
Covering Arrays for Efficient Fault Characterization in
Complex Configuration Spaces

Cemal Yilmaz
University of Maryland

cyilmaz@cs.umd.edu

Myra Cohen
University of Auckland

myra@cs.auckland.ac.nz

Adam Porter
University of Maryland

aporter@cs.umd.edu

Abstract
We have developed the Skoll system and process for performing
distributed, continuous quality assurance. The goal of this system
and process is to leverage remote user resources around-the-world,
around-the-clock to provide developers much greater insight into
their systems correctness, performance, and usage patterns.

Skoll is focused on supporting systems with large configuration
spaces, that change frequently, and that are constructed with lim-
ited resources. In these situations, the cost and complexity of QA
explodes because, in a very practical sense, there isn’t just one sys-
tem, but a multitude of related systems. Thus, bugs may appear in
certain configurations, but not in others.

In previous work we use Skoll to automatically characterize con-
figurations in which failures manifest. We showed that this infor-
mation helped developers quickly narrow down the cause of fail-
ures, improving turn-around time for fixes. Our approach, however,
did not scale well because they require us to exhaustively test each
configuration in the configuration space. Therefore, in this paper,
we use a mathematical object called a covering array to obtain rel-
atively small test schedules with certain coverage properties over
the entire configuration space. We empirically assess the effect of
using covering array-derived schedules on the resulting fault char-
acterizations.

1. INTRODUCTION
Many modern software systems must be customized to specific

run-time contexts and application requirements. To support such
customization, these systems provide numerous user-configurable
options. For example, some web servers (e.g., Apache), object re-
quest brokers (e.g., TAO), and databases (e.g., Oracle) can have
dozens, even hundreds, of options. While this flexibility promotes
customization, it creates many potential system configurations, each
of which may need extensive QA to validate. We call this problem
software configuration space explosion.

To address this issue we have developed Skoll [8]– a distributed
continuous QA process supported by automated tools which lever-
ages the extensive computing resources of worldwide user com-
munities in order to efficiently, incrementally and opportunistically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

improve software quality and to provide greater insight into the
behavior and performance of fielded systems. Skoll does this by
dividing QA processes into multiple subtasks which are then intel-
ligently distributed to client machines around the world, executed
by them, and their results returned to central collection sites where
they are fused together to complete the overall QA process.

One QA task implemented in Skoll was to determine which spe-
cific options and option settings caused specific failures to mani-
fest. We call this fault characterization. Fault characterization is
done by testing numerous different configurations and feeding the
results to a classification tree analysis. The output is a model de-
scribing the options and settings that best predict failure. For exam-
ple, using Skoll on a CORBA implementation we found that if and
only if the executable is running on Linux, with Corba Messaging
Support enabled, but with Asynchronous Messaging optimization
disabled, then socket connections timeout.

We gave this information to the system’s developers who then
quickly pinpointed the failure’s cause. Further analysis showed that
this problem had in fact been observed previously by several users,
but that the developers simply hadn’t been able to track down the
problem. Skoll’s automatically derived fault characterization, how-
ever, greatly narrowed down the search space, making the develop-
ers’ job much easier.

While we were pleased with this outcome, the fundamental down-
side of this approach was that we have to test the entire configura-
tion space. In the example cited above, for instance, that means
that nearly 19,000 times, remote clients downloaded, configured
and compiled the 1M+ lines of code system, and then executed a
battery of tests. For each client this took about 6–8 hours. Further-
more, this was only a small subset of the system’s entire configu-
ration space. The actual space is much bigger. Clearly, some more
efficient process will be necessary in general.

This paper proposes and evaluates an alternative strategy. The
idea is to systematically sample the configuration space, test only
the selected configurations, and conduct fault characterization on
the resulting data. The sampling approach we use is based on cal-
culating a mathematical object called a covering array (These are
described in more detail in Section 2.1). Our experimental results
show that this approach is nearly as accurate as that based on ex-
haustive data, but is much cheaper (provides 50-99% reductions in
the number of configurations to be tested).

The remainder of this paper is organized as follows: Section 2
briefly explains the mathematical tools we used in this paper; Sec-
tion 3 describes the fault characterization process; Section 4 de-
scribes the studies we conducted; Section 5 provides practical ad-
vice to users of this approach; Section 6 compares covering ar-
rays to random selection; and and Section 7 presents concluding
remarks and possible directions for future work.

2. BACKGROUND
In this paper we propose a 3-step process for characterizing faults.

First we systematically sample a system’s entire configuration space
using a mathematical object called a covering array as opposed to
using the entire configuration space as we did in [8]. Next we use
Skoll to distribute and test individual configurations at remote user
sites and relay the results to a central server. Finally, we classify
the test results and provide the resulting model to the system’s de-
velopers.

In this section we provide some background information on these
three steps.

2.1 Covering Arrays
The software systems we consider in this research have options,

each of which takes its value from a set of valid settings. Our main
goal is to identify and characterize failures that are caused by spe-
cific combinations of options settings. Therefore, it is important
that we maximize the “coverage” of option setting combinations.
However, we also want to do this at some reasonably low cost.
Consequently, we also want to minimize the total number of con-
figurations tested.

