expression keyword search,
but this requires an exact match. For instance, if the user
types tabs or tab for the previous preference they will find
this option. However, if they type browsers or tabbing they
will not find it. LibreOffice does not have an about:config
utility. It has a file called registrymodifications.xcu which is
difficult to parse and understand. Most users of LibreOffice
will probably use menu options to change their preferences
which may not scale for larger maintenance tasks.

In each of these scenarios, the preferences are represented
as mid-level variable names (i.e. they are neither code nor
natural language) and there is no direct traceability be-
tween the options menu and these names or down to the
code. In the work of Rabkin and Katz [29, 30] and Zhang
and Ernst [44,45] preferences names are found and returned

1https://support.mozilla.org/en-US/questions/
991043
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Figure 1: PrefFinder framework architecture

from the source code. But these may or may not match the
names found in the intermediate preference files where the
users manipulate preferences directly [14]. Therefore, while
useful (and a possible complement to our system), they will
not provide the information we seek. Before one can auto-
mate any sort of configuration manipulation, or allow tech-
nical support to help users change a configuration, they must
first translate from the intended behavior to these preference
names and then find a way to modify them.

Finally, configuration spaces are rapidly changing. We
need to be able to easily re-evaluate questions when a ver-
sion is updated. For instance, the example discussed in the
introduction, and the work of Zhang and Ernst [45] high-
light the changing configuration space and the need to find
options over and over again. In the next section we present
PrefFinder which will overcome most of these challenges.

3. PREFFINDER
Figure 1 shows an overview of the PrefFinder framework.

On the left of this figure we see a (customizable) Application
Interface where interaction with the user and the application
itself takes place. On the right we see Domain Knowledge
that allows information to be added to our databases. In the
center lies the core component of PrefFinder. This contains
natural language processing algorithms, dictionaries and lex-
ical databases. It can be used on its own or packaged into a
plugin or GUI application or run at the command-line which
permits automation of multiple queries at a time.

In PrefFinder, the users enter a short description or ques-
tion (in English) about what features or functionality of the
system they want to lookup (customize). They also specify
a number of results to display, and PrefFinder will return a
list of ranked preferences (with a value showing the score)
and a description of each result if available. Users may en-
ter arbitrary English sentences with different punctuation,
numbers, mixed-case letters, and may use different forms of
the language such as present participle (e.g., closing) and
plural (e.g., tabs).

To instantiate the framework, preference extraction is first
performed to build the preference system. Next, the core
component runs several steps to identify the correct prefer-
ences that best match the query: splitting, parsing, match-
ing, and ranking. Finally, the documentation step connects
preference descriptions to corresponding preferences returned
in the results. Optionally, for instantiations that use a dy-

namic API to extract the preference system, PrefFinder is
able to also update the preference via its GUI. Let us take
Firefox as a running example. Suppose the user types a
query “Firefox 17.0 doesn’t warn me when closing multi-
ple tabs any more.”. As reported online, there are four
different preferences that a user can set to modify this:
browser.tabs.warnOnCloseOtherTabs, browser.tabs.warnOn
Close, browser.showQuitWarning, and browser.warnOnQuit.
PrefFinder is expected to find at least one of them.

3.1 Preference Extraction
The first step is preference extraction from the applica-

tion. To extract preferences, PrefFinder can utilize different
types of information, such as a static analysis like that of
Rabkin and Katz [30] or it can also use static artifacts such
as a user manual. We can also use APIs to extract the pref-
erences dynamically. In our prior work we used the runtime
APIs to automatically extract preferences from two running
applications’ databases [14]. For one of the systems, there
are APIs that directly return a set of all the preferences. For
the other system, we traversed the hierarchical structure in
a depth first search fashion. We can also combine static
and dynamic methods to get a more complete view of the
preferences. In the running example we would extract the
preferences from Firefox using the dynamic API and obtain
approximately 1900 preferences in our list.

3.2 Splitting
Once we have the preferences, we normalize them into

bags of words. PrefFinder begins by taking in the the system
preferences and parsing/splitting them into sets of keywords
(see [13] for more details of the parsing algorithms we used).
Our identifier splitting algorithms are based on the work of
Enslen et al. [8]. Preference names are usually represented as
arbitrary strings, such as our running example from Firefox
browser.tabs.warnOnCloseOtherTabs, or org.eclipse.jdt.core.
compiler.codegen.targetPlatform as in Eclipse, and /org.open-
office.Office.Recovery/RecoveryList as in LibreOffice. As in
a program variable, a preference name must be a sequence of
characters without any white space. Soft words (individual
dictionary words), within a preference name are separated
by word markers such as a period(.), underscore ( ), dash (-),
backslash (/), or camel case letters [4,9]. After splitting the
words, the remaining identifiers are called hard words. Once
the initial separation via word markers is complete, we next
use a camel case splitting algorithm. We found that this



often does not provide an accurate split (i.e. some words
are still joined or are split too much), so we use an addi-
tional same case splitting algorithm and a backward greedy
algorithm based on the work of Enslen et al. [8].

