Probe Distribution Techniques to Profile Events in Deployedsoftware

Madeline Diep, Myra Cohen, Sebastian Elbaum
Department of Computer Science and Engineering
University of Nebraska - Lincoln
{mhardojo, myra, elbaubk@cse.unl.edu

Abstract profiling probes. To lower the profiling overhead, instru-

Profiling deployed software provides valuable insights mentation technlques may insert only a subset of probes,
but do so strategically to reduce data loss. For example, a

for quality improvement activities. The probes required fo : .
common instrumentation approach to lower the number of

profiling, however, can cause an unacceptable performance ) .
overhead for users. In previous work we have shown that.prObes consists of skipping probes that capture redundant o

significant overhead reduction can be achieved, with lichite mferable_data. _ _ . o
information loss, through the distribution of probes agos ~ Lowering overhead is particularly critical for profiling
deployed instances. However, existing techniques foreprob Software in the field where it can have a direct impact on
distribution are designed to profile simple events. Intliisp the user. As aresult, researchers are attempting to leverag
per we present a set of techniques for probe distribution to What can potentially be thousands of deployed sites not just
enable the profiling of complex events that require multiple {0 characterize a populz_mon of events that are much richer
probes and that share probes with other events. Our evalua-than the ones available in-house, but also to lower the num-
tion of the new techniques indicates that, for tight ovethea Per of inserted probes by distributing them across a pool
bounds, techniques that produce a balanced event alloca-Of sites. Such an approach consists of two main steps: 1)

tion can retain significantly more field information. generating multiple program variants, where each variant
contains a subset of probes, and where the subset size can

be bounded to meet the overhead requirements, and 2) dis-
tributing those variants across the user sites [6, 18].
In previous work we have introduced and evaluated sev-
Software profiling consists of observing, gathering, and eral instances of this approach [5]. For example, we have
analyzing data to characterize a program’s behavior. Profil shown that probe distribution techniques relying on simple
ing deployed software is valuable for providing insight®in ~ sampling principles such as stratified sampling can effec-
how software is utilized by its users [17], which configura- tively reduce profiling overhead at each user site by up to
tions are being employed in the field [15], what engineering one order of magnitude. This overhead reduction greatly
assumptions formed during development may not hold in increases the viability of profiling released software, levhi
the field or may hold only under more constrained circum- still retaining a majority of the field information. We later
stances [5], where the current in-house validation a@iwit improved those techniques by utilizing a greedy-sampling
are lacking [6], and which scenarios most likely led to a process to generate variants with balanced distributidhs [
failure state (e.g., Traceback [11], MSN Error API [16]). Although successful, our initial probe distribution tech-
Profiling usually requires instrumentation of the pro- niques assume that the population of events being character
gram, that is, the addition of probes to enable the exami-ized is made up of relatively simple and independent events
nation of the program’s run-time behavior. As such, the act (e.g., the execution of a block of code). In practice, howeve
of profiling penalizes the targeted software with execution we would like to profile events such as execution paths, ex-
overhead. For example, Liblgt al. report an overhead ceptional control flows, or call chains. Profiling one such
ranging from 2% to 181% on various benchmarks profil- event may require multiple probes, and some events may
ing assertion invocations [13], and in the study we will be be somewhat dependent in that they can share overlapping
presenting, fully instrumenting a target program to captur probes. Furthermore, there may be too many of these events
call-chains causes a 150% overhead in execution time. for an engineer to enumerate cost-effectively before deplo
The magnitude of the overhead depends, at least to somenent. When these issues arise, existing probe distribution
extent, on the number, the location, and the type of insertedtechniques can produce unsatisfactory results.

1. Introduction



2. A Motivating Example to be profiled [1, 4]. These mechanisms are created to work
in the controlled and small-scale in-house environment.
Call-chains are sequences of method calls. Engineersuse When profiling deployed software, however, we can also
call-chains for many purposes: to determine whether a givenleverage the opportunities introduced by a potentiallgdar
method can indirectly reach another method, to enumeratepool of users. The following research efforts, for example,
the possible paths of execution between a pair of methodsfocus in that direction: 1) Perpetual Testing, which uses th
to assist debugging by providing the sequence of methodresidual testing technique to reduce instrumentation, [19]
calls executed before a failure, to assist re-engineeiing a 2) EDEM, which provides a semi-automated way to collect
tivities, to serve as drivers for program testing, or asgngst  user-interface feedback from remote sites when the user ac-
oracles in the presence of program changes [12, 23, 24].  tions do not meet an expected criterion [10], 3) Skoll, which
Call-chains can be computed through the static analysispresents an architecture and a set of tools to distribuferelif
of a program’s source code or through the dynamic analysisent job configurations across users [15], 4) Gamma, which
of the program’s execution. The precision of statically eom introduces an architecture to distribute and manipulate in
puted call-chains relies on the precision of the call graph strumentation across deployed instances [18], and 5) Bug
utilized as input, and although many techniques have beensolation, which provides an infrastructure to efficierdj-
proposed to increase the precision of call graph construc-lect field data and identify likely failure conditions [13]1
tion, statically computing call-chains can still be expgeaes  Our work is closely related to the last two projects.
and itis commonly an over-approximation (some of the call It is similar to Gamma in that the overall mechanism to
chains reported may not be feasible). This limitation be- reduce overhead utilizes probe distribution across dewgloy
comes more obvious when we try to capture call-site sensi-instances. However, our focus has been on developing tech-
tive call chains, that is, call-chains that are differeteiibby nigues to achieve distributions that increase the likeltho
the particular site within the caller where the invocation t of retaining field data [6]. Our work is also related to the
the callee is made. bernoulli-sampling used by the Bug-Isolation project sinc
Call-chains gathered by observing a program’s executionboth attempt to reduce overhead through some form of sam-
are precise (no false positives), but the in-house a@#witi pling. However, while the bernoulli-sampling approach in-
are unlikely to expose a significant number of them. Col- cludes additional instrumentation to determivteento sam-
lecting call-chains executed by a very large number of usersple at run-time, our objective is to determine before deploy
in the field can overcome this limitation, providing a richer mentwhat to sample in each variant. Our approach aims
set of executions that result in a precise yet comprehensiveo produce a balanced “sample” across variants, without in-
enumeration of the program call-chains. The challenge iscorporating the additional instrumentation required tioisid
to then profile such complex events with minimal overhead the sampling at run-time.
while maximizing the information captured in the field. The work in this paper builds on our previous studies
In this paper we re-define the probe distribution prob- by considering instrumentation constraints, the associat
lem across variants, taking into consideration the chgten  between events and probes, and the relationship between
introduced by complex events such as call-chains, and weevents in terms of probe sharing. Techniques incorporat-
present a set of more general techniques for probe distribuing this factors are studied on a truly deployed non-trivial
tion. To investigate the efficiency and effectiveness of the system to assess their performance (Section 5).
new techniques, we compare them against existing probe
distribution techniques designed for single probe events T .
through an empirical study. Our findings indicate that for 4. Probe Distribution on Variants
scenarios where the acceptable profiling overhead is small
the proposed distribution techniques can make a significanﬁ
practical difference.