Our approach to doing this is to compute
�
-way option coverage

using a combinatorial object called a covering array. A covering
array, �������	� ��
��
����

, is an ��� �
array on

�
symbols with the

property that every ��� �
sub-array contains all ordered subsets

from
�

symbols of size
�

at least once. We refer to the
�

columns
of this array as factors and each of the

�
values for a factor as its

levels. In the Skoll system, each of the configuration options can be
modeled as one of the factors of this system. Each of the settings
for these options is a level of that factor. The strength of the array
is denoted by

�
. Since many software systems do not have the same

number of levels for each factor we can use a mixed level covering
array to model this system. An ���������	� ��
��
 � ����
�����
���� � �"!#���

, is
an �$� �

array on % symbols, where %'&)(
!*,+ � � * . In this array

each column -.��/102-30 �4�
contains elements from a set 5 * with6 5 * 6 & � * . The rows of every �7� �

sub-array cover all
��8

tuples
of values from the

�
columns at least once. We can use a shorthand

notation to describe our covering array by combining
� * ’s that are

the same and representing this number as a superscript. For exam-
ple if we have 4

�#9 % each with 3 levels, we can write this :"; . In this
manner an �<���=���	� ��
�>
 � ����"��� ��� �"!����

can also be written as an
�<���=���?� ��
 �@%�ACB� %�AED� ��� � % AGFH ���

where
� &I(H*J+ �"K * .

In this paper, we restrict ourselves to mixed level covering arrays.
Therefore we will use the general term covering array to refer to
these from now on.

Covering arrays have the property that each
�
-tuple is used at

least once, which means they can be arbitrarily large. One of our
goals, in building these, must be to minimize the size of � . There
are a variety of computational methods that can be used to find cov-
ering arrays with a small � for a given set of parameters. See [3,
4, 9, 11] for some of these methods. In [4] several greedy algo-
rithms are compared with heuristic search such as simulated an-
nealing and hill climbing. Simulated annealing gives a consistently
small � when

� &IL or
� &M: . Therefore, we chose this as our con-

struction method. Simulated annealing is a standard combinatorial
optimization technique (see [4] for a more thorough discussion of
this algorithm). In this simulated annealing program, the cost func-
tion is the number of uncovered

�
-sets remaining, i.e. a covering

array has a cost of N . We begin with an unknown � for a particular
set of parameters, repeating the annealing process many times, us-
ing a binary search strategy to find the smallest � which gives us a
solution [4].

This approach has been used most frequently to test input com-

binations of programs. Dalal et al., for example, argue that the test-
ing of all pairwise interactions in a software system finds a large
percentage of the existing faults [5]. In further work, Burr et al.,
Dunietz et al. and Kuhn et al. provide more empirical results to
show that this type of test coverage is effective [2, 6, 7]. These
studies focus on finding unknown faults in already tested systems
and equate covering arrays with code coverage metrics [3, 6].

Our approach is different in that we apply covering arrays to sys-
tem configuration options and we assess their effectiveness in re-
vealing option-related failures and finding failure inducing options.

2.2 Skoll
Skoll [8] is a distributed continuous QA process supported by au-

tomated tools which leverages the extensive computing resources
of worldwide user communities in order to efficiently, incremen-
tally and opportunistically improve software quality and to provide
greater insight into the behavior and performance of fielded sys-
tems. Skoll does this by dividing global QA processes into multiple
subtasks which are then intelligently distributed to client machines
around the world, executed by them, and their results returned to
Skoll server where they are fused together to complete the overall
QA process. Figure 1 summarizes the Skoll process (refer to [8]
for further details).

A corner stone of Skoll is a formal model of a QA process’ con-
figuration space called configuration model. The model captures
configuration options and their settings as well as the constraints
on them. An Intelligent Steering Agent (ISA) located at the Skoll
server uses this information in planning the global QA process, for
adapting the process dynamically, and to aid in interpreting the re-
sults. ISA is implemented using planning technology and utilizes
various constraint solving, scheduling and planning algorithms.

In this paper, we create covering arrays for a configuration model
and use Skoll to distribute and test individual configurations at re-
mote user sites and collect the results at a central server. For a given
configuration, each client downloads software from a central code
repository, configures and compiles it, runs a battery of tests on it,
and sends the results back to the server.

2.3 Classification Trees
Once we have obtained the test results, we use classification tree

analysis to model failure-inducing options (i.e., the specific options
and their settings in which the failure manifests itself).

Classification trees use a recursive partitioning approach to build
a model that predicts a configuration’s class (e.g., passing or fail-
ing) in terms of the values of individual option settings. This model
is tree-structured. Each node denotes an option, each edge repre-
sents an option setting, and each leaf represents a class or set of
classes (if there are more than 2 classes).

Classification trees are constructed using data called the train-
ing set. A training set consists of configurations, each with the
same set of options, but with potentially different option settings
together with known class information. Based on the training set,
models are built as follows. First, for each option, partition the
training set based on the option settings. The resulting partition is
evaluated based on how well the partition separates configurations
of one class from those of another. Commonly, this evaluation is
realized as an entropy measure [1].

The option that creates the best partition becomes the root of the
tree. To this node we add one edge for each option setting. Finally,
for each subset in the partition, we repeat the process. The process
stops when no further split is possible (or desirable).

To evaluate the model, we use it to predict the class of previ-
ously unseen configurations. We call these configurations the test

Figure 1: Process view of Skoll.

set. For each configuration we begin with the option at the root
of the tree and follow the edge corresponding to the option setting
found in the new configuration. This process continues until a leaf
is encountered. The class label found at the leaf is interpreted as
the predicted class for the new configuration. By comparing the
predicted class to the actual class we estimate the accuracy of the
model.

In this research, we use the classification trees to extract failure-
inducing option setting patterns. That is we extract the options
and option settings from the tree that characterize failing config-
urations. In particular we use the Weka implementation of J48
classification tree algorithm with the default confidence factor of
0.25 [10] to obtain the models.