3.3 Parsing
To incorporate meaningful (code related) words during

parsing, we compiled a dictionary based on the one used by
Hill et al. [11], which is derived from iSpell [10]. It is a list
of computer science abbreviations and acronyms (such as
SYS and URL) [1]. We also adopt a prefix list and a suffix
list from the work of Enslen et al. [8] to identify commonly
used prefixes and suffixes (such as uni- and -ibility). Our
dictionaries are available online (see Section 4).

Once the preferences are split, we can parse them along
with the user queries to extract a set of relevant keywords.
Since the queries are to be run against identifier-like names,
we have adopted a set of rules that limit what keywords
are extracted. The parser removes words with leading num-
bers, special symbols and punctuation, and converts all of
the letters to lowercase. After this step, the user query in
our example becomes firefox doesnt warn me when closing
multiple tabs any more.

Some words, such as doesnt, me, when, any, more, do not
provide domain relevant information in our context. These
words are commonly referred to as stop words. The parser
filters stop words prior to further processing, using a stop
words list. At this step, as shown on the back-end of Figure
1, a domain-specific dictionary can be plugged in. In our ex-
ample, several words are added to the stop word list such as
firefox, libreoffice, openoffice, org, and office, which are tied
to specific applications and carry little discriminating power
when it comes to configurations. After this, the above query
becomes warn closing multiple tabs which only contains the
keywords that carry the core information.

The user query has been shortened without losing the core
information, however, the query may still fail to match if
the user expresses the same concept using words in different
forms or uses a different word with similar meaning. Pref-
erence names are often made up of root words (for example,
close rather than closing). In another example, a user may
use shutdown to mean close, something that an exact match
will not find. To alleviate these issues, PrefFinder integrates
WordNet [21], a lexical database for English, that converts
user query and preference words to root forms and expands
the keywords in a user query with their synonyms (as shown
in the core component of Figure 1). In our running example,
WordNet converts the word closing in the query to its root
form close and expands it with synonyms such as shutdown,
shutting, closedown, closing, closure, completion. As before,
a domain-specific database can be added. Figure 1 shows
additional lexical information in grey (i.e. antonyms, rela-
tions and topics) that are available in WordNet, which we
will incorporate into PrefFinder in future work.

3.4 Matching and Ranking
Once we have parsed both the preferences and the query,

the next step is to suggest preferences that are most relevant
to the user query. To compute the similarity for each (query,
preference) pair, we adopt a Fast TF-IDF algorithm [19], a
variant of the classic information retrieval weighting scheme
term frequency-inverse document frequency (tf-idf ) [4, 33].

A user query (q) contains a bag of words and each word in
q is a term (t). Each preference name is considered a small
document (d) that also contains a bag of words. A preference
system that consists of N preferences forms a collection (c)
of size N. Term frequency (tft,d) is defined as the number
of occurrences of a term t in the document d. The value of
tft,d equals zero if t is not in d. Document frequency (dft)
is defined as the number of documents in the collection that
contains the term t. The value of dft equals zero if t does not
exist in any of the documents in the collection. The inverse
document frequency (idft) is defined by the equation:

idft = log
N

dft
,

where dft is the document frequency of term t and N is the
number of documents in the collection. Note that if a term
exists in many documents, it often carries less discriminating
power (dft is large, and thus makes idft small). Hence, idft
can be used to reduce the effect of terms that appear in too
many documents. The weight (or tf-idf ) for a term in d is
defined by the equation:

tf -idft,d = tft,d × idft,

which is the product of the term frequency and the inverse
document frequency for that item ( the weight equals zero if
the item only occurs in d but not q). As can be seen, a term
in d would have a heavier weight if it occurs many times in a
few documents (both tft,d and idft are large). On top of the
tf-idf weight, we impose an additional scale factor which
reduces the the effect of synonyms, by scaling down their
weight. Our matching favors the term that has an exact
match in the original user query. We experimented with a
series of scale factors on the Firefox preference set and found
that 0.4 works best for a synonym match. Thus, the overall
similarity score for a (query, document) pair is computed as
the sum of tf-idf weights for all the items that occur in both
the query q and the document d by the following equation:

score(q, d) =
∑
t∈q

tf -idft,d × scale,

where scale equals to 0.4 for synonyms, and 1 otherwise.