This section characterizes the probe distribution prob-
em, illustrates different distribution approaches, etahe
research questions, and provides algorithms to genesate di
tributions with different properties.

3. Background
) . 4.1. Problem Characterization

Researchers have investigated many ways to enhance the
efficiency of profiling techniques such as: (1) performing  Let us defind/ as the set of locations in prografthat
up-front analysis to optimize the amount of instrumentatio need to be instrumented to profile evefitsand H as the
[2, 25], (2) sacrificing accuracy by monitoring entities of set of probes actually inserted iA. To profile all events
higher granularity or by sampling program behavior [7, 8], FE, the engineer can generate an instrumented variaRt of
(3) encoding the information to reduce memory and storagev,, with probes placed in locations , us, ..., ux in P such
requirements [21], and (4) re-targeting the entities tle@ch  that H = U andk = |H| = |U|. This approach, however,



may cause an unacceptable performance overhead. To ad-  |Hwo|=|Hv:|=...=|[Hvn_1| = Ppound

dress this problem, the engineer can specify an acceptable 5 function fromPD to a real number that, when applied
maximum number of probés,.,q that can be included in to any such distribution, yields award value
variantvy to enable the profiling activitieshyy,q Can be

computed such that, for example, profiling overhead is hid- problem Find a distributionD € PD such thatvD’ e
denin the program’s operating noise (performancevanatio pp, D + D, [f(D) > f(D)].

observed during various program executions).

Since generallyiyoung << |U|, data collected from all The definition off will depend on the information that
the sites when onlpne variant with hy,.nq probes is de- IS targeted. For examplef, may be the number of blocks
ployed will reflect only a part of the program behavior exer- covered, the potential invariants violated, or the numlier o
cised in the field. Having multiple deployed variants of the Call-sensitive-chains. Depending upon the choicg ahe
program, where each variant has a somewhat complemenpr0b|em of finding the best distribution may be intractable.
tary subset of assigned probes, can offer a better characterThus, in practice, we resort to heuristics to approxiniate
ization of E [5]. This approach will result im variantsuy,
v1, ..., andv,_1, where each variant contains a subset of 4.2. Potential Distribution Strategies
probesHvy, Hvy, ..., andHv,,_1, such that the size of each
subset is less or equal tQ,.,q- We simplify the discus-
sion by assuming that/vy| = |Hvy| = ... = |Hop—1| =
hbound-

Such a distribution of probes must consider at least two
potential difficulties. Firstan evente; € E may require
probes in multiple locations in order to be profiled. For
example, to find out whether methedand methodB al-
ways occur together (the event consists of their joined oc-
currence during a program execution), distributing probes
such that the occurrence dfis captured ins; and the oc-
currence ofB is captured in; would not yield the wanted
information. Secondan engineer interested in events in
E may find it easier and less expensive to approximate
the locations in the program that must be profiled to cap-
ture those events than identifying all the exact locations
where probes are needed. For example an engineer may ut
lize a call graph to quickly (over)estimate which methods
may be involved in a call-chain. We refer to this set of pro-
gram locations as a cluster of probes,

Oncehpound, n, andE (or the cluster of probesto ap-
proximateF) are defined, the challenge is to find a distribu-
tion of probes across variants that maximizes the likelthoo
of capturing a representative part of the program behavior
exercised in the field. More formally, we define the probe
distribution across variants problem as follows:

There are many potential strategies that can be applied
in an attempt to maximize the award value of a probe dis-
tribution across variants. Figure 1 presents three types of
strategies according to the distribution tardetobe-based
Event-basedandCluster-basedWe instantiate those types
with sample distributions of increasing complexity to gtu
trate the range of potential solutions and their associated
tradeoffs. In each case we assume fgt = 8, E={ey,
€2, €3, €4, €5, €6, €7}, Nbound = 5, @andn = 3. We will
also assume thail = {ul,U3,U5}, ey = {UQ,U4,’U,6},
es = {us,us,ur}, es = {uq,ue,us}, es = {u1,u2,us},

e = {U4,U5, UG} ande7 = {UG, U7,u8}.