3. THE FAULT CHARACTERIZATION PRO-
CESS

In this research, our ultimate goal is to provide developers with
compact and accurate descriptions of failing configuration subspaces.
Our experience shows that such information can help developers
find the causes of failures much more quickly than they can without
this information [8]. In this section we provide more detail about
the fault characterization process and describe how we evaluate its
performance.

1

PASS ERR #1 ERR #2

0 2

 o1

Figure 2: An example of a classification tree.

Table 1 depicts the results of exhaustively testing a system with
three configuration options (OP/ , O"L , and O�:) each having three lev-

Config Result Config Result
o1 o2 o3 o1 o2 o3
0 0 0 PASS 1 1 2 ERR #1
0 0 1 PASS 1 2 0 ERR #1
0 0 2 ERR #3 1 2 1 ERR #1
0 1 0 PASS 1 2 2 ERR #1
0 1 1 PASS 2 0 1 ERR #2
0 1 2 PASS 2 0 2 ERR #2
0 2 0 PASS 2 0 3 ERR #2
0 2 1 PASS 2 1 0 ERR #2
0 2 2 PASS 2 1 1 ERR #2
1 0 0 ERR #1 2 1 2 ERR #2
1 0 1 ERR #1 2 2 0 ERR #3
1 0 2 ERR #1 2 2 1 ERR #2
1 1 0 ERR #3 2 2 2 ERR #2
1 1 1 ERR #1

Table 1: An example of an exhaustive suite.

els of settings (N , / , and L). There are no constraints among the
options, so there are 27 valid configurations. These results show
four outcomes – test PASSed, test failed with ERR#1, test failed
with ERR #2 and test failed with ERR #3.

Feeding this data to a classification tree algorithm yielded the
model shown in Figure 2. This simple model tells us that the setting
of option OP/ is strongly correlated with the manifestation of failuresQSR�R1T / and

Q�RUR1T L . That is, configurations with O�/�&1&V/ fail
with

Q�RUR1T / and those with OP/W&1&IL fail with ERR #2.

3.1 Evaluating Fault Characterizations
Obviously, these models may not be complete and correct. In

some cases this is because:

1. the underlying problem is not related to the options settings
(e.g., ERR #3 occurs with all settings of O�/ and O�L and 2 of
the 3 settings of O�:), or

2. the model building approach identifies spurious, but non-
causal patterns.

This research is not concerned with non-option-related failures.
We attempt to remove them from our analysis. In general, this can’t
be done without manually verifying each and every failure. Con-
sequently, we simply remove any failure from consideration that
occurs in less than 3% of the test runs. Our rationale is that deter-
ministic failures involving up to 5 binary options should manifest at
least this many times as also should non-deterministic failures in-
volving fewer options, but appearing with a reasonable frequency
(say 3 options with the failure manifesting 1/4 of the time).

To evaluate the accuracy of classification tree models we use sev-
eral standard metrics. Precision (P) and recall (R) are two widely
used metrics to assess the performance of classification models. For
a given failure class

Q
, they are defined as follows:

X�YGZ�[�\]\ &_^a`�bdce` HHgf c�h]ikj A Hfel * ceh fel *�m"n hJo m c f n `�b3prq@jdhts fvu ` l�f ihJ`ghJoEi"^'`�b *�m"n hJo m c f n `�b3p
K X"YGZ -w%E-�O�xy& ^a`�bzce` HHgf c�h]ikj A Hfel * c�h fel *�m"n hJo m c f n `�b{p'q@jdhts fvu ` l�f ihJ`ghJoGi|^a`�b A Hfel * ceh fel *�m"n h,o m c f n `�b}p~q@jdhts fvu ` l�f i

Drawing an analogy to a medical test, recall measures how well
the test identifies infected people; Precision measures how many
false alarms the test raises. In general we want good recall because
otherwise the models may miss relevant characteristics or add irrel-
evant ones. On the other hand, we want to minimize false alarms

because we don’t want developers to waste resources investigating
them.

Because neither measure predominates our evaluation we com-
bine the measures using the F metric. This is defined as:

� &�� q D�� �w�]�v�
q D

� � �
Here, � controls the weight of importance to be given to precision

and recall:
� &�� when ��&�N and

� & R
when ��&�� .

Throughout this paper, we compute
�

with ��&�/ , which gives
precision and recall equal importance, and use it to evaluate fault
characterization models.

3.2 Reducing Test Suite Size
While the model in Figure 2 explains the observed failures rea-

sonably well, it did so at the cost of exhaustively testing the con-
figuration space. This won’t scale. Interestingly, we get the same
tree model using only the shaded configurations in Table 1. More-
over, this reduced suite is only one-third the size of the exhaustive
suite. We selected these configurations because they constitute a L -
way covering array of the configuration space. That is, all pairwise
combinations of the options appear in the shaded configurations.
If these results hold in practice, it would greatly reduce the cost
of fault characterization, without compromising its accuracy. We
evaluate this conjecture throughout the rest of this paper.

4. EXPERIMENTS
In this Section we describe several studies of our fault charac-

terization approach. We applied this process to an open-source
CORBA middleware implementation ACE+TAO.

ACE+TAO is a large, widely-deployed open-source middleware
software toolkit that can be reused and extended to simplify the de-
velopment of performance-intensive distributed software applica-
tions. The ACE+TAO source base has evolved over the past decade
and now contains over one million lines of C++ source code. It is
highly configurable with a large number of configuration options
(over 500) supporting a wide variety of program families and stan-
dards.

In a previous study, we modeled and studied a small subset of
the system’s entire configuration space. This model comprises 10
compile-time and 6 runtime options. Each compile-time option was
binary-valued, while the runtime options had differing numbers of
settings: four options with three levels, one option with four levels,
and one option with two levels. All told, this configuration space
has 18,792 valid configurations.