Table 1: Ranking terms in the correct preference for
the example query

item in q tf df idf tf-idf scale weight
warn 1 28 0.6173 0.6173 1 0.6173
closing 1 47 0.3924 0.3924 1 0.3924
multiple 0 - - - - 0
tabs 2 55 0.3241 0.6482 1 0.6482

In the Fast TF-IDF variant, we first build a posting list
for each term t in the query q by collecting relevant pref-
erences from the entire preference space. A posting list is
a list of preferences that match t (either an exact match or
a synonym match). Posting lists directly associate relevant
preferences to query terms, which avoids repeated examina-
tion of the entire preference space. The length of a posting
list is the number of preferences that contains t (dft). We
then calculate scores for each preference as shown in Algo-
rithm 1. Each query term calculates its own weight (outer
loop) which is added to the score of every preference in its



Algorithm 1 Pseudocode of core algorithm that calculates
preference scores using Fast TF-IDF

1: Input user query q, posting lists
2: Output a collection c′ of preferences with score
3: for each t in q do
4: calculate idft
5: for each d in t’s posting list do
6: d.score += idft × tft,d × scale
7: end for
8: end for
9: c′ ← preferences in posting lists

10: return c′

posting list (inner loop). The algorithm returns a collection
of preferences with a score.

Consider the running example, where the bag of words
after parsing (without the synonyms) are {warn, closing,
multiple, tabs} for the query q and {browser, tabs, warn, on,
close, other} is the corresponding preference d (browser.tabs.
warnOnCloseOtherTabs). There are total 116 preferences
relevant to q (N = 116). Table 1 shows the statistics of
each term in q (the query). The overall score is the sum of
the weights of all the terms (0.6173 + 0.3924 + 0 + 0.6482 =
1.6579). Note that the term close in d is a root form of term
closing in q, and thus is considered as an exact match with
a scaling factor of 1. The term multiple fails to match any
word in d and contributes zero weight.

After assigning each preference a similarity score for a
given query, all preferences are ranked in decreasing order
with respect to the score. The top n preferences (n is a
parameter specified by the user via PrefFinder front-end UI)
are sent to the front-end and displayed.

3.5 Documentation and Update
This part of PrefFinder is optional. We can use external

documentation (such as that found on the Firefox user web-
site) and connect this to our found preferences, providing
potentially useful information for the user. In our example
we would get a brief description (if available) for each found
preference from the documentation written by the user com-
munity [25] [22]. In the running example there is no docu-
mentation for the first solution (so this will be null), but the
second solution browser.tabs.warnOnClose has the following
(partially eluded) text which we append in the PrefFinder
result list: “Warn when closing window if more than one tab

open; True(default): The browser will prompt for confirmation

when closing the browser ..... this can be changed via Tools →
Options → Tabs → Warn ... ”. If we are connected to the
preference database we can now change the value directly
in memory, which will modify the external system and the
preference files, and be reflected in the current state of the
application. This works in the same way the about:config

works and we have implemented this in our Firefox and Li-
breOffice versions of PrefFinder.

4. CASE STUDY
We perform a case study aimed at evaluating PrefFinder

that asks three research questions. Supporting data on the
queries used and the associated results can be found on our
website.2

2http://cse.unl.edu/~myra/artifacts/PrefFinder_
2014/

RQ1:What effort/customization is required to instantiate
PrefFinder for different systems?

RQ2: How effective and efficient is PrefFinder at finding
the correct preference?

RQ3: How does PrefFinder compare with existing approaches?

The first question is used to qualitatively evaluate the gen-
erality and applicability of our framework across different
types of configurable systems. The second question eval-
uates the quality of PrefFinder’s search mechanism using
both accuracy (match success) and efficiency (time). The
last question examines the current state of the art for two
of our systems and evaluate these against the PrefFinder
queries.

4.1 PrefFinder Versions
We built PrefFinder versions using two open source appli-

cations from different domains (Firefox and LIbreOffice) and
selected an industrial application developed at ABB to avoid
open source bias. All systems are large, highly configurable,
and have a dedicated user base. In addition we have shown
that they all have complex configuration mechanisms [14].
Basic information about each application (version number,
and number of preferences extracted for use in PrefFinder)
is shown in Table 2.

Table 2: Application version and preferences
Application Version No. of Preferences
Firefox 18.0.1 1833
LibreOffice 4.0 36,322
ABBS - 935

All three applications manage their preference database
slightly differently and provide different configuration inter-
faces for the users. We describe each system next as well
as the the use case of how we expect someone will interact
with the given system.

Firefox Web Browser. For this study we chose Firefox
version V18.0.1 running on Ubuntu 12.04.1. We note that
PrefFinder itself is not operating system or version specific
(and we have installed it on different versions and platforms
of Firefox), but all of the results we present are from the
specified version. Firefox has a large preference system that
is available dynamically via an API. Although it is not the
complete set of preferences [14], this is the same set of prefer-
ences that would appear in the about:config utility. We use
the Mozilla XPCOM API [23] to extract the existing pref-
erences at runtime. We also included additional descriptive
information gathered by merging our results to the docu-
mentation written by the user community [22] [25] and allow
the user to change the found preference value directly from
within PrefFinder. The use case for this query is similar to
the use of about:config.

