
Probe Distribution Techniques to Profile Events in DeployedSoftware

Madeline Diep, Myra Cohen, Sebastian Elbaum
Department of Computer Science and Engineering

University of Nebraska - Lincoln
{mhardojo, myra, elbaum}@cse.unl.edu

Abstract
Profiling deployed software provides valuable insights

for quality improvement activities. The probes required for
profiling, however, can cause an unacceptable performance
overhead for users. In previous work we have shown that
significant overhead reduction can be achieved, with limited
information loss, through the distribution of probes across
deployed instances. However, existing techniques for probe
distribution are designed to profile simple events. In this pa-
per we present a set of techniques for probe distribution to
enable the profiling of complex events that require multiple
probes and that share probes with other events. Our evalua-
tion of the new techniques indicates that, for tight overhead
bounds, techniques that produce a balanced event alloca-
tion can retain significantly more field information.

1. Introduction

Software profiling consists of observing, gathering, and
analyzing data to characterize a program’s behavior. Profil-
ing deployed software is valuable for providing insights into
how software is utilized by its users [17], which configura-
tions are being employed in the field [15], what engineering
assumptions formed during development may not hold in
the field or may hold only under more constrained circum-
stances [5], where the current in-house validation activities
are lacking [6], and which scenarios most likely led to a
failure state (e.g., Traceback [11], MSN Error API [16]).

Profiling usually requires instrumentation of the pro-
gram, that is, the addition of probes to enable the exami-
nation of the program’s run-time behavior. As such, the act
of profiling penalizes the targeted software with execution
overhead. For example, Liblitet al. report an overhead
ranging from 2% to 181% on various benchmarks profil-
ing assertion invocations [13], and in the study we will be
presenting, fully instrumenting a target program to capture
call-chains causes a 150% overhead in execution time.

The magnitude of the overhead depends, at least to some
extent, on the number, the location, and the type of inserted

profiling probes. To lower the profiling overhead, instru-
mentation techniques may insert only a subset of probes,
but do so strategically to reduce data loss. For example, a
common instrumentation approach to lower the number of
probes consists of skipping probes that capture redundant or
inferable data.

Lowering overhead is particularly critical for profiling
software in the field where it can have a direct impact on
the user. As a result, researchers are attempting to leverage
what can potentially be thousands of deployed sites not just
to characterize a population of events that are much richer
than the ones available in-house, but also to lower the num-
ber of inserted probes by distributing them across a pool
of sites. Such an approach consists of two main steps: 1)
generating multiple program variants, where each variant
contains a subset of probes, and where the subset size can
be bounded to meet the overhead requirements, and 2) dis-
tributing those variants across the user sites [6, 18].

In previous work we have introduced and evaluated sev-
eral instances of this approach [5]. For example, we have
shown that probe distribution techniques relying on simple
sampling principles such as stratified sampling can effec-
tively reduce profiling overhead at each user site by up to
one order of magnitude. This overhead reduction greatly
increases the viability of profiling released software, while
still retaining a majority of the field information. We later
improved those techniques by utilizing a greedy-sampling
process to generate variants with balanced distributions [3].

Although successful, our initial probe distribution tech-
niques assume that the population of events being character-
ized is made up of relatively simple and independent events
(e.g., the execution of a block of code). In practice, however,
we would like to profile events such as execution paths, ex-
ceptional control flows, or call chains. Profiling one such
event may require multiple probes, and some events may
be somewhat dependent in that they can share overlapping
probes. Furthermore, there may be too many of these events
for an engineer to enumerate cost-effectively before deploy-
ment. When these issues arise, existing probe distribution
techniques can produce unsatisfactory results.

2. A Motivating Example

Call-chains are sequences of method calls. Engineers use
call-chains for many purposes: to determine whether a given
method can indirectly reach another method, to enumerate
the possible paths of execution between a pair of methods,
to assist debugging by providing the sequence of method
calls executed before a failure, to assist re-engineering ac-
tivities, to serve as drivers for program testing, or as testing
oracles in the presence of program changes [12, 23, 24].