Compile-time options allow features, such as asynchronized
method invocation (AMI) and CORBA messaging, to be compiled
in or out of the system. Runtime options provide more fine-grained
control over the runtime behavior of the system, such as object col-
location strategies and connection purging strategies.

We tested each configuration using 96 regression tests each of
which were designed to emit an error message in the case of failure.
The error messages were captured and recorded. In this paper, we
adopt the results of these tests and refer them as exhaustive results.

To evaluate the use of covering arrays, we created five different�
-way covering arrays for this configuration space. We allowed

�
to range between 2 and 6. We reran the regression tests on each
of these

�
-way suites and used classification trees to automatically

characterize the test results. We then compared the fault charac-
terizations obtained from

�
-way suites to the ones obtained from

exhaustive testing.
Because our earlier work uncovered numerous compilation prob-

lems, we chose to group the 10 compile time options into a sin-
gle configuration with 29 levels (i.e., the 29 static configurations

CA Strength (
�
) No. of Tests (�)

2 116
3 348
4 1229-1236
5 3369 - 3372
6 9433-9453

Table 2: Size of test suites for L=0 � 02� .

that compiled). Otherwise, we would have generated numerous
uncompilable configurations. Our goal then became to see how
well we could detect runtime errors and the failure-inducing op-
tions that lead to them. Note that this is simply a time-saving issue,
it does not change the size of the underlying configuration space
or the characterizations we are trying to find. Using this approach
we computed an ���������	� ��
 L��

�g�4�
: ; L

� �
. The model has seven

configuration options. The first corresponds to the 29 successfully
compiled static options, and the rest correspond to the 6 runtime
configurations.

Table 2 gives the covering array size � for each value of
�
. When� 0�: all five arrays were the same size � . For these we were

able to construct covering arrays with the smallest mathematically
possible number of rows. When

�1� �
, the problem of building a

small � is harder so we obtained a range of sizes.
In the remainder of the section we present the results of several

studies. The first study examines how well covering array-derived
testing schedules suites reveal failures. Obviously, if they don’t,
then fault characterizations based on them will suffer. The second
study involves covering array-derived test schedules and for each
test builds one characterization model for all failures observed on
that test. The third study uses covering array-derived test schedules,
but builds one characterization model for each observed failure on
each test. Finally, the fourth study repeats study three, but uses
several lower strength covering arrays, comparing them to the more
expensive to obtain higher strength covering arrays.

4.1 Study 1: Revealing option-related failures
with covering arrays

An initial question we had about covering arrays is whether they
reveal the option related failures. If they don’t, then any character-
ization based on them will obviously suffer.

Figure 3 plots error coverage statistics for 2-way covering ar-
rays. The reason we include figures for only 2-way covering arrays
is that they are the most interesting ones for showing the error cov-
erage statistics since their sizes are the smallest. In this figure, each
bar represents one test case. The height of a bar is the number of
unique errors seen with the exhaustive test suite. The lower part of a
bar (darker color) shows the average number of unique errors seen
by the five 2-way suites. Tests that never failed are omitted. For
example, during the execution of test #35 in the exhaustive suite
we observed eight unique error messages whereas the 2-way suites
only revealed three of them on the average.

As Figure 3 indicates, the 2-way suites discovered only a small
percentage of the failures seen by the exhaustive suite. On the other
hand, we are particularly interested in the effectiveness of the re-
duced suites in revealing option-related failures.

In order to identify option-related failures we used the 3% cut-off
value described in Section 3.1. We removed any failure from con-
sideration that had occurred in less than 3% of the test runs in the
entire configuration space. This gave us 40 potential option-related
failures. We then checked the effectiveness of covering arrays in
revealing those 40 failures. It turned out that each and every

�
-way

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

of unique errs missed
of unique errs caught

Error Coverage for 2−way Covering Arrays

test

of

 u
ni

qu
e

er
ro

rs
 s

ee
n

0
2

4
6

8

Figure 3: Error coverage statistics for 2-way covering arrays.

suite revealed all of these failures.
Figure 4 summarizes this result for the 2-way suites. This figure

plots the number of failing configurations for each test. The lower
part of each bar shows the number of failing configurations whose
error messages are discovered by the 2-way suites and the upper
part indicates the number of configurations whose error messages
are missed by the 2-way suites. As can be seen from the figure,
the 2-way suites discovered the failures that constitute large failing
subspaces.

In the rest of the paper, we assess the effectiveness of
�
-way

suites for fault characterization only on these potential option-related
failures.

4.2 Study 2: Covering arrays with per test
case characterization

In this study we use covering array-derived test schedules. For
each test case, we build one characterization model for all failures
observed in any of the scheduled configurations.

4.2.1 Creating classification tree models
For each configuration in the entire space, we ran all the regres-

sion tests and recorded their pass/failure information. We then built
a classification model using these data and tested it on the same
data. This tells us how well, in the best case, the models character-
ize the faults.

We repeated the process above for only the scheduled configu-
rations (i.e., those selected by the covering array). We then built
classification tree models using this data. We tested the models,
however, on the exhaustive data set. This tells us how well the
models, built using only a subset of the data, characterize the faults.

In the rest of the paper, we’ll refer to the models obtained from
the covering arrays and the exhaustive suite as reduced models and
exhaustive models, respectively.

4.2.2 Evaluation

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

Error Coverage for 2−way Covering Arrays

test

of

 c
on

fig
ur

at
io

ns
 fa

ile
d

0
25

00
50

00
75

00
10

00
0

12
50

0
15

00
0

18
79

2

of errs caught
of errs missed

Figure 4: Error coverage statistics for 2-way covering arrays (a
different view).