The first type of strategyrobe-baseddistributes probes
across the program variants without explicit knowledge
of the profiled events. This type of strategy works well
for events that can be profiled with single probes (e.qg.,
Block coverage, method coverage). One way of distribut-
ing probes is by incrementally placing a probe into a ran-
dom location in a variant until,,..q is achievediRandom-
Probeg. This strategy is simple and avoids an engineer’s
unintended bias to concentrate probes in certain sections o
a program variant (e.g., variants with probes in rarely ex-
ecuted units will provide no information from the field).
However, such a distribution can lead to an uneven distri-
bution of probes. For example, in Figure 1-a, no probes are
allocated to capture information relativeds, but all vari-
Given ants allocate one probe to profile the activitywgf. The
Random-Probestrategy may be improved by considering
the notion ofbalance Balancing attempts to generate a dis-
tribution with the same number of probes assigned to all
E, aset of events of interest,c E, wheree; corresponds  program locations across varianBalanced-Probes Fig-

to a set of associated program locations required to e 1-b solves the inequities Bandom-Probeby keeping

capturee;. track of the number of probes allocated per location across
C, asetof clusters of probesi?, ¢ € C, wherec; consists  variants, distributing probes only in the locations wittvés

of a set of probes that over-approximates the locationsprobes.

required to profile a set of target eventsin — o
. L INote that a distribution acro$ subsumes one acrogs Distributing
PD, the set of potential probe distributions across prpes on events is equivalent to doing so over a series sfeciwhere

C on n variants such thatVvariants : each cluster corresponds to just one event.

U, a set of units inP, v € U, and whereu; identifies a
potential location for probg;;




In the presence of events such as call-chains that require e N
. . . . S B B Random
the instrumentation of multiple program locatiofspbe- a Ve ++<,°;A<>j°; ©)
basedtype strategies are likely to miss and even provide ’ T . Probes
false information. For example, the distribution genetate b ++++i* *i Balanced
. - (o ' (&3 &)
with Balanced-Probem Figure 1-b can only provide infor- sH HERH HAEH J
mation about eventsy ande; usingv;, while v, andvs fail B ReRRR Random 3\
to capture any event, and the execution of evgnindery, - = ] @ e esee)
may lead us to infer that; occurred simply becausg did e
not contain a probe in that variarvent-basedype distri- d. ‘°’i+¢‘ﬂ‘°’+ Balanced \ Events
butions start addressing this problem by distributing eéts I RRR @*eese
probes, one set per event. The first variation of this strat- BRRT BT BT Balanced-Packed
e ..
egy, Random-Eventfl-c), randomly chooses an event and B B Lo e e e e 6)
places the probes associated with that event into a variant e /
as long as it does not excegh,.q. This strategy shares f.  EEEE-PEPE  Random N
the same limitation aRandom-Probes For example, we B BR B v & & @)
note that the resulting distribution does not allocate psob TERT BT R Balanced
to capture information relative to everds but two vari- g. ++A T ;‘_ (er & &, 6, 6 ) | Clusters
ants allocate probes to profile the activity of eventand e
es. The second variation of thEvent-basedstrategy at- h.  PEEHid]  Balanced-Packed
¢ : ) O (oL @ & e & & €)
empts to balance the events that receive probes across the K EAH A
y

variants. The strategBalanced-Eventkeeps track of the
events previously included and performs allocation consid
ering only the events that are used less frequently. In Bigur
1-d, probes are placed so that all the occurring events can be

observed in at least one variant. A similar Strategy, called responds to a subset of events (e@_pver-approxima‘tes
Balanced-Packed-Evenitaproves the previous strategy by ¢, ande;), or corresponds to exactly one event (e.,
trying to pack as many events as possible into each variantaptures:;). Note that the three variations Blent-based
taking into consideration that some events share probes. INrandom, balanced, packed) distribution strategies csm al
the program example, events ¢s, ander shared locations  pe applied tcCluster-basedsince both types deal with the
ug, ug, andug. By putting the probes needed to monitor distribution of sets of probes, rather than individual ones
these events in the same variant, we can fit more events into

other variants potentially increasing our event coverage i 4.3, Distribution Algorithms

the field. Figure 1-e shows that with this strategy, we are
able to pack one more event in the third variant to monitor
three eventse, eg, ander) in contrast to only two events
(e3 ander) with theBalanced-Eventstrategy.

Figure 1. Sample Distributions.

In Section 4.1 we defined a functigii D) that produces
an award value on a given distributidh Finding the dis-
tribution that generates the highest award value can be for-
mulated as an optimization problem [20]. An optimization
A similar type of strategy uses clusters of probes rather problem minimizes or maximizes an objective function that
than individual events and is call€@luster-basedThis type evaluates whether an individual solution (in this case a sin
of distribution is particularly valuable when enumeratan  gle distribution) is better or worse than another one given
the target events is unaffordable or cannot be done prgcisel a set of constraints. For a given probe distribution we de-
Probes that may be required to profile an event of interest ardine an objective function where zero represents the optimal
clustered together. For example, a cluster can be generatedistribution, with two constraints: there are a fixed number
based on the examination of the structural characteristics of variants, and all variants have exactly /a3, number
the program (e.g., form a cluster with all the probes in the of probes. In this section we will define a cost function for
same package or execution path) or by relying on an engi-each distributioncost(D), that when minimized provides
neer’s experience (e.g., form a cluster with all the probesthe highest award value fgi(D). We then describe an al-
exercised by each system test or not covered by the cur-gorithm for minimizing each of theost(D)s defined.
rent suite). Following the previous example, suppose that In previous work we introduced a simple greedy al-
C={c1, c2, 3, C4, C5, cg } Wherec; = {uq, us, us, ur}, co = gorithm to distribute probes for th&alanced-Probes
{u1,us,uz}, cs = {ug, us,ur,us}, ca = {uq,us, ug, ug}, scenario[3]. In this distribution it is always possible to-0
¢s = {uz, uq,ug}, andeg = {ug, ur,us}. Each ofthe clus-  tain a range of one between the minimum and maximum
ters consist of a set of probes that is an over-approximationnumber of times a probe is used across variants. gLted
of an event (e.g.¢3 is an over-approximation ofs), cor- the minimum number of times a given location has a probe



inserted. Letr; = 1 if the number of probes inserted in lo- remove from the variant, and it then randomly selects new

cationz across all variants is greater th@n- 1, and0 other- events to add back untily,.,,q is met. If the new distribu-
wise. Thencost(D) = Zi":{“w” x;. This function counts  tion is better ¢ost(D) is closer to0) the new distribution is

the number of locations that exceed the optimal range ofaccepted, otherwise it is not and the counter for bad moves
probe use. Wherost(D) = 0, the distribution is balanced. is incremented. The algorithm terminates when a cost of
zero is obtained or when it is “frozen”- it has performed a