LibreOffice Application. We used LibreOffice, version
V4.0 for this study. LibreOffice has over 30,000 preferences
in total [14] contained in a hierarchical database based on a
specific XML schema [39]. We expect a different use case in
this type of system given the complexity of the preference
database and assume that the preference modification will
be done via the user interface. For this version, we model
a person who is trying to change the system behavior using
the menu. To extract the preferences we used the API which



connects to the dynamic database as detailed in the online
user guide [39].

ABBs Industrial Application. Our last application is
an industrial software system developed at ABB (ABBS).
All of its important user preferences can be accessed and
modified in preference files. The definition and description
of these preferences are available in two online documents,
denoted as ABBD1 and ABBD2. In the documentation,
real preference names are used as they appear in the pref-
erence files. There are 524 preferences defined in ABBD1

and 411 in ABBD2. The system provides a help keyword
match utility (but only for preferences in ABBD1) similar
to about:config except that the user can type in multiple
keywords at a time. In fact, they can type in the entire
query. The keyword match will do an exact match on all
entered keywords, therefore any extraneous (or incorrect)
words will result in a failed search. For this use case we as-
sume that the person doing the search is a technical support
engineer who is trying to help customers who have called
in on the help line. It can be time consuming to determine
what the user has done (or is trying to do) to the system
preference files, therefore we build this version of PrefFinder
to see if it will help in this scenario.

4.2 Obtaining and Running User Queries
For each of our systems, we obtained real user queries. For

Firefox and LibreOffice we went to online user forums (see [2]
[24]). We searched the forums using the keywords preference
and configuration and selected the first 100 (for Firefox) and
first 25 for LibreOffice that had a solution (or solutions) to
serve as an oracle. For the queries obtained from the Firefox
forums the oracle is simple to check since in most cases the
actual preference name is returned. In the LibreOffice forum
this is not as straight forward. Therefore, we restricted our
queries to ones in which a series of menu steps are provided
(which matches our intended use case). We then performed
the example steps, identified which preference changed in
the preference database, and then verified this by ensuring
that when we change that preference directly in the system,
that particular menu item changes as well. This preference
then serves as our oracle.

For ABBs we were unable to access the internal support
log, so we asked several independent system engineers to
write queries that they thought a user would ask based on
their experience. We only briefly described PrefFinder to
them without explaining the search mechanisms used in the
tool. We obtained 52 queries, of which 27 queries are from
the preferences in ABBD1 and 25 queries are from prefer-
ences in ABBD2. For each query, they also provided answers
which serve as our evaluation oracles.

We then used PrefFinder to run each of the queries on
each system. We utilize command line versions and run the
queries 10 times each to get timing information. We also
compared a sample of results from the command-line and
GUI versions to validate that we are reporting the correct
results. Table 3 shows a few example queries from the Fire-
fox and LibreOffice forums. We provide the full set of open
source queries on our website.

4.3 Metrics
To answer RQ1, we qualitatively assess if it is feasible

to build multiple versions of the system and ask what is
involved in customizing each system. To answer RQ2, we

run all queries and evaluate whether the correct answer is
found and at which rank (for effectiveness). We also report
the PrefFinder execution time averaged over 10 executions
and a break even (BE) time for our open source systems
(for efficiency), described below. The execution time is the
time that a query takes to run. The evaluation time for
the returned result, however is harder to measure. Once a
person has the preference result list they must determine
which one is correct. Since we cannot accurately predict
(without bias) the time it would take someone to evaluate
each preference returned by PrefFinder, we report a metric
called the break even time. This metric tells us how long one
would need to spend per answer in PrefFinder to make the
tool no better than an existing approach (in this case a user
forum). We use the oracle pages from the user forums and
make the assumption that this is the first time this question
was asked (i.e. the question cannot be obtained by a simple
web query). Since we obtained our queries from the forums,
we can examine the time stamps from when the question
was initially asked and when it was first answered correctly.
We then use this time as the time it takes to answer this as
a new question on the forum.

To then calculate the break even time we ignore the exe-
cution runtime (but report it) since it is less than a minute
in all cases. We then calculate it as: BE = ForumTime

Rank
. If

for instance, an answer is found in the 3rd rank position and
the forum takes 30 minutes, it means that as long as a user
can evaluate each result returned by PrefFinder in less than
10 minutes on average, it will perform better.

To answer RQ3, we compared the Firefox queries with
the about:config utility and the ABBD1 queries with its
search utility. For this we had to split our queries into its
constituent keywords and try each one individually. For
the ABBD1 system, since its utility can search on multiple
keywords at once, we try the original query and then we
try all keywords together (KeyALL) followed by each one
individually. The success (rate) and ranking of these results
are the metrics that we compare with PrefFinder.