We applied the classification models to our exhaustive results
and collected the F measures for each potential option-related fail-
ures.

Figure 5 shows the F measures of the reduced models and the
exhaustive models for 40 potential option-related failures. The ver-
tical axis denotes F measure, and the horizontal axis denotes test
index and error index. For example, the first tick on the horizontal
axis, which is 0-1, represents the error indexed as 1, which occurred
during the execution of the test indexed as 0.

The first thing to note is the the F measures for the reduced mod-
els are almost always near those of the exhaustive models. That
is, if the exhaustive models characterize the failure well, then so do
the reduced models. If they don’t, then neither do the reduced mod-
els. This is true no matter what the strength of the covering array
(the level of

�
) is. For example, 78% of the models obtained from

the 2-way schedules gave F measures within 0.1 of the exhaustive
models. 88% of them were within 0.2. The higher the strength of
the covering arrays, the closer the F measures were. Also impor-
tant, is the fact that the 2-way covering arrays provided this similar
performance while providing a 99.4% reduction in the number of
configurations to be tested! In our experiments with ACE+TAO,
for example, it took us 8 hours to compile ACE+TAO, compile the
tests, and execute them for each configuration. Using 2-way suites
would have saved us almost a year of machine time compared to us-
ing the exhaustive suite without dramatically lowering the accuracy
of the fault characterizations.

Our analysis also suggests that the higher the F measure, the
more similar the exhaustive and reduced models were in terms of
the options and settings captured. To make the analysis clearer
we divided the models into four categories using the F measures
obtained from exhaustive models: very strong (

� &�/), strong
(N � ��� � � /), weak (N � � 0�N � �

), and unknown (
� &MN).

The reduced models for very strong patterns were exactly the
same as the exhaustive models. That is, they produced the same sets

F−measures of the models for each test

(test idx−failure idx)

F−
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0
0−

1
1−

17
1−

18 1−
2

11
−1

5
2−

17
2−

18 2−
2

28
−4

3−
17

3−
18 3−
2

31
−5

31
−8

2
32

−1
9

32
−6

35
−1

4
38

−2
0

4−
17

4−
18 4−
2

45
−7

5−
12 5−
3

5−
81

52
−1

8
53

−1
8

54
−1

8
55

−1
8

64
−8

65
−1

6
66

−1
6

68
−9

69
−1

0
71

−1
1

72
−1

2
73

−1
2

77
−2

2
80

−2
2

83
−1

3

exhaustive
2−way
3−way
4−way
5−way
6−way

Figure 5: Models for each test.

of rules to describe the failures. The similarity decreased steadily as
we moved to strong patterns and then to weak patterns. Weak pat-
terns captured by the reduced models (especially the 2-way mod-
els) tended to differ substantially from those found in the exhaus-
tive models – See failures 52-18, 80-22, and 35-14. In these cases
we saw that using higher strength covering arrays boosted perfor-
mance.

Failures with unknown patterns are interesting. Although these
failures were seen frequently enough to be considered potential
option-related failures, the classification model found no apparent
pattern to their occurrences. We observed three failures in this na-
ture, namely 28-4, 38-20, and 55-18. None of the suites, even the
exhaustive suite, were able to provide fault characterizations for
these failures.

This result amplifies our earlier results [8] in which we showed
that the patterns contained in the classification trees often, but not
always, corresponded with the actual cause of the failure. As we
will show in Section 5, the concept of pattern strength gives us a
way to determine whether the classification tree model is reliable,
and, therefore, likely to help developers find an actual failure cause.

4.3 Study 3: Covering arrays with per test,
failure case characterization

Building classification models with several classes can lead to
situations where there is too little data from which to conclude class
assignment or to situations where global model building choices
lead to suboptimal models for individual classes.

In this study we attempt to circumvent this problem by using
covering array-derived test schedules, building one characterization
model for each test case and failure combination.

4.3.1 Creating classification tree models
Just as in Study 2, we ran all test cases on every configuration in

the configuration space and recorded their pass/failure information.
For each test and failure � we created a training data set. Here we

F−measures of the models for each test and failure

(test idx−failure idx)

F−
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

0−
1

1−
17

1−
18 1−
2

11
−1

5
2−

17
2−

18 2−
2

28
−4

3−
17

3−
18 3−
2

31
−5

31
−8

2
32

−1
9

32
−6

35
−1

4
38

−2
0

4−
17

4−
18 4−
2

45
−7

5−
12 5−
3

5−
81

52
−1

8
53

−1
8

54
−1

8
55

−1
8

64
−8

65
−1

6
66

−1
6

68
−9

69
−1

0
71

−1
1

72
−1

2
73

−1
2

77
−2

2
80

−2
2

83
−1

3

exhaustive
2−way
3−way
4−way
5−way
6−way

Figure 6: Models for each test and failure combination.

recoded the test outcomes into two classes: those failing with fail-
ure � and those passing. We repeated the process with the covering
array-derived schedules and compared the results.

4.3.2 Evaluation
Figure 6 shows the F-measures for the models. At a first glance

this performance is indistinguishable from that of Study 2. Conse-
quently, our findings in Study 2 apply also to this study.

One important way in which these two approaches differ how-
ever is in the readability of the resulting models. When we build
one model for multiple failures, as we did in Study 2, extraneous
information can creep into the patterns that describe the different
failures.