Algorithm 1 Balanced Distribution set number of bad consecutive moves (i.e. it has converged
ALLOCATE PROBES (hpound, minProbe LocationCount){ on a local minimum)'
count =0 A key element of the algorithm is the calculation of
Awailable Locations = SelectLocations@in Probe LocationCount) the cost computation at each transition. There are three
while count < Rpoyunq do elements to consider when definingst(D): balance,
s = selectRandomLocatioAailable Locations) overlap, and whether or not all events (or clusters) have
place probe in location been distributed. We define the overall objective function
remove locatiors from Available Locations as follows: cost(D) = ax BALANCE +3xPACKING
if Available Locations is empty +vxALLUSED. The three weightsy, 5, and~ are real
min ProbeLocationCount + + numbers betweetand1 that can be adjusted based on our
Awvailable Locations = objective.
SelectLocationstin Probe LocationCount) In our implementation, BALANCE= ZLE\ length(ej)
count + + x |TimesUsed(e;) — Average(TimesUsed(E))|. The
} length multiplier is meant to compensate for the smaller

chance events with more probes have to fit into a given dis-
The Balanced-Probalistribution algorithm, (shown as tribution. To calculate PACKING, letv; equal the count of
Algorithm 1), places probes in random locations maintain- overlapping probes in variaitandOV = "7 ov;. Then
ing the balance at each step. The algorithm tracks the numypack; = 0 if Maxz(OV)==ov;, and m oth-

ber of probes assigned to locations with the least number ofgywise. and PACKINGS." pack;. ALLUSED equals the

. . . ’ 7 .
probes {uin Probe LocationCount). It starts by adding all - sym of the length of events that are not included in the dis-
locations to thelvailable Locations set. Next, itrandomly  tribytion. We use various data structures that keep track of
selects a locations, from AvailableLLocations, assigns  events and probes as they are inserted and removed to make

a probe tos, and removes from AvailableLocations. the implementation more efficient. With these additional
When Available Locations is empty (the same number of  stryctures, calculating ALLUSED can be performed in con-
probes have been assigned to all locations)jn Probe- stant time. The cost of calculating PACKING requiteg:)
LocationCount is incremented andlvailable Locations time wheren is the number of variants deployed. Sincis

is re-initialized. This process is repeated uhfil.... Probes  rejatively small this does not have a large impact on program
are assigned. efficiency. The expensive part of the objective function

The Balanced and Balanced-Packedlistributions for is BALANCE. Although Average('imesUsed(E)) can be
events and clusters present a more complicated optimizare-calculated in constant time, by maintaining a global sum
tion problem. We can no longer easily calculate if a solution re-calculating the distance from this average for all event

exists where all probes can be distributed given/thg..a,  requiresO(|E|) time. This clearly has the greatest impact
number of variants, and number of locations. With events of on the scalability of our algorithm.

varying lengths and overlapping probes, it would require an
exhaustive enumeration of all combinations of events onto
the set of variants. Given the fact that there may be thou-5 Empirical Study
sands of events this becomes combinatorially infeasible.

To solve the distribution problem for events and clusters
we choose a different algorithmic strategy. We employ a  Our overall objective is to learn how to best distribute a
standard optimization technique: a heuristic search. We us bounded number of probes into multiple deployed program
a hill climb to achieve balance and/or packing[20]. This al- variants to capture the maximum amount of field informa-
gorithm will not guarantee that a global minimum is found tion. More specifically, we aim to assess a series of strate-
for cost(D), but may converge instead on a close to optimal gies that utilize different probe distribution mechanisims
local minimum. The hill climb algorithm (see Algorithm 2)  capture call-chains. The following sections introduceithe
starts with an initial random distribution of events. Itthe dependent variables, the metrics, the hypotheses, thetobje
performs a series of transformations. At each stage it se-of study, the design and implementation of the study, and
lects a random variant and a random number of events tothe threats to validity that may affect our findings.



Algorithm 2 Hill Climb cally stored otherwise. An in-house server is responsdsle f

ALLOCATE PROBES (hpound) { accepting the package, parsing the information, and gforin
D = createlnitialRandomDistribution() the data in the database.
badcounter = 0 Test Suite.We required a test suite to generate an initial
FROZEN = MAXBADMOVES assessment of the overhead and bounds. To obtain such a
while cost(D) > 0 && badcounter < FROZEN do test suite, we generated a set of tests that exercised all the
r = selectRandomVariant menu items in MylE. After examining the coverage results,
¢ = selectNumberofEventstoRemonw( from the black box test cases we added test cases targeting
removeEventsy) blocks that had not yet been exercised. We automated a total
while not hygyng do { of 243 test cases that yielded 79% of block coverage.
s = selectRandomLocatioAailable Locations)
place event probes in variant 5.2. Independent Variables
}

Probes Placement Types and Techniques.We imple-

if (cost(D with changed- t(D . ) . .
eost(D with changed) < cost(D)) mented the three types of techniques illustrated in Section

commit changes to variamt

4.3:
else
badcounter-++ e Probe-based distributions: Random-Prob&s Hr)
4 and Balanced-Probe®(Pr)
e Event-based distributions: Random-Eveni& Fv),
5.1. Definitions and Setup Balanced-Event€f_Ev), Packed-Events{_Ev) and

Balanced-Packed-Evenf3f_Ev).