4.4 Threats to Validity
The first threat to validity is that of generalization. We

have built PrefFinder on three different systems with differ-
ent preference mechanisms and one is industrial so we believe
that this is representative of many real systems. We had to
select the queries from the forums, but we used a systematic
approach and did not try the queries on PrefFinder before
selecting them. The queries obtained from ABB may have
some bias since the engineers (unlike in tech support in the
real use case) are familiar with the system and the types of
questions users ask. But we believe they are still represen-
tative and may in fact bias the results towards the existing
approach. Finally, we may have mistakes in our data, but
we have cross-validated our questions using both a manual
and the command-line version. We are also making our open
source data available on line.

5. RESULTS
In this section, we describe our results for each question.

5.1 RQ1: Different Instances of PrefFinder
Figure 2 shows a screenshot for one of our versions of

PrefFinder – a plugin for Firefox. On the screen you can
see the query, the result (for the first 10 answers), including



Table 3: Sample queries from the user forums
Query Preference Answer

FireFox
(1) How to change permanently the Search Engine? keyword.URL
(2) Is there an about:config entry to toggle Search
Example.com for selected text automatically switching
to the tab it opens? browser.search.context.loadInBackground

LibreOffice
(1) Do you have a way to accept or translate Excel
macros? org.openoffice.Office.Common/Security/Scripting/MacroSecurityLevel
(2) Default font color on Button in Calc org.openoffice.Office.UI/ColorScheme/ColorSchemes/

org.openoffice.Office.UI:ColorScheme[’LibreOffice’]/FontColor/Color
(3) How do I disable paste via middle mouse button? org.openoffice.Office.Common/View/Dialog/MiddleMouseButton

Figure 2: PrefFinder prototype user interface

the ranking score, the current value of that preference, and
a description when it is available. In this case our query
is the example query used in Section 3. Both the first and
second answers match our oracle (there were 4 solutions).
Although we have no description for the first preference, we
do for the second which will make the user’s choice easier.
If the user wants to change the value for this option, they
can simply click on that row and it will directly modify the
running application preference database or files. For Firefox,
we were able to create a working version that can interface
with the dynamic configurations to match our use case and
provide both documentation and an update facility. Since
this was our first instantiation and the easiest use case we did
not encounter any problems. To customize this for Firefox
(i.e. interfacing with the dynamic API and documentation)
took about a day of programming time.

For LibreOffice we also implemented a plugin. We did
not change the core system, but only rewrote the interface
to the application. We used the dynamic API [39] to ac-
cess (and modify) preferences. This took us a bit longer
(approximately two days) since the documentation on the
API was not as detailed. We re-used the entire NLP core of
PrefFinder without modification. In our initial version, we
used the entire preference dump for LIbreOffice, but the run-
time was a bit slower than Firefox. We also found that the
returned preferences were hard to understand. Since many
of the preferences are not available via the menu – our ex-
pected use case, we restricted our preferences to only those

that are managed by the menu system, which is a subset of
the full preference space. To find the proper subset with-
out introducing bias, we first tried all of the menu options
in the preferences menu of LibreOffice. We observed which
groups of preferences were being modified in the resulting
database and then tagged these groups. From this we were
able to limit our preferences to a set of 23 categories with
7059 preferences (the list of these preferences can be found
on our website). This reduced the search space and helped
us to manage our oracle evaluation since that required man-
ual steps as well.

For ABBs we did not have a way to attach to the runtime
database, because this is a production system. Instead we
provided a standalone version with a simple GUI. The only
customization of the PrefFinder framework was the GUI
which took on the order of a few hours to create. Since we
had to use the static preferences we obtained from the on-
line documentation system, these had to be translated into
a database that PrefFinder could understand. We did this
manually and it took about 6 hours to organize and trans-
late. When we started to run queries on the system, we
found that there were some common words that the system
domain uses as abbreviations which were not in our default
general dictionaries. Although our searches were successful,
adding these ABB specific abbreviations increased our ac-
curacy, therefore we compiled a list and added this custom
set of abbreviations to the database. This iteration added
about another hour of development time.

Summary for RQ1. We are able to successfully instanti-
ate and run PrefFinder using the same core for all three sys-
tems, albeit with some modifications and programming ef-
fort. The primary customization involved programming the
connection to the configuration APIs or modeling the config-
urations from a static location. Other minor customizations
were required to refine the quality of the results, such as
using only the required subset of preferences for LibreOffice
and adding custom database entries for ABB.

5.2 RQ2: Effectiveness of PrefFinder
The effectiveness of PrefFinder is measured by the search

success rate (i.e., accuracy) and the execution time.
Accuracy. The accuracy is shown in Table 4. In this table
we see the number of queries run, the number of queries that
found the correct answer, and the success rate as a percent-
age. In the last column we see the range of the ranks where
the answer is returned. If the correct answer is returned as
the first row of the result, we mark it as a 1. If it is the
10th row it is a 10, etc. When there are multiple preferences



specified as an evaluation oracle, we only consider the first
one that PrefFinder can find.