Figure 7(a), (b) and (c) illustrate this situation. Figure 7(a) shows
the characterization for two failures that occurred during the execu-
tion of test #3 (we’ve excluded other errors to simplify the discus-
sion). This model says that error #2 occurs when CALLBACK==0
and that error #17 occurs when CALLBACK==1 and ORBCollo-
cation==NO. We know from earlier analysis, however, that error
#2 occurs when CALLBACK==0 and that error #17 occurs when
ORBCollocation==NO. That is, the setting of CALLBACK has no
effect on the manifestation of error #17. That the CALLBACK op-
tion appears in the pattern for error #17 is simply an artifact of the
modeling process when there are multiple classes being modeled.

When we build a model for each test and failure combination,
on the other hand, this problem doesn’t appear. In fact, the fault
characterizations, shown in Figures 7(b) and (c), are exact and are
the actual causes of the failures.

Error #2 occurred during the compilation of the test case. It
turned out that certain files within TAO implementing CORBA mes-
saging incorrectly assumed that CALLBACK option would always
be set to 1. Consequently, when CALLBACK==0 certain defini-
tions were unset.

Error #17 occurred when the ORBCollocation optimization was
turned off. ACE+TAO’s ORBCollocation option controls the con-

CALLBACK=0:ERR #2
CALLBACK=1
| ORBCollocation=glb:PASS
| ORBCollocation=orb:PASS
| ORBCollocation=NO:ERR #17

(a)

CALLBACK=0:ERR #2
CALLBACK=1:PASS

(b)

ORBCollocation=glb:PASS
ORBCollocation=orb:PASS
ORBCollocation=NO:ERR #17

(c)

Figure 7: Fault characterizations for test #3, test #3 and error
#2, and test #3 and error #17, respectively.

ditions under which the ORB should treat objects as being collo-
cated. Turning it off means that objects should never be treated as
being collocated. When objects are not co-located they call each
other’s methods by sending messages across the network. When
they are collocated, they can communicate directly, saving net-
working overhead. The fact that these tests worked when objects
communicated directly, but failed when they talked over the net-
work clearly suggested a problem related to message passing. In
fact, the source of the problem was a bug in their routines for mar-
shaling/unmarshalling object references.

As the strength of the covering arrays increased, fault charac-
terizations become closer to the ones obtained from the exhaustive
suite. We illustrate the differences among the characterizations ob-
tained from different strength covering arrays in Figure 8.

Figure 8(a), (b), and (c) show the fault characterizations obtained
from exhaustive suite, 2-way covering arrays, and 3-way covering
arrays, respectively for error #18 which occurred during the exe-
cution of test #3. The exhaustive model correlated the failure with
four options and gives an F measure of 0.849. The 2-way model
was able to link the failure to only one option. This resulted in an F
measure of 0.747. On the other hand, the 3-way model associated
the failure with three options and resulted in a better F measure,
(0.795), than the 2-way model.

4.4 Study 4: Combined reduced suites
As shown in Table 2, the size of the covering array schedules

grows rapidly as
�

increases. In this study we examined how com-
bined lower strength schedules compare to single higher strength
covering arrays (e.g., 3, 2-way covering arrays vs. 1, 3-way cover-
ing array).

Specifically, we combined schedules in such a way that the size
of the combined

�
-way schedules is close to the size of a single

� �{� / �
schedule. We then compared the combined schedules to

the uncombined ones. This is interesting because the cost of cre-
ating � �}� / �

-way suites can be significantly higher than the cost
of obtaining

�
-way suites (the cost is exponential in

�
). If

�
-way-

combined and � ��� / �
-way suites have comparable performance

measures then using the combined suites can be cost-effective.

4.4.1 Creating classification tree models
We created combined

�
-way schedules by randomly selecting

from uncombined
�
-way schedules. No duplicates were allowed.

We created 5 combined schedules for
�

from 2 to 5. We didn’t
combine 6-way suites because the average size of the 6-way suites
was almost half that of the exhaustive suite. The average sizes of
the

�
-way-combined suites are given in Table 3.

Classification models were built as in Study 3.

POLLER=0
| DIOP=0
| | INTERCEPTOR=0
| | | MUTEX=0:PASS
| | | MUTEX=1:ERR #18
| | INTERCEPTOR=1:ERR #18
| DIOP=1
| | INTERCEPTOR=0:ERR #18
| | INTERCEPTOR=1
| | | MUTEX=0:ERR #18
| | | MUTEX=1:PASS
POLLER=1:PASS

(a)

POLLER=0:ERR #18
POLLER=1:PASS

(b)

POLLER=0
| MUTEX=0
| | INTERCEPTOR=0:PASS
| | INTERCEPTOR=1:ERR #18
| MUTEX=1:ERR #18
POLLER=1:PASS

(c)

Figure 8: Fault characterizations for error #18 obtained from
exhaustive suite, 2-way covering arrays, and 3-way covering ar-
rays, respectively.

Suite Size
2-way-combined 344.20
3-way-combined 1357.60
4-way-combined 3450.60
5-way-combined 8422.00

Table 3: Size of combined suites.

4.4.2 Evaluation
Figure 9 plots the F measures for

�
-way and

�
-way-combined

suites.
�
-way-combined suites resulted in better fault characteriza-

tions compared to the
�
-way suites. In particular, they boosted the

characterizations of failures where single suites gave low F mea-
sures (i.e. less than 0.5).

For example, consider the 2-way and 2-way-combined models
for test #35, error #14 shown in Figure 9. The F measures for these
models are 0.06 and 0.39, respectively. The combined suite gives
an F measure that is much closer to that of the 3-way suite, which
is 0.42. On the other hand, when the F measures of single suites
are already high (say greater than 0.5), the combined suites don’t
improve performance to a great degree.

One possible explanation for this improvement is that the com-
bined suites cover 82-89% of the t+1 tuples. Thus, they provide
many of the data points seen in the t+1 covering arrays, but at a
much lower construction cost.