Call chains. In this study, we define a call-site sensitive o
4 e Cluster-based distributions: Random-Clusté®s({),

call-chain as a traversal of the call graph from a root node Bal 4-Cl . packed-Cl ;
to a leaf node, where edges in the graph represent method adagcle ) lés;erfl((_cd )él acke (-Jl usters R.C1),
invocations, and are labeled by the caller-site. (From this and Balanced-Packed-Cluste#stC1)

point on we refer to the call-site sensitive call-chainsmim While the probe-based distribution techniques operate
as call-chains). We denote the main method of the programyithout prior-information about the events to profile, the
and all methods that represent event handlers as root metheyvent-based and the cluster-based techniques require some
ods. We denote a method as a leaf if there exists no callipjtial call-chain information.
from that method to any other methods in the program. We 19 apply the event-based distribution techniques we
do not consider loops or any back edges in the graph, antheeded to generate an initial list of events (call-chaing.
we exclude calls to external libraries. generated this statically by analyzing a call-graph of {re a
Object SelectionWe chose MyIE as our object of study. plication with the support of the Microsoft Studio C++ 6.0
MylE is a web browser that wraps the core of Internet navigation tool-set. We hand-annotated the edges with the
Explorer to add features such as a configurable front end,caller-site, adding extra edges when a caller invoked aeall
mouse gesture capability, and URL aliasing. MyIE was par- from multiple locations. We validated the graphs by exam-
ticularly attractive because its source code is availatile; ination and by running an available test suite to detect any
troduces many of the challenges of other large systems (e.g.other potential edges missed by the static analysis tool. We
size, interaction with 3rd party components, complex eventthen generated the list of call-chains in our object of study
handling and highly configurable), it is similar but notiden by performing a depth-first search traversal of the gréph.
tical to other web browsers, and it has a small user base that  To apply the cluster-based techniques, we did not need to
we can leverage for our study. The version of MylE source identify apriori the set of events to profile. Instead, we had
code utilized, available for download at sourceforge.net, to use a heuristic to define the clusters of probes that may
has approximately 41 KLOC, 64 classes, 878 methods, andcontain the events of interest. We again utilized the call-
2793 blocks. For our study we consider 1197 unit probes graph to identify our clusters, where each cluster included
that correspond to the call-site sensitive call-chains. one root note and all the methods reachable from that root.
Object Preparation. To collect the field data, we in- For balancing and packing the event-based and cluster-
strumented MylE source code to generate a block trace.based distributions, we utilized Algorithm 2, with the pa-
During a user’s execution, the block trace is recorded in rameters presented in Table 1.
a buffer. When the bgffer i§ full, the i-nformation s Com- 2Although we are aware of more precise techniques for gengreall-
prgssed, paqkage_d .Wlth a tlme and site 1D stamp to mam_chains (we later discuss why we did not pursue them and thadatgb such
tain the confidentiality and privacy of the sender, and sent 5 choice), it is important to recognize that this is an inhetienitation of
to the in-house repository if a connection is available er lo this type of technique.




Table 1. Simulation Parameters

| Technique | « | I} | ~ | FROZEN | Table 2. Hypotheses

Balanced 05] 0 | 0.5] 500,000 Null There isno significant ...

Packed 0 |05 0.5 500,000 Hypotheses

Balanced-Packed 0.4 | 0.2 | 0.4 | 500,000 H1 performancédifference between probe-

based Pr), event-basedHwv), and cluster-

Bounds. We defined four levels of overhead: 5%, 10%, based technique€’() of the same type.
25%, and 50% over the non-instrumented program. To ap-{ g2 performance difference between Random
proximate the number of probes corresponding to the cho- (R), Balanced B), Packed P), and
sen levels of overhead, we inserted a number of probes Balanced-PackediP) techniques.
in random locations of the program associated with call- | 3 difference when using differeft,ounds-
chains, ran an available test suite, measured the overheadl, 774 interaction between types, techniques, and
and repeated the procedure while adjusting the number of Pbounds-

inserted probes until we converged at the target overhead
level. This resulted in four bound levels(,...q) as defined

by the following number of probes: 50, 75, 230, and 450.  jnstallation process. After this initial refinement period

. we proceeded to perform a full deployment and started
5.3. Dependent Variables with the data collection. We sent e-mail to the members

The dependent variable is the captured field information Of our Department and various testing newsgroups (e.g.
value, for which we have selected two metrics. The first COMp.software.testing, comp.edu, comp) inviting them to
metric is the percentage of call-chains covered in the field Participate in the study and pointing them to our MylE de-
when using a given probe allocation technique with respectPloyment web site for more information. After 3 months,
to the call-chain coverage obtained by a theoretical optima there were 114 downloads, and 36 deployed sites that qual
allocation techniqueQpt. Given anhyounq level and the ified for this study, which generated 378 user sessions.
data collected from the field)pt represents what would We utilized the collected data to simulate each one of
have been the ideal distribution of probes across variantsthe combinations of distribution techniques and typeshEac
Since we captured a complete block trace during the de-Simulation generated variants, where each variant con-
ployment of Myl E, we were able to approximate tiigpt sisted of a vector of size equal to the number of locations
distribution aposteriori by removing the probes corregpon in the program. Cells in each vector were initialized with
ing to call-chains that were observed in multiple variaats, ~ Zeroes, and then populated wikh,..a probes according
by removing the shortest call-chain on a variant. to the allocation rules specified by the simulated technique

The second metric aims to measure the false call-chaingEach vector was then utilized to mask the data collected

reported by each technique due to missing probes. A call-from a specific deployed instance, simulating what would
chain detected in the field is considered false if (1) the- call have been collected if a true variant would have been de-

chain is not detected by thEull technique (technique that
inserts instrumentation in all units of the program) or (2)
the call-chain is detected by theull technique, but it is not
detected at the same location in the trace filé'agl.

5.4. Hypotheses

We are interested in obtaining the degree to which the
amount of information collected from the field changes
across the probe distribution strategies wheg, 4 is var-
ied. We formally state the primary null hypotheses (as-
sumed to be true until statistically rejected) in Table 2.

5.5. Deployments and Data Collection

We first performed a set of preliminary deployments of
Myl E within our lab to verify the correctness of the in-
stallation scripts, data capture process, magnitude and fr
guency of data transfer, and the transparency of the de

3As defined by the dependent variables in Section 5.2.

ployed to that particular instance. We performed the varian
generation and assignment process ten times to account for
potential variations due to the random assignment of probes
to variants, and from variants to instances. For this study,
we assume that the number of variants= 36, that is, we
have as many variants as deployed instances which consti-
tutes an upper bound on the potential distribution.