For success rate, we see a 76-96% range between systems
with ABB having the highest and LibreOffice the lowest suc-
cess rate. To investigate the ranking distribution of all re-
sults (excluding the queries that fail), data is presented in
Figure 3 and Table 5. In both the table and the graph we
break out our results, showing those in the top 10, those
found in position 11-20, etc. As we can see 52% of the
queries that return correct results appear in the top 10 rows
of the returned results and 72% are returned within the top
30. We believe that using additional lexical information may
help to improve these results.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

1~10 11~20 21~30 31~40 41~50 51~100 >101 

N
um

be
r 

of
 Q

ue
ri

es
 

Ranking of Results 

Firefox 

LibreOffice 

ABBS 

Figure 3: Ranking distribution for Firefox, LibreOf-
fice, and ABBS

Execution Time. Execution time is the clock time to run
PrefFinder once a query is input. We run 100, 25, and 52
user queries for Firefox, LibreOffice, and ABBS respectively.
We run this 10 times to obtain averages. The running time
is shown in Table 6. We report the total time to run all
questions and the standard deviation (STD). Since we see
little variance we only show a single run for the time in our
next study. For Firefox it takes on average less than a second
to return a result. For LibreOffice it takes about 11 seconds
and in ABBs it takes about one half of a second per query.

We next gathered the time that it took to get answers
to individual queries on the user forum and calculated the
break even time. Table 7 shows the first 50 queries for Fire-
fox (the rest are on our website) and Table 8 shows all the
queries for LibreOffice. When a result was not found, we
left the query in the table (shown as fail), and put a dash
for break even. A few of the Firefox queries were answered
by a FAQ which does not have a time stamp so we also use
dashes for these cases.

In Firefox, the forum response time ranges from 5 minutes
to over 3 months, and its average is nearly 3 days (we only
show 50 of them in the table but the results reported are
based on all 100 queries, excluding failed ones or the ones
that do not have time stamp information). If we suppose it
takes about 1 minute (on average) for a user to browse each
result returned by PrefFinder until he or she finds the correct
preference, then an estimated time that the user spends to
get the right answer from typing in a query will be a sum
of PrefFinder execution time and the ranking position times
1 minute. For example, if a preference ranked at the 10th
place, the lookup time would be about 600 seconds (the
execution time is negligible). Based on this assumption, the

average lookup time for PrefFinder is only about half an
hour, which is less than 1% of the average forum response
time. And the forum response time is as high as 817 times
large as the PrefFinder lookup time. The break even times
for per answer evaluation are from a couple of seconds (in
14% of the questions) to about 2.5 months, and the average
time is almost 2 days. More than 33% of the break even
time exceeds 10 minutes. We believe that this is artificially
high for the real time it would take a user to do this work.

In LibreOffice, the forum response time ranges from 0.3
hours to a couple of days, and the average response time is
more than 10 hours. With the same 1 minute browsing time
assumption, the average lookup time for PrefFinder is about
3 hours, which is about 33% of the online forum response
time. The break even times for per answer evaluation are
from a second (only one case) to over 16 hours, and the
average time is about 2.5 hours. Almost 60% of the break
even time exceeds 10 minutes.

Table 4: Ranking results for 100 Firefox, 25 Libre-
Office, and 52 ABBS user queries

Application No. No. Success Rank
Queries Found Rate Range

Firefox 100 80 80.0% 1 - 140
LibreOffice 25 19 76.0% 1 - 2778
ABBS 52 50 96.2% 1 - 446

Table 5: Ranking distribution for Firefox, LibreOf-
fice, and ABBS

Rank Range 1- 11- 21- 31- 41- 51- >101
10 20 30 40 50 100

Firefox 35 9 10 4 6 14 2
LibreOffice 9 1 2 1 0 1 5
ABBS 33 6 2 0 0 3 6

Table 6: PrefFinder execution time in seconds for
10 runs on an Ubuntu 12.04.1 machine with an Intel
Core i7-2760QM CPU and 5.8G Memory

No. of Avg. Tot. STD Avg. Per
Queries Time Query

Firefox 100 98.5 1.5 0.99
LibreOff. 25 281.0 8.9 11.24
ABBS 52 27.5 0.9 0.53

Summary for RQ2. PrefFinder is effective at finding user
preferences and runs in less than a minute on our queries.
When compared with the time it takes to get a new response
on a user forum, as long as the user can evaluate what has
been returned within 10 minutes per result on average, it is
as fast or (in many cases faster) than waiting for a response.