5. GUIDELINES FOR SOFTWARE PRAC-
TITIONERS

We have evaluated our fault characterization process by compar-
ing it to the results of exhaustive testing. In practice, developers
will not have access to this information. Therefore, in this section,
we provide some guidelines on how to use this approach in prac-
tice.

In particular, we examine how to interpret reduced models, how
to estimate whether the reduced models are reliable, how to select
the appropriate strength level for the covering arrays, and how to

F−measures of combined suites

(test idx−failure idx)

F−
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0
0−

1
1−

17
1−

18 1−
2

11
−1

5
2−

17
2−

18 2−
2

28
−4

3−
17

3−
18 3−
2

31
−5

31
−8

2
32

−1
9

32
−6

35
−1

4
38

−2
0

4−
17

4−
18 4−
2

45
−7

5−
12 5−
3

5−
81

52
−1

8
53

−1
8

54
−1

8
55

−1
8

64
−8

65
−1

6
66

−1
6

68
−9

69
−1

0
71

−1
1

72
−1

2
73

−1
2

77
−2

2
80

−2
2

83
−1

3

exhaustive
2−way
2−way−c
3−way
3−way−c
4−way
4−way−c
5−way
5−way−c
6−way

Figure 9: Models for combined suites.

work with a set of models.
Classification tree models can be partially evaluated without a

traditional test set. Typically this is done using a
�

-fold stratified
cross-validation strategy [10]. Assuming that

�
== 10, for example,

the training data is randomly divided into ten parts. Within each
part the classes should be represented in approximately the same
proportions as in the original data set.

Then for each of the 10 parts, a model is built using the remaining
nine-tenths of the data and tested to see how well it predicts for
that part. Finally, the ten error estimates are averaged to obtain
an overall error rate. A high error rate indicates that the models
are highly sensitive to the subset of the data with which they are
constructed. This suggests that the models may be “overfit” and
shouldn’t be trusted.

We performed stratified ten-fold cross-validation on our reduced
models from Study 3. Across the 40 different failures we found that
whenever the reduced model’s cross-validation F measures were 0,
the failure was either very rare (not considered option-related) or
was one for which even the exhaustive model couldn’t find a fault
characterization (i.e.,

� &�N). These failures were, namely 28-4,
38-20, and 55-18. This suggests that models with 0 F measures are
unlikely to signal option-related failures.

As a next step, we investigated the relation between the cross-
validation F measures and the F measures of the exhaustive models.
Figures 10(a) and (b) depict scatter plots of these two F measures
for the 2-way and the 4-way models, respectively. We show only
two figures due to space limitations. The trends of the other models
are similar. We see the two F measures are very similar (they lie
near the x=y line). The higher the strength of the arrays, the closer
the F measures are.

This suggests that F measures from the cross-validation of re-
duced models can help estimate the performance of the models
when they are applied to the exhaustive results.

Based on the findings above, we give the following guidelines to
the users of covering arrays:

1. Use the F measures obtained from cross-validations of re-
duced models to flag unreliable models.

2. Higher F values are more likely to signal accurate fault char-
acterizations, which in turn can help pinpoint the causes of
failures quickly and accurately. Investigate the models with
the highest F-measures first.

3. Consider using higher strength covering arrays or combined
ones for the failures whose F values are low (i.e., less then
0.5).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measures of the 2−way models

F−measure from cross−validation

F−
m

ea
su

re
 fr

om
 e

xh
au

st
iv

e
re

su
lts

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measures of the 4−way models

F−measure from cross−validation

F−
m

ea
su

re
 fr

om
 e

xh
au

st
iv

e
re

su
lts

(b)

Figure 10: Scatter plots of F measures for 2-way and 4-way
models.

Number of unique errors seen by the random and the t−way covering arrays

suite type

of

 u
ni

qu
e

er
ro

rs
 s

ee
n

 40

 60

 80

covering random

2_way

covering random

3_way

covering random

4_way

5_way 6_way

Figure 11: Number of unique errors seen in random and � -way
covering suites.

6. COMPARISON WITH RANDOM SUITES
In this section, we compare the effectiveness of

�
-way and ran-

domly selected schedules. For this, we created 100 random suites
for each value of

�
where the size of each random schedule is the

same as the corresponding
�
-way schedule.

Our first concern was to see how well the random schedules re-
vealed failures. Figure 11 contains boxplots for the number of fail-
ures observed by the random and

�
-way schedules conditioned on

�
.

In general we see that the higher the value of
�

(and thus the larger
its size), the greater the number of failures observed. The

�
-way

suites tend to reveal slightly more failures than the corresponding
random suites with less variance.

Next we evaluated the two scheduling approaches in terms of
their fault characterizations. For this, we randomly chose 15 ran-
domly selected schedules for each value of

�
and created the classi-

fication tree models for option-related failures. In general, we ob-
served that random and

�
-way schedules yielded comparable fault

characterization models.
Random schedules, however, were worse in situation where they

completely missed option-related failures and where they resulted
in unbalanced sampling of the failing subspaces. In the first situ-
ation, obviously, the models ignored the failure because it had not
been observed when running the random schedule. The second sit-
uation occurs when some parts of the configuration space are tested
much more frequently than others. This often lead to spurious op-
tions to be included in the models.