Call-chains can be computed through the static analysis
of a program’s source code or through the dynamic analysis
of the program’s execution. The precision of statically com-
puted call-chains relies on the precision of the call graph
utilized as input, and although many techniques have been
proposed to increase the precision of call graph construc-
tion, statically computing call-chains can still be expensive
and it is commonly an over-approximation (some of the call
chains reported may not be feasible). This limitation be-
comes more obvious when we try to capture call-site sensi-
tive call chains, that is, call-chains that are differentiated by
the particular site within the caller where the invocation to
the callee is made.

Call-chains gathered by observing a program’s execution
are precise (no false positives), but the in-house activities
are unlikely to expose a significant number of them. Col-
lecting call-chains executed by a very large number of users
in the field can overcome this limitation, providing a richer
set of executions that result in a precise yet comprehensive
enumeration of the program call-chains. The challenge is
to then profile such complex events with minimal overhead
while maximizing the information captured in the field.

In this paper we re-define the probe distribution prob-
lem across variants, taking into consideration the challenges
introduced by complex events such as call-chains, and we
present a set of more general techniques for probe distribu-
tion. To investigate the efficiency and effectiveness of the
new techniques, we compare them against existing probe
distribution techniques designed for single probe events
through an empirical study. Our findings indicate that for
scenarios where the acceptable profiling overhead is small
the proposed distribution techniques can make a significant
practical difference.

3. Background

Researchers have investigated many ways to enhance the
efficiency of profiling techniques such as: (1) performing
up-front analysis to optimize the amount of instrumentation
[2, 25], (2) sacrificing accuracy by monitoring entities of
higher granularity or by sampling program behavior [7, 8],
(3) encoding the information to reduce memory and storage
requirements [21], and (4) re-targeting the entities that need

to be profiled [1, 4]. These mechanisms are created to work
in the controlled and small-scale in-house environment.

When profiling deployed software, however, we can also
leverage the opportunities introduced by a potentially large
pool of users. The following research efforts, for example,
focus in that direction: 1) Perpetual Testing, which uses the
residual testing technique to reduce instrumentation [19],
2) EDEM, which provides a semi-automated way to collect
user-interface feedback from remote sites when the user ac-
tions do not meet an expected criterion [10], 3) Skoll, which
presents an architecture and a set of tools to distribute differ-
ent job configurations across users [15], 4) Gamma, which
introduces an architecture to distribute and manipulate in-
strumentation across deployed instances [18], and 5) Bug
Isolation, which provides an infrastructure to efficientlycol-
lect field data and identify likely failure conditions [13, 14].
Our work is closely related to the last two projects.

It is similar to Gamma in that the overall mechanism to
reduce overhead utilizes probe distribution across deployed
instances. However, our focus has been on developing tech-
niques to achieve distributions that increase the likelihood
of retaining field data [6]. Our work is also related to the
bernoulli-sampling used by the Bug-Isolation project since
both attempt to reduce overhead through some form of sam-
pling. However, while the bernoulli-sampling approach in-
cludes additional instrumentation to determinewhento sam-
ple at run-time, our objective is to determine before deploy-
mentwhat to sample in each variant. Our approach aims
to produce a balanced “sample” across variants, without in-
corporating the additional instrumentation required to adjust
the sampling at run-time.

The work in this paper builds on our previous studies
by considering instrumentation constraints, the association
between events and probes, and the relationship between
events in terms of probe sharing. Techniques incorporat-
ing this factors are studied on a truly deployed non-trivial
system to assess their performance (Section 5).

4. Probe Distribution on Variants

This section characterizes the probe distribution prob-
lem, illustrates different distribution approaches, states the
research questions, and provides algorithms to generate dis-
tributions with different properties.

4.1. Problem Characterization

Let us defineU as the set of locations in programP that
need to be instrumented to profile eventsE, andH as the
set of probes actually inserted inU . To profile all events
E, the engineer can generate an instrumented variant ofP ,
v0, with probes placed in locationsu1, u2, ..., uk in P such
thatH = U andk = |H | = |U |. This approach, however,

may cause an unacceptable performance overhead. To ad-
dress this problem, the engineer can specify an acceptable
maximum number of probeshbound that can be included in
variantv0 to enable the profiling activities.hbound can be
computed such that, for example, profiling overhead is hid-
den in the program’s operating noise (performance variation
observed during various program executions).