5.3 RQ3: Comparison – Existing Techniques
For our last research question we evaluated Firefox and

ABBS with their existing keyword match mechanisms.
Two sample comparison results are shown in Table 9. For

each query we see the individual keywords (in bold) and
their results (a fail means that the correct preference was not
found). We collate this and show overall results in Table 10.
The first row shows the average result ranking for both tools
excluding failed queries. As we see, Firefox finds the result



Table 7: Break even timing results for Firefox (first 50 queries)
Query Rank Exec Forum Break Even Query Rank Exec Forum Break Even

(sec) (min) (min) (sec) (min) (min)
1 fail 2.29 174416 - 26 fail 0.89 26 -
2 6 1.17 37 6.2 27 19 0.86 78 4.1
3 fail 0.99 9 - 28 77 0.95 221 2.9
4 fail 0.91 25 - 29 fail 1.02 85 -
5 1 1.04 2031 2031.0 30 fail 1.11 1610 -
6 10 0.89 34 3.4 31 43 1.14 77 1.8
7 2 0.90 132705 66352.5 32 73 1.00 10 0.1
8 43 0.88 28 0.7 33 26 1.06 245 9.4
9 fail 0.83 14 - 34 16 0.93 - -
10 2 0.93 15 7.5 35 77 1.07 1914 24.9
11 1 0.87 659 659.0 36 21 0.96 12 0.5
12 fail 0.92 73004 - 37 2 1.00 15 7.5
13 8 0.93 256 32.0 38 fail 0.98 10 -
14 25 1.00 10 0.4 39 35 0.93 33 0.9
15 56 0.98 36 0.6 40 28 0.97 114 4.1
16 112 0.93 61 0.5 41 fail 0.95 203 -
17 1 0.95 10 10.0 42 2 1.04 9 4.5
18 26 0.94 117 4.5 43 45 1.02 405 9.0
19 1 0.91 14569 14569.0 44 46 0.93 31 0.7
20 22 0.90 55745 2533.9 45 51 1.02 34 0.7
21 2 0.91 55 27.5 46 33 0.93 18 0.5
22 62 0.94 189 3.0 47 20 0.94 300 15.0
23 1 1.08 - - 48 15 0.98 29 1.9
24 1 0.92 269 269.0 49 4 1.02 61 15.3
25 3 0.97 12 4.0 50 30 0.94 12 0.4

Table 8: Break even timing results for LibreOffice
Query Rank Exec Time Forum Break Even

(sec) (min) (min)
1 1 11.1 312 312.0
2 fail 10.9 689,626 -
3 10 10.0 191 19.1
4 336 11.1 61 0.2
5 130 10.9 168 1.3
6 fail 10.4 8 -
7 fail 10.4 300 -
8 2 10.7 1976 988.0
9 1 10.4 58 58.0
10 14 10.5 94 6.7
11 116 11.2 245 2.1
12 1 10.7 211 211.0
13 29 11.8 474 16.3
14 2 11.6 56 28.0
15 2778 11.5 103 0.0
16 75 11.0 6007 80.1
17 40 10.5 16 0.4
18 1 12.2 975 975.0
19 fail 11.3 21 -
20 fail 11.2 10 -
21 fail 10.4 171 -
22 5 10.8 51 10.2
23 21 10.8 175 8.3
24 1 11.7 91 91.0
25 296 12.3 458 1.5

(on average) at the 27.1th postion, while about:config finds
it a the 12.9th position. The second row shows the success
rate for either the full prefFinder query or when at least one
keyword is found for that query. For example, we would say
that both of the example queries in Table 10 pass since at
least one keyword find the results. PrefFinder returns the
correct answer 80% of the time, while about:config does so
only 64% of the time.

We aslo report in parentheses the number of times an indi-
vidual keyword finds the correct answer. Using the example
queries in Table 10 this would be 2 out of 6 or 33% of the
time. We see that using about:config with each individual
extracted keyword returns the correct answer only 30% of
the time. This tells us that more than two thirds of the
time, a keyword failed to find the answer confirming what
we know (that it is sensitive to keyword selection). The last
row of this table shows the number of successful searches for
each tool, where the other tool failed. There are 20 queries
where PrefFinder succeeded and about:config failed, while
only 4 where about:config found an answer and PrefFinder
did not.

We next compare to the keyword match utility in ABBD1.
The comparison results are shown in Table 11. We first show
results for the exact query Query, next we show a combi-
nation of all keywords extracted from the query, and then
each individual keyword. The first row shows the average
ranks, with failed queries excluded. When all keywords are
used together we get the best average rank (1.8). The next
best rank is for the Individual keyword searches, followed by
PrefFinder (12.4) and finally by the full query (23.0). If we
next look at success rate we see that when we use individual
keywords, we find the correct answer for at least one key-
word in a query 98.1% of the time. The individual rate of
success for keywords is lower (84.7%), and the full set of key-
words only has a 74.1% success rate both of which are lower
than PrefFinder (96.2%). The worst scenario is when we
type in the full query for only a 14.8% success rate. Finally,
we show two rows that tells us (1) how many queries pass
in PrefFinder, but fail in the other techniques (i.e. 21 of the
full Query, 2 of the All keywords and none of the Individ-
ual ones) as well as the reverse (how many queries succeed
in the other technique but fail in PrefFinder – a total of 4
across all techniques). We conclude from this, that the key-
word match utilities find the answer at a lower rank when



Table 9: Sample results: PrefFinder vs. Firefox about:config (up to 3 keywords)
Query PrefFinder Rank about:config Rank
(1) When closing Firefox windows, I would like a warn-
ing before the last window closes.