5.6. Threats to Validity

From a generalization perspective, our findings are lim-
ited by the object of study, the data-collection procesd, an
the user population. Although it is arguable whether the se-
lected program is representative of the population of alt pr
grams, there are many similar browsers to MylE, making it
a credible experimental object. During instrumentatiod an
data collection we attempted to balance data represestativ
ness and power through the utilization of full data capture

combined with simulation. The deployment and download
process, as perceived by the users, was identical to many



other sites offering software downloads and on-line patche
Further studies with other programs and subjects may be
necessary to confirm our findings.

From an internal validity perspective, the quality of the
collected field data is an important threat as packages may
be lost, corrupted, or not sent. We controlled this threat by
adding different stamps to the packages to ensure their au-
thenticity and to detect any anomalies in the collection pro
cess. Alternative definitions (e.g., fixed-length callidsa
component-bounded call-chains) may influence the number
detected or the noise. The static analysis to generate the
initial list of call-chains for the event-based techniquaym
have limited their performance as well. Our choice of defi-
nition was driven by practical considerations includinmgit
tations in the static analysis tools which cannot fully mes
large C++ applications that utilize MFC components.

From a construct validity perspective, we have chosen
a set of metrics to quantify the value of the collected in-
formation that captures only a part of its potential mean-
ing. Our choices are a function of our interest in exploiting
field data for validation purposes, and our experience and
available infrastructure to analyze such data. Also, from
a construct perspective, we have approximatedhi3g,q
and have chosen a subset of the potential levels for it that
attempt to operationalize a spectrum of values that allow us
to characterize the effects of the treatments.

From a conclusion validity perspective, we are making
inferences based on a few hundred sessions which may have
limited the power to detect significant differences. Howeve
we were able to reject various hypotheses and discover in-
teresting findings.

6. Results and Analysis

We now compare the performance of probe distribution
types (Probe-based, Event-based, and Cluster-based) and
techniques (random, balanced, and packed) across differ-
ent bound levels that restrict the number of probes placed
on a given variant. We start by performing an exploratory
analysis of the data through the box plots in Figure 2, which
depicts the percentage of call-chains correctly identifigd
the deployed instances (compared to what is achieved by the
Opt technique) when utilizing the distribution techniques
for the chosen four levels dfy,...q (One per subfigure).

Event-based and Cluster-based techniques (the ones in
the gray area of Figure 2 and to their right) perform better
than Probe-based techniques in terms of identifying correc
call-chains for all bound levels (the two left most boxes of
each subfigure). This suggests that simply allocating [gobe
without associating them with the target events is unlikely
provide much valuable data even in the presende,gf..q
values as high as 50%. We also note that Event-based tech-
nigues perform at least as well as Cluster-based techniques

Percentage of Call-Chains Correctly Identified

100

h bound = 50

— Mean
0 3 +sD
T Min-Max
80
70
60

50

. =205
0 g@éé

Percentage of Call-Chains Correctly Identified

100

h_bound =75

90
80
70
60
50
i =
. EE%

20

=il

10

=1

Percentage of Call-Chains Correctly Identified

100

h bound = 230

90

80

. E
. @ééég
| 5o

é%

Percentage of Call-Chains Correctly Identified

h_bound = 450

@
S

" %E%E@§§E

60

50

H==1==

30

10

RPr BPr REv BEv PEv BP.Ev RCl BCl P.Cl BPC
Techniques

Figure 2. Identification of Call-Chains




3 1.0
5., p—— Table 3. p-values of the ANOVA Test
P L e Hypo- Effect p-value
g 08 theses
g o7 @ @ H1 Type(Probes, Events, Clusters) 0.00
2y os H2 Techniques Probes | 0.69
;g 0s (R,B, P) Events | 0.02
ES Clusters| 0.00
. 0.4
;J H3 hbound 000
g o H4 | Techniques &younq | Probes| 0.51
3 o2 é (R, B, P) Events | 0.54
;S ot @ Eééé Clusters| 0.00
g =
R_Pr50 R_Pr450 R_Ev50 R_Ev450 R_CI50 R_CI_450
B_Pr_50 B_Pr_450 B_Ev_50 B_Ev_450 B_CI_50 B_CI_450

(H4). We further explored this interaction through a Bon-
Figure 3. Falsely Reported Call-Chains ferroni analysis to quantify when a technique and bound
wWhenhyyuna = 450, but consistently worse for [owBg, una level had an effect on the call-chain detection. We found
values. We conjecture that the poor performance for lower that only whertis,.,,q is 50 and75, balanced and balanced-
hoouna Might be caused by the imprecision in determining packed enabled .the d.e_tectlon ofS|gnn‘|cantIy higher pdrcen
individual events apriori.This confirms that Event-based 29e of correctly identified call-chains than random.
techniques can be beneficial when applied to events that

can be easily enumerated, b,Ut in general a Cluster-basedover the correctly identified ones across the three types of
approach seems to be better, independent okibg.a CON-  gistributions. Due to space constraints, for each type of

straints An engineer can take this into consideration when distribution, we only show Random and Balanced tech-