Since generallyhbound << |U |, data collected from all
the sites when onlyonevariant withhbound probes is de-
ployed will reflect only a part of the program behavior exer-
cised in the field. Having multiple deployed variants of the
program, where each variant has a somewhat complemen-
tary subset of assigned probes, can offer a better character-
ization ofE [5]. This approach will result inn variantsv0,
v1, ..., andvn−1, where each variant contains a subset of
probesHv0, Hv1, ..., andHvn−1, such that the size of each
subset is less or equal tohbound. We simplify the discus-
sion by assuming that|Hv0| = |Hv1| = ... = |Hvn−1| =
hbound.

Such a distribution of probes must consider at least two
potential difficulties. First,an eventei ∈ E may require
probes in multiple locations in order to be profiled. For
example, to find out whether methodA and methodB al-
ways occur together (the event consists of their joined oc-
currence during a program execution), distributing probes
such that the occurrence ofA is captured inv1 and the oc-
currence ofB is captured inv2 would not yield the wanted
information. Second,an engineer interested in events in
E may find it easier and less expensive to approximate
the locations in the program that must be profiled to cap-
ture those events, than identifying all the exact locations
where probes are needed. For example an engineer may uti-
lize a call graph to quickly (over)estimate which methods
may be involved in a call-chain. We refer to this set of pro-
gram locations as a cluster of probes,c.

Oncehbound, n, andE (or the cluster of probesc to ap-
proximateE) are defined, the challenge is to find a distribu-
tion of probes across variants that maximizes the likelihood
of capturing a representative part of the program behavior
exercised in the field. More formally, we define the probe
distribution across variants problem as follows:

Given:

U , a set of units inP , u ∈ U , and whereui identifies a
potential location for probehi;

E, a set of events of interest,e ∈ E, whereei corresponds
to a set of associated program locations required to
captureei.

C, a set of clusters of probes inP , c ∈ C, whereci consists
of a set of probes that over-approximates the locations
required to profile a set of target events inE.

PD, the set of potential probe distributions across
C on n variants such that ∀ variants :

|Hv0|=|Hv1|=...=|Hvn−1| = hbound
1;

f , a function fromPD to a real number that, when applied
to any such distribution, yields anaward value.

Problem: Find a distributionD ∈ PD such that∀D′ ∈
PD, D 6= D′, [f(D) ≥ f(D′)].

The definition off will depend on the information that
is targeted. For example,f may be the number of blocks
covered, the potential invariants violated, or the number of
call-sensitive-chains. Depending upon the choice off , the
problem of finding the best distribution may be intractable.
Thus, in practice, we resort to heuristics to approximateD.

4.2. Potential Distribution Strategies

There are many potential strategies that can be applied
in an attempt to maximize the award value of a probe dis-
tribution across variants. Figure 1 presents three types of
strategies according to the distribution target:Probe-based,
Event-based, andCluster-based. We instantiate those types
with sample distributions of increasing complexity to illus-
trate the range of potential solutions and their associated
tradeoffs. In each case we assume that|U | = 8, E={e1,
e2, e3, e4, e5, e6, e7}, hbound = 5, andn = 3. We will
also assume thate1 = {u1, u3, u5}, e2 = {u2, u4, u6},
e3 = {u3, u5, u7}, e4 = {u4, u6, u8}, e5 = {u1, u2, u3},
e6 = {u4, u5, u6} ande7 = {u6, u7, u8}.