8
windows warning closes

Fail 3 Fail

(2) How do I prevent the warning for closing multiple
tabs at once from displaying?

1
warning closing tabs

Fail Fail 19

successful, but overall they are more sensitive to failure. We
believe that the high success rate of ABBD1 has to do with
the way that the queries were written (and keywords hence
extracted). The writers of these queries are expect engineers
and they will tend to use forms of the words and terminol-
ogy consistent with the preference system. In addition, the
keyword match utility in ABB can also search the full docu-
ment (instead of just preferences). This might lead to better
success, but also has the potential for more noise.

Table 10: PrefFinder vs. about:config
PrefFinder about:config

Avg. Rank 27.1 12.9
Success Rate (%) 80 64 (30)
Succeeded: Other failed 20 4

Table 11: PrefFinder vs. ABBD1 keyword match

PF
keyword match

Query All Indiv.
Avg. Rank 12.4 23.0 1.8 2.6
Success Rate (%) 96.2 14.8 74.1 98.1

(87.4)
Pref Succeed: Other failed - 21 7 0
Other Succeed: Pref failed - 0 2 2

Summary for RQ3. PrefFinder is competitive against
existing keyword search utilities. The success rate is as good
or higher than these systems, and allows for more noise,
although the accuracy when successful is slightly lower.

6. RELATED WORK
There has been a lot of research related to sampling and

reducing the large configuration space for testing and main-
tenance of software [7, 32, 42], for prioritizing these sam-
ples [28, 36] and for change impact analysis [27]. At the
code level, symbolic execution has been used to identify de-
pendencies and viable interactions of preferences for testing
[31, 35], or to perform analysis that is configuration-aware
[15,17]. From a reverse engineering perspective, Rabkin and
Katz extract source code level preference names [30]. Other
work aims to fix (or diagnose) problems when configurations
fail [3, 38, 40, 41, 43, 44]. This thread of work requires that
some unwanted behavior has been observed (a misconfigu-
ration) and can be recreated. The aim is not to search for
individual configuration options, but to return the system to
a non-faulty state. ConfSuggester by Zhang and Ernst [45]
is the most similar work to ours in that is searches for a
single configuration option (from the source code) to return
to the user. However ConfSuggester still requires the user
to demonstrate the different behavior (it only works for re-
gressions where some default behavior has changed) and is
limited to Java. Furthermore it requires instrumentation at
the byte code level which means it is language dependent.

PrefFinder can be used to search for configurations without
demonstration of altered behavior and does not depend on
the underlying programming language .

There has been considerable work on using natural lan-
guage to improve code documentation and understanding
[8,9,11,12,34] and to create code traceability links [5,18,26].
In addition, recent work on finding relevant code, uses search
to find code snippets that satisfy a given purpose [20, 37].
While this work is related to our problem, the techniques
assume that there is a large code base to explore and lever-
age this in their similarity techniques; we want to associate
behavior with identifier names with little or no context.

PrefFinder is unique in that searches highly configurable
multi-lingual software systems without access to the code,
and uses only natural language. The return result is the
preference name that is used within the main preference
database (a higher level of abstraction than a variable name).
It can also connect with an application’s preference system
and documentation at runtime.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented PrefFinder, a natural

language framework for finding preferences in highly con-
figurable software. PrefFinder uses a core NLP engine, but
is customizable at both the application and database end.
We instantiated three versions of this framework and per-
formed a case study on two large open source and one in-
dustrial application. We find that prefFinder is able to find
the right preferences for as many as 96% of the queries, but
no less than 76% using only seconds of time. When we com-
pared the time taken to find the same answers when newly
asked on a user forum and calculated a break even point, we
found that it would require a user (on average) more than
10 minutes per answer evaluation time to make PrefFinder
the slower alternative. And when we estimate a time of one
minute per answer we see as much as an 800% improvement
in time. When compared with existing keyword match util-
ities we find that PrefFinder is more robust, albeit the rank
of the returned result may be lower.

In future work we will extend PrefFinder to handle addi-
tional use cases. First we will consider constraints between
options and multiple options for a single query. We will
continue to work on the accuracy of our results by adding
additional lexical information and will develop traceability
links between the menu, preference names and code. We will
also include additional artifacts such as code and documen-
tation to enrich the knowledge returned back to the user.
Finally, we plan to evaluate PrefFinder in user studies.
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