Figure 12 illustrates this situation by contrasting the fault char-
acterizations for test #2, ERR #18 obtained from the exhaustive
schedule, a 2-way schedule, and a random schedule. The F mea-
sures for the models are 0.993, 0.774, and 0.436, respectively. The
exhaustive schedule gave the model shown in Figure 12(a). Com-
pare this to the 2-way schedule appearing in Figure 12(b). The
latter is simpler and thus incorrect in some cases because it doesn’t
recognize the importance of the MUTEX option. Still, it doesn’t in-

POLLER=0
| MUTEX=0
| | INTERCEPTOR=0:PASS
| | INTERCEPTOR=1:ERR #18
| MUTEX=1
| | INTERCEPTOR=0:ERR #18
| | INTERCEPTOR=1:PASS
POLLER=1:PASS

(a)

POLLER=0:ERR #18
POLLER=1:PASS

(b)

POLLER=0
| ConnectStrategy=0:PASS
| ConnectStrategy=1:ERR #18
| ConnectStrategy=2:PASS
POLLER=1:PASS

(c)

Figure 12: Fault characterization for test #2, ERR #18 obtained
from the exhaustive suite, a 2-way suite, and a random suite,
respectively.

clude any unrelated options that would distract a developer trying
to find the cause of the failure.

The model created from the random schedule however (Figure 12(c))
includes a node for the ConnectionStrategy option right under the
node for the POLLER option. Our analysis shows that this option
is unrelated to the underlying failure. This happened because, with
the random schedule, when POLLER == 0, 86% of the configura-
tion with ConnectionStrategy == 1 fail with ERR #18. Thus, to the
model building algorithm ConnectionStrategy == 1 appears to be
important in explaining the underlying failure. In contrast, in the
exhaustive and 2-way schedules only 21% and 33% of the configu-
rations with ConnectionStrategy == 1 fail. This difference is simply
due to a “unlucky” random selection that produced an unbalanced
sampling of the underlying configuration space.

In summary, we observed that random and
�
-way schedules gave

comparable fault characterizations on the average, but that the ran-
dom schedules sometimes created unreliable models. Moreover, in
practice, the covering array approach automatically determines the
size of the schedule, whereas there’s no way to predetermine the
correct size of a randomly selected schedule.

7. CONCLUSION
Fault characterization in configuration spaces can help develop-

ers quickly pinpoint the causes of failures, hopefully leading to
much quicker turn-around time for bug fixes. Therefore, auto-
mated techniques, which can effectively, quickly, and accurately
perform fault characterization, can save a great deal of time and
money throughout the industry. This is especially true where sys-
tem configuration spaces are large, the software changes frequently,
and resources are limited.

To make the process more efficient, we recast the problem of
selecting test schedules (determining which configurations to test)
as a problem of calculating a

�
-way covering array over the system

configuration space. Using this schedule, we ran tests and fed the
results to a classification tree algorithm to localize the observed
faults. We then compared the fault characterizations obtained from
exhaustive testing to those obtained via the covering array-derived
schedule.

� We observed that building fault characterizations for each ob-
served fault rather than building a single one for all observed

faults led to more reliable models.

� We observed that even low strength covering arrays, which
provided up to 99% reduction in the number of configura-
tions to be tested, often had fault characterizations that were
as reliable as those created through exhaustive testing.

� Higher strength covering arrays performed better than lower
strength ones and yielded more precise fault characteriza-
tions, but were more costly.

� We also showed that we could improve the fault characteriza-
tion accuracy at low cost by combining lower strength cover-
ing arrays rather than increasing the covering array strength.

We were also able to develop some diagnostic tools to support
software practitioners who want to use covering arrays in fault char-
acterizations. In particular we found that:

� Low F measures in the exhaustive models tended to be as-
sociated with overfit models or non-option-related failures.
These models are not likely to help developers identify option-
related failures.

� We found that the F measures taken from 10-fold cross-validation
were highly correlated and nearly identical with those taken
from exhaustive models. This suggests that that cross-validation
measures, which can be taken without having already done
exhaustive testing, might be a useful surrogate for the ex-
haustive model F measures.

In continuing work, we are integrating covering arrays calcula-
tions directly into the Skoll system. At the same time the Skoll
system is being integrated into the daily build process of several
large-scale, widely used systems such as ACE+TAO. This will give
us a chance to replicate the experiments over much larger and more
realistic configuration spaces. We are also examining how to better
model the effect of inter-option constraints on the fault characteri-
zations.

8. REFERENCES
[1] L. Breiman, J. Freidman, R. Olshen, and C. Stone.

Classification and Regression Trees. Wadsworth, Monterey,
CA, 1984.

[2] K. Burr and W. Young. Combinatorial test techniques:
Table-based automation, test generation and code coverage.
In Proc. of the Intl. Conf. on Software Testing Analysis &
Review, 1998.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The AETG system: an approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–44, 1997.

[4] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction testing. In
Proc. of the Intl. Conf. on Software Engineering, (ICSE ’03),
pages 38–44, 2003.

[5] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based testing
in practice. In Proc. of the Intl. Conf. on Software
Engineering, (ICSE), pages 285–294, 1999.

[6] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to software
testing. In Proc. of the Intl. Conf. on Software Engineering,
(ICSE ’97), pages 205–215, 1997.

[7] D. Kuhn and M. Reilly. An investigation of the applicability
of design of experiments to software testing. Proc. 27th
Annual NASA Goddard/IEEE Software Engineering
Workshop, pages 91–95, 2002.

[8] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan. Skoll: Distributed continuous
quality assurance. To be appear in Proc. of the Intl. Conf. on
Software Engineering, (ICSE ’04), 2004.

[9] K. C. Tai and L. Yu. A test generation strategy for pairwise
testing. IEEE Transactions on Software Engineering,
28(1):109–111, 2002.

[10] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

[11] T. Yu-Wen and W. S. Aldiwan. Automating test case
generation for the new generation mission software system.
In Proc. of IEEE Aerospace Conf., pages 431–7, 2000.