The first type of strategy,Probe-based, distributes probes
across the program variants without explicit knowledge
of the profiled events. This type of strategy works well
for events that can be profiled with single probes (e.g.,
block coverage, method coverage). One way of distribut-
ing probes is by incrementally placing a probe into a ran-
dom location in a variant untilhbound is achieved (Random-
Probes). This strategy is simple and avoids an engineer’s
unintended bias to concentrate probes in certain sections of
a program variant (e.g., variants with probes in rarely ex-
ecuted units will provide no information from the field).
However, such a distribution can lead to an uneven distri-
bution of probes. For example, in Figure 1-a, no probes are
allocated to capture information relative tou2, but all vari-
ants allocate one probe to profile the activity ofu7. The
Random-Probesstrategy may be improved by considering
the notion ofbalance. Balancing attempts to generate a dis-
tribution with the same number of probes assigned to all
program locations across variants.Balanced-Probesin Fig-
ure 1-b solves the inequities ofRandom-Probesby keeping
track of the number of probes allocated per location across
variants, distributing probes only in the locations with fewer
probes.

1Note that a distribution acrossC subsumes one acrossE. Distributing
probes on events is equivalent to doing so over a series of clusters where
each cluster corresponds to just one event.

In the presence of events such as call-chains that require
the instrumentation of multiple program locations,Probe-
basedtype strategies are likely to miss and even provide
false information. For example, the distribution generated
with Balanced-Probesin Figure 1-b can only provide infor-
mation about eventse3 ande7 usingv1, while v2 andv3 fail
to capture any event, and the execution of evente1 underv1

may lead us to infer thate3 occurred simply becauseu1 did
not contain a probe in that variant.Event-basedtype distri-
butions start addressing this problem by distributing setsof
probes, one set per event. The first variation of this strat-
egy,Random-Events(1-c), randomly chooses an event and
places the probes associated with that event into a variant
as long as it does not exceedhbound. This strategy shares
the same limitation asRandom-Probes. For example, we
note that the resulting distribution does not allocate probes
to capture information relative to eventse2 but two vari-
ants allocate probes to profile the activity of eventse1 and
e6. The second variation of theEvent-basedstrategy at-
tempts to balance the events that receive probes across the
variants. The strategyBalanced-Eventskeeps track of the
events previously included and performs allocation consid-
ering only the events that are used less frequently. In Figure
1-d, probes are placed so that all the occurring events can be
observed in at least one variant. A similar strategy, called
Balanced-Packed-Eventsimproves the previous strategy by
trying to pack as many events as possible into each variant
taking into consideration that some events share probes. In
the program example, eventse4, e6, ande7 shared locations
u4, u6, andu8. By putting the probes needed to monitor
these events in the same variant, we can fit more events into
other variants potentially increasing our event coverage in
the field. Figure 1-e shows that with this strategy, we are
able to pack one more event in the third variant to monitor
three events (e4, e6, ande7) in contrast to only two events
(e3 ande7) with theBalanced-Eventsstrategy.

A similar type of strategy uses clusters of probes rather
than individual events and is calledCluster-based. This type
of distribution is particularly valuable when enumerationof
the target events is unaffordable or cannot be done precisely.
Probes that may be required to profile an event of interest are
clustered together. For example, a cluster can be generated
based on the examination of the structural characteristicsof
the program (e.g., form a cluster with all the probes in the
same package or execution path) or by relying on an engi-
neer’s experience (e.g., form a cluster with all the probes
exercised by each system test or not covered by the cur-
rent suite). Following the previous example, suppose that
C={c1, c2, c3, c4, c5, c6} wherec1 = {u1, u3, u5, u7}, c2 =
{u1, u2, u3}, c3 = {u3, u5, u7, u8}, c4 = {u4, u5, u6, u8},
c5 = {u2, u4, u6}, andc6 = {u6, u7, u8}. Each of the clus-
ters consist of a set of probes that is an over-approximation
of an event (e.g.,c3 is an over-approximation ofe3), cor-

v1

v2

v3

Probes

Events

Clusters

Random
(e1, e3, e4, e5, e6, e7)

a.

b.

c.

d.

e.

f.

g.

h.