deciding which techniques to use. niques on two extreme bound values) (and 450). We
When comparing random techniques to the search-baseda, see different tendencies between Probe-based, Event-
techniques (balanced, packed, and balanced packed) ifhased. and Cluster-based typeshas.na increases: the
terms of the correctly identified call-chains we found that, ,,mber of falsely reported call-chains by the Probe-based
within Event-based techniques, the improvement prOVidedtechniques, as shown by the 4 leftmost box-plots, increases
is negligible, and within Cluster-based, balancing andpac \yhjle the number decreases for Event-based and Cluster-
ing may provide some benefits (6% over random on aver-yageq types. We conjecture that in the case of Probe-based
age). techniques, the more probes inserted leads to more incom-
To formally determine whether the observed tendenciespiete events in a variant. In contrast to Event-based and
were the result of chance and to evaluate our hypothesesg|yster-based types, increasigund increases the likeli-
we performed an ANOVA on the dependent variable (cor- hood that longer call-chains are accommodated. Further-
rect call-chain identified) and the three independent vari- mgre, in addition to having a large variande065), the
ables (type of distributions, techniques agd.nq¢). The  number of falsely reported call-chains in Event-based-tech
analysis over techniques amg..na Was performed inde-  npjques is10 times higher than the Cluster-based technique
pendently within each distribution type. The summary of whenp,,,,. is 50. This value improves significantly when
the p-values of the analysis is shown in Table 3. P-valueshbound is 450, though it is stilB times higher than the num-

smaller than 0.05 indicate a significant relationship betwe  per falsely reported by the Cluster-based technique.
the treatment and the dependent variable that cannot be at-

tributable to luck, and should be interpreted as a rejectfon  Implications. When the acceptable overhead that bounds
the null hypothesis. the profiling effort is small (less than 10% in our study),

The p-values in Table 3 show that the correct percent- Cluster-based allocation techniques that balance theidist
age of call-chains reported by the deployed sites varies sig bution across clusters of probes are the most effective-in re
nificantly across different types of distribution and bosind taining the value of field data. When many probes can be
(H1). Balancing did not seem to matter when utilizing placed in a variant, the Event-based type distribution seem
Probe-based distributions, but it did within the Eventdazhs to perform well regardless of the technique. In general, any
and Cluster-based distribution$/?). As expected and distribution technique working with clusters reported-sig
overall, thehy,.nq level did affect the dependent variable nificantly less false call-chains than the Probe-based and
(H3), but it was interesting to see that its effect within Event-based distributions, which translates into savifogs
the Cluster-based distribution had a significant intecacti  the engineer investigating such chains.

Figure 3 shows the ratio of falsely reported call-chains



7. Conclusion

Profiling overhead limits what we can observe and learn
from deployed software. To address this limitation, this pa
per investigates ways to distribute probes across variants
meet profiling overhead constraints while maximizing cap-
tured field information. We have formalized the problem of

distributing probes across variants, presented sevestal-di

bution techniques, and carefully assessed their perfazenan
From our findings we can draw several interesting obser-

vations. First, probe distribution techniques are coanibf

relevant when overhead bounds are set below 10% (a rea-
sonable practice when the objective is to remain below the

threshold of user noticeability). Second, distributiohatt

balance probes across variants perform consistentlyrbette
than those that do not, independent of the overhead bounds
and the type of distribution. Last, Cluster-based distribu
tions tend to be less expensive to set up than Event-based,

[3] M. Diep, S. Elbaum, and M. Cohen. Profiling De-

ployed Software: Strategic Probe Placement. Tech-
nical Report TR-05-08-01, University of Nebraska -
Lincoln, Aug. 2005.

M. Dmitriev. Profiling java applications using code
hotswapping and dynamic call graph revelationinia
Workshop on Soft. and Performangages 139-150,
2004.

S. Elbaum and M. Diep. Profiling deployed software:
Assessing strategies and testing opportunitiésEE
Trans. Soft. Eng31(4):312-327, 2005.

6] S. Elbaum and M. Hardojo. An empirical study of pro-

filing strategies for released software and their impact
on testing activities. Iihnt. Symp. on Soft. Testing and
Analysis pages 65 — 75, June 2004.

collect more correct information than Event-based or Probe [7] A. Glenn, T. Ball, and J. Larus. Exploiting hardware

based, and report the least false information.

As continuing work we are starting to address the vari-
ous costs involved in large scale profiling efforts. For exam
ple, analyzing the target program to relate probes to events
and to determine an optimal probe placement may be expen-
sive. We have shown that approximations through cluster-
ing can be effective to lower those costs but we have not yet [9]
quantified this. The cost of the probe distribution algarith
is computationally expensive, taking days to converge on a
distribution in the presence of thousands of target everis a
profiling locations. More flexible convergence criteria and [10]
more efficient implementations of the algorithms are neces-
sary to make this approach scalable. Finally, we must weigh
the additional costs introduced by deploying and maintain-
ing multiple program variants, against the benefit of having [11]
more variants which lowers the amount of instrumentation
per deployed instance. Future studies should examine the
trade-off between variants and bounds, and more generally[lz]

the costs and benefits of large scale profiling efforts.

8. Acknowledgments

This work was supported in part by NSF CAREER
Award 0347518 and an NSF EPSCoR First Award. We
are thankful to Zhimin Wang for preparing MylE, and the [13]

Study: PRSePaRIS:

References

[1] M. Arnold and B. Ryder. A framework for reducing

the cost of instrumented code. @onf. on Prog. Lang.
Design and Imp|.pages 168-179, 2001.

[2] T. Ball and J. Laurus. Optimally profiling and trac-
ing programs. IrSymp. on Principles of Prog. Lang.
pages 59-70, Aug. 1992.

performance counters with flow and context sensitive
profiling. ACM SIGPLAN Notices32(5):85-96, 1997.

S. Graham and M. McKusick. Gprof: a call graph
execution profiler. ACM SIGPLAN SC(C17(6):120—
126, June 1982.

M. Harrold, R. Lipton, and A. Orso. Gamma:
Continuous evolution of software after deployment.
www.cc.gatech.edu/aristotle/Research/Projects/gahimb

D. Hilbert and D. Redmiles. An approach to large-
scale collection of application usage data over the In-
ternet. Inint. Conf. on Soft. Eng.pages 136-145,
1998.

InCert. Rapid failure recovery to eliminate applicati
downtime. www.incert.com, June 2001.

D. Leon, W. Masri, and A. Podgurski. An empirical
evaluation of test case filtering techniques based on
exercising complex information flows. IMCSE '05:
Proceedings of the 27th international conference on
Software engineeringpages 412—-421, New York, NY,
USA, 2005. ACM Press.