Balanced
(e3, e7)

Random
(e7)

Balanced
(e1, e2, e3, e4, e5, e6, e7)

Balanced-Packed
(e1, e2, e3, e4, e5, e6, e7)

Random
(e1, e3, e5, e7)

Balanced
(e1, e2, e3, e4, e5, e6, e7)

Balanced-Packed
(e1, e2, e3, e4, e5, e6, e7)

u1 u2 u3 u4 u5 u6 u7 u8

Figure 1. Sample Distributions.

responds to a subset of events (e.g.,c1 over-approximates
e1 and e3), or corresponds to exactly one event (e.g.,c2

capturese5). Note that the three variations ofEvent-based
(random, balanced, packed) distribution strategies can also
be applied toCluster-basedsince both types deal with the
distribution of sets of probes, rather than individual ones.

4.3. Distribution Algorithms

In Section 4.1 we defined a functionf(D) that produces
an award value on a given distributionD. Finding the dis-
tribution that generates the highest award value can be for-
mulated as an optimization problem [20]. An optimization
problem minimizes or maximizes an objective function that
evaluates whether an individual solution (in this case a sin-
gle distribution) is better or worse than another one given
a set of constraints. For a given probe distribution we de-
fine an objective function where zero represents the optimal
distribution, with two constraints: there are a fixed number
of variants, and all variants have exactly anhbound number
of probes. In this section we will define a cost function for
each distribution,cost(D), that when minimized provides
the highest award value forf(D). We then describe an al-
gorithm for minimizing each of thecost(D)s defined.

In previous work we introduced a simple greedy al-
gorithm to distribute probes for theBalanced-Probes
scenario[3]. In this distribution it is always possible to ob-
tain a range of one between the minimum and maximum
number of times a probe is used across variants. Letq be
the minimum number of times a given location has a probe

inserted. Letxi = 1 if the number of probes inserted in lo-
cationi across all variants is greater thanq +1, and0 other-
wise. Thencost(D) =

∑location

i=1 xi. This function counts
the number of locations that exceed the optimal range of
probe use. Whencost(D) = 0, the distribution is balanced.

Algorithm 1 Balanced Distribution
ALLOCATE PROBES (hbound, minProbeLocationCount){

count = 0

AvailableLocations = SelectLocations(minProbeLocationCount)

while count < hbound do

s = selectRandomLocation(AvailableLocations)

place probe in locations

remove locations from AvailableLocations

if AvailableLocations is empty

minProbeLocationCount + +

AvailableLocations =

SelectLocations(minProbeLocationCount)

count + +

}

The Balanced-Probedistribution algorithm, (shown as
Algorithm 1), places probes in random locations maintain-
ing the balance at each step. The algorithm tracks the num-
ber of probes assigned to locations with the least number of
probes (minProbeLocationCount). It starts by adding all
locations to theAvailableLocations set. Next, it randomly
selects a location,s, from AvailableLocations, assigns
a probe tos, and removess from AvailableLocations.
WhenAvailableLocations is empty (the same number of
probes have been assigned to all locations),minProbe-
LocationCount is incremented andAvailableLocations

is re-initialized. This process is repeated untilhbound probes
are assigned.

The Balancedand Balanced-Packeddistributions for
events and clusters present a more complicated optimiza-
tion problem. We can no longer easily calculate if a solution
exists where all probes can be distributed given thehbound,
number of variants, and number of locations. With events of
varying lengths and overlapping probes, it would require an
exhaustive enumeration of all combinations of events onto
the set of variants. Given the fact that there may be thou-
sands of events this becomes combinatorially infeasible.

To solve the distribution problem for events and clusters
we choose a different algorithmic strategy. We employ a
standard optimization technique: a heuristic search. We use
a hill climb to achieve balance and/or packing[20]. This al-
gorithm will not guarantee that a global minimum is found
for cost(D), but may converge instead on a close to optimal
local minimum. The hill climb algorithm (see Algorithm 2)
starts with an initial random distribution of events. It then
performs a series of transformations. At each stage it se-
lects a random variant and a random number of events to

remove from the variant, and it then randomly selects new
events to add back untilhbound is met. If the new distribu-
tion is better (cost(D) is closer to0) the new distribution is
accepted, otherwise it is not and the counter for bad moves
is incremented. The algorithm terminates when a cost of
zero is obtained or when it is “frozen”- it has performed a
set number of bad consecutive moves (i.e. it has converged
on a local minimum).

A key element of the algorithm is the calculation of
the cost computation at each transition. There are three
elements to consider when definingcost(D): balance,
overlap, and whether or not all events (or clusters) have
been distributed. We define the overall objective function
as follows: cost(D) = α× BALANCE +β×PACKING
+γ×ALLUSED. The three weightsα, β, and γ are real
numbers between0 and1 that can be adjusted based on our
objective.

In our implementation, BALANCE=
∑|E|

j length(ej)
× |T imesUsed(ej) − Average(T imesUsed(E))|. The
length multiplier is meant to compensate for the smaller
chance events with more probes have to fit into a given dis-
tribution. To calculate PACKING, letovi equal the count of
overlapping probes in varianti andOV =

∑n

i ovi. Then
packi = 0 if Max(OV)==ovi, and 1

Max(OV)−ovi

, oth-

erwise, and PACKING=
∑n

i packi. ALLUSED equals the
sum of the length of events that are not included in the dis-
tribution. We use various data structures that keep track of
events and probes as they are inserted and removed to make
the implementation more efficient. With these additional
structures, calculating ALLUSED can be performed in con-
stant time. The cost of calculating PACKING requiresO(n)
time wheren is the number of variants deployed. Sincen is
relatively small this does not have a large impact on program
efficiency. The expensive part of the objective function
is BALANCE. Although Average(T imesUsed(E)) can be
re-calculated in constant time, by maintaining a global sum,
re-calculating the distance from this average for all events
requiresO(|E|) time. This clearly has the greatest impact
on the scalability of our algorithm.

5. Empirical Study

Our overall objective is to learn how to best distribute a
bounded number of probes into multiple deployed program
variants to capture the maximum amount of field informa-
tion. More specifically, we aim to assess a series of strate-
gies that utilize different probe distribution mechanismsto
capture call-chains. The following sections introduce thein-
dependent variables, the metrics, the hypotheses, the object
of study, the design and implementation of the study, and
the threats to validity that may affect our findings.

Algorithm 2 Hill Climb

ALLOCATE PROBES (hbound) {

D = createInitialRandomDistribution()

badcounter = 0

FROZEN = MAXBADMOV ES

while cost(D) > 0 && badcounter < FROZEN do

r = selectRandomVariant

c = selectNumberofEventstoRemove(r)

removeEvents(c)

while not hbound do {

s = selectRandomLocation(AvailableLocations)

place event probes in variant

}

if (cost(D with changedr)< cost(D))

commit changes to variantr

else

badcounter++

}

5.1. Definitions and Setup

Call chains. In this study, we define a call-site sensitive
call-chain as a traversal of the call graph from a root node
to a leaf node, where edges in the graph represent method
invocations, and are labeled by the caller-site. (From this
point on we refer to the call-site sensitive call-chains simply
as call-chains). We denote the main method of the program
and all methods that represent event handlers as root meth-
ods. We denote a method as a leaf if there exists no call
from that method to any other methods in the program. We
do not consider loops or any back edges in the graph, and
we exclude calls to external libraries.

Object Selection.We chose MyIE as our object of study.
MyIE is a web browser that wraps the core of Internet
Explorer to add features such as a configurable front end,
mouse gesture capability, and URL aliasing. MyIE was par-
ticularly attractive because its source code is available,it in-
troduces many of the challenges of other large systems (e.g.,
size, interaction with 3rd party components, complex event
handling and highly configurable), it is similar but not iden-
tical to other web browsers, and it has a small user base that
we can leverage for our study. The version of MyIE source
code utilized, available for download at sourceforge.net,
has approximately 41 KLOC, 64 classes, 878 methods, and
2793 blocks. For our study we consider 1197 unit probes
that correspond to the call-site sensitive call-chains.

Object Preparation. To collect the field data, we in-
strumented MyIE source code to generate a block trace.
During a user’s execution, the block trace is recorded in
a buffer. When the buffer is full, the information is com-
pressed, packaged with a time and site ID stamp to main-
tain the confidentiality and privacy of the sender, and sent
to the in-house repository if a connection is available or lo-

cally stored otherwise. An in-house server is responsible for
accepting the package, parsing the information, and storing
the data in the database.