B. Liblit, A. Aiken, Z. Zheng, and M. Jordan. Bug
isolation via remote program sampling. @onf. on
Prog. Lang. Design and Implpages 141-154. ACM,
June 2003.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. Jor-
dan. Scalable statistical bug isolation. Gonf. Prog.
Lang. Design and Implpages 15—-26, June 2005.

A. Memon, A. Porter, C. Yilmaz, A. Nagarajan,
D. Schmidt, and B. Natarajan. Skoll: Distributed con-
tinuous quality assurance. Int. Conf. on Soft. Eng.
pages 449-458, May 2004.



[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Microsoft. Windows quality online services, 2005.

A. Orso, T. Apiwattanapong, and M.J.Harrold. Lever-

(5]

aging field data for impact analysis and regression test- [6]

ing. In Foundations of Soft. Engpages 128-137.
ACM, September 2003.

A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma
system: Continuous evolution of software after de-
ployment. Inint. Symp. on Soft. Testing and Analysis
pages 65—-69, 2002.

C. Pavlopoulou and M. Young. Residual Test Cov-
erage Monitoring. Inint. Conf. of Soft. Eng.pages
277-284, May 1999.

V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and
G. D. Smith.Modern Heuristic Search Methoddohn
Wiley & Sons, Ltd., West Sussex, 1996.

S. Reiss and M. Renieris. Encoding Program Execu-
tions. Inint. Conf. of Soft. Engineeringpages 221—
230, May 2001.

D. Richardson, L. Clarke, L.
weil, and M. Young. Perpetual
www.ics.uci.edu/ djr/fedcs/PerpTest.html.

Oster-
testing.

A. Rountev, S. Kagan, and M. Gibas. Static and dy-
namic analysis of call chains in jav8lGSOFT Softw.
Eng. Notes29(4):1-11, 2004.

A. L. Souter and L. L. Pollock. Characterization and
automatic identification of type infeasible call chains.
Information and Software Technolqgy4(13):721—
732, 2002.

M. Tikir and J. Hollingsworth. Efficient instrumenta-
tion for code coverage testing. Int. Symp. on Soft.
Testing and Analysjpages 86-96, 2002.

References

(1]

(2]

(3]

(4]

M. Arnold and B. Ryder. A framework for reducing the cost
of instrumented code. I@onf. on Prog. Lang. Design and
Impl., pages 168-179, 2001.

T. Ball and J. Laurus. Optimally profiling and tracing pro
grams. InSymp. on Principles of Prog. Langages 59-70,
Aug. 1992.

M. Diep, S. Elbaum, and M. Cohen. Profiling Deployed
Software: Strategic Probe Placement. Technical Report TR-
05-08-01, University of Nebraska - Lincoln, Aug. 2005.

M. Dmitriev. Profiling java applications using code hotgp-
ping and dynamic call graph revelation. Ilit. Workshop on
Soft. and Performanc@ages 139-150, 2004.

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

S. Elbaum and M. Diep. Profiling deployed software: As-
sessing strategies and testing opportunitidEEE Trans.
Soft. Eng.31(4):312-327, 2005.

S. Elbaum and M. Hardojo. An empirical study of profiling
strategies for released software and their impact on testin
activities. InInt. Symp. on Soft. Testing and Analygiages
65 — 75, June 2004.

A. Glenn, T. Ball, and J. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling.
ACM SIGPLAN Notices32(5):85-96, 1997.

S. Graham and M. McKusick. Gprof: a call graph execution
profiler. ACM SIGPLAN SC(17(6):120-126, June 1982.

D. Hilbert and D. Redmiles. An approach to large-scale co
lection of application usage data over the Internet.Inin
Conf. on Soft. Engpages 136-145, 1998.

InCert. Rapid failure recovery to eliminate applicati
downtime. www.incert.com, June 2001.

D. Leon, W. Masri, and A. Podgurski. An empirical eval-
uation of test case filtering techniques based on exercising
complex information flows. IACSE '05: Proceedings of
the 27th international conference on Software engineering
pages 412-421, New York, NY, USA, 2005. ACM Press.

B. Liblit, A. Aiken, Z. Zheng, and M. Jordan. Bug isola-
tion via remote program sampling. @onf. on Prog. Lang.
Design and Imp|.pages 141-154. ACM, June 2003.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. Jordan.
Scalable statistical bug isolation. @onf. Prog. Lang. De-
sign and Impl. pages 15-26, June 2005.

A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt
and B. Natarajan. Skoll: Distributed continuous quality as
surance. Innt. Conf. on Soft. Engpages 449-458, May
2004.

Microsoft. Windows quality online services, 2005.

A. Orso, T. Apiwattanapong, and M.J.Harrold. Leverag-
ing field data for impact analysis and regression testing. In
Foundations of Soft. Engpages 128-137. ACM, September
2003.

A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma sys-
tem: Continuous evolution of software after deployment. In
Int. Symp. on Soft. Testing and Analygiages 65-69, 2002.
C. Pavlopoulou and M. Young. Residual Test Coverage
Monitoring. InInt. Conf. of Soft. Engpages 277-284, May
1999.

V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D.
Smith. Modern Heuristic Search Methodslohn Wiley &
Sons, Ltd., West Sussex, 1996.

S. Reiss and M. Renieris. Encoding Program Executibns.
Int. Conf. of Soft. Engineeringpages 221-230, May 2001.

A. Rountev, S. Kagan, and M. Gibas. Static and dynamic
analysis of call chains in javeBIGSOFT Softw. Eng. Notes
29(4):1-11, 2004.

A. L. Souter and L. L. Pollock. Characterization andaut
matic identification of type infeasible call chainkiforma-
tion and Software Technolog#4(13):721-732, 2002.

M. Tikir and J. Hollingsworth. Efficient instrumentati for
code coverage testing. lImt. Symp. on Soft. Testing and
Analysis pages 86-96, 2002.