Test Suite.We required a test suite to generate an initial
assessment of the overhead and bounds. To obtain such a
test suite, we generated a set of tests that exercised all the
menu items in MyIE. After examining the coverage results,
from the black box test cases we added test cases targeting
blocks that had not yet been exercised. We automated a total
of 243 test cases that yielded 79% of block coverage.

5.2. Independent Variables

Probes Placement Types and Techniques.We imple-
mented the three types of techniques illustrated in Section
4.3:

• Probe-based distributions: Random-Probes (R Pr)
and Balanced-Probes (B Pr)

• Event-based distributions: Random-Events (R Ev),
Balanced-Events(B Ev), Packed-Events(P Ev) and
Balanced-Packed-Events(BP Ev).

• Cluster-based distributions: Random-Clusters (R Cl),
Balanced-Clusters(B Cl), Packed-Clusters (P Cl),
and Balanced-Packed-Clusters(BP Cl)

While the probe-based distribution techniques operate
without prior-information about the events to profile, the
event-based and the cluster-based techniques require some
initial call-chain information.

To apply the event-based distribution techniques we
needed to generate an initial list of events (call-chains).We
generated this statically by analyzing a call-graph of the ap-
plication with the support of the Microsoft Studio C++ 6.0
navigation tool-set. We hand-annotated the edges with the
caller-site, adding extra edges when a caller invoked a callee
from multiple locations. We validated the graphs by exam-
ination and by running an available test suite to detect any
other potential edges missed by the static analysis tool. We
then generated the list of call-chains in our object of study
by performing a depth-first search traversal of the graph.2

To apply the cluster-based techniques, we did not need to
identify apriori the set of events to profile. Instead, we had
to use a heuristic to define the clusters of probes that may
contain the events of interest. We again utilized the call-
graph to identify our clusters, where each cluster included
one root note and all the methods reachable from that root.

For balancing and packing the event-based and cluster-
based distributions, we utilized Algorithm 2, with the pa-
rameters presented in Table 1.

2Although we are aware of more precise techniques for generating call-
chains (we later discuss why we did not pursue them and the impact of such
a choice), it is important to recognize that this is an inherent limitation of
this type of technique.

Table 1. Simulation Parameters
Technique α β γ FROZEN

Balanced 0.5 0 0.5 500,000
Packed 0 0.5 0.5 500,000
Balanced-Packed 0.4 0.2 0.4 500,000

Bounds. We defined four levels of overhead: 5%, 10%,
25%, and 50% over the non-instrumented program. To ap-
proximate the number of probes corresponding to the cho-
sen levels of overhead, we inserted a number of probes
in random locations of the program associated with call-
chains, ran an available test suite, measured the overhead,
and repeated the procedure while adjusting the number of
inserted probes until we converged at the target overhead
level. This resulted in four bound levels (hbound) as defined
by the following number of probes: 50, 75, 230, and 450.

5.3. Dependent Variables

The dependent variable is the captured field information
value, for which we have selected two metrics. The first
metric is the percentage of call-chains covered in the field
when using a given probe allocation technique with respect
to the call-chain coverage obtained by a theoretical optimal
allocation technique,Opt. Given anhbound level and the
data collected from the field,Opt represents what would
have been the ideal distribution of probes across variants.
Since we captured a complete block trace during the de-
ployment ofMyIE, we were able to approximate theOpt

distribution aposteriori by removing the probes correspond-
ing to call-chains that were observed in multiple variants,or
by removing the shortest call-chain on a variant.

The second metric aims to measure the false call-chains
reported by each technique due to missing probes. A call-
chain detected in the field is considered false if (1) the call-
chain is not detected by theFull technique (technique that
inserts instrumentation in all units of the program) or (2)
the call-chain is detected by theFull technique, but it is not
detected at the same location in the trace file asFull.

5.4. Hypotheses

We are interested in obtaining the degree to which the
amount of information collected from the field changes
across the probe distribution strategies whenhbound is var-
ied. We formally state the primary null hypotheses (as-
sumed to be true until statistically rejected) in Table 2.

5.5. Deployments and Data Collection

We first performed a set of preliminary deployments of
MyIE within our lab to verify the correctness of the in-
stallation scripts, data capture process, magnitude and fre-
quency of data transfer, and the transparency of the de-

3As defined by the dependent variables in Section 5.2.

Table 2. Hypotheses

Null There isno significant ...
Hypotheses

H1 performance3difference between probe-
based (Pr), event-based (Ev), and cluster-
based techniques (Cl) of the same type.

H2 performance difference between Random
(R), Balanced (B), Packed (P), and
Balanced-Packed (BP) techniques.

H3 difference when using differenthbounds.
H4 interaction between types, techniques, and

hbounds.

installation process. After this initial refinement period,
we proceeded to perform a full deployment and started
with the data collection. We sent e-mail to the members
of our Department and various testing newsgroups (e.g.
comp.software.testing, comp.edu, comp) inviting them to
participate in the study and pointing them to our MyIE de-
ployment web site for more information. After 3 months,
there were 114 downloads, and 36 deployed sites that qual-
ified for this study, which generated 378 user sessions.

We utilized the collected data to simulate each one of
the combinations of distribution techniques and types. Each
simulation generatedn variants, where each variant con-
sisted of a vector of size equal to the number of locations
in the program. Cells in each vector were initialized with
zeroes, and then populated withhbound probes according
to the allocation rules specified by the simulated technique.
Each vector was then utilized to mask the data collected
from a specific deployed instance, simulating what would
have been collected if a true variant would have been de-
ployed to that particular instance. We performed the variant
generation and assignment process ten times to account for
potential variations due to the random assignment of probes
to variants, and from variants to instances. For this study,
we assume that the number of variantsn = 36, that is, we
have as many variants as deployed instances which consti-
tutes an upper bound on the potential distribution.

5.6. Threats to Validity

From a generalization perspective, our findings are lim-
ited by the object of study, the data-collection process, and
the user population. Although it is arguable whether the se-
lected program is representative of the population of all pro-
grams, there are many similar browsers to MyIE, making it
a credible experimental object. During instrumentation and
data collection we attempted to balance data representative-
ness and power through the utilization of full data capture
combined with simulation. The deployment and download
process, as perceived by the users, was identical to many

other sites offering software downloads and on-line patches.
Further studies with other programs and subjects may be
necessary to confirm our findings.

From an internal validity perspective, the quality of the
collected field data is an important threat as packages may
be lost, corrupted, or not sent. We controlled this threat by
adding different stamps to the packages to ensure their au-
thenticity and to detect any anomalies in the collection pro-
cess. Alternative definitions (e.g., fixed-length call-chains,
component-bounded call-chains) may influence the number
detected or the noise. The static analysis to generate the
initial list of call-chains for the event-based technique may
have limited their performance as well. Our choice of defi-
nition was driven by practical considerations including limi-
tations in the static analysis tools which cannot fully process
large C++ applications that utilize MFC components.

From a construct validity perspective, we have chosen
a set of metrics to quantify the value of the collected in-
formation that captures only a part of its potential mean-
ing. Our choices are a function of our interest in exploiting
field data for validation purposes, and our experience and
available infrastructure to analyze such data. Also, from
a construct perspective, we have approximated thehbound

and have chosen a subset of the potential levels for it that
attempt to operationalize a spectrum of values that allow us
to characterize the effects of the treatments.

From a conclusion validity perspective, we are making
inferences based on a few hundred sessions which may have
limited the power to detect significant differences. However,
we were able to reject various hypotheses and discover in-
teresting findings.

6. Results and Analysis

We now compare the performance of probe distribution
types (Probe-based, Event-based, and Cluster-based) and
techniques (random, balanced, and packed) across differ-
ent bound levels that restrict the number of probes placed
on a given variant. We start by performing an exploratory
analysis of the data through the box plots in Figure 2, which
depicts the percentage of call-chains correctly identifiedby
the deployed instances (compared to what is achieved by the
Opt technique) when utilizing the distribution techniques
for the chosen four levels ofhbound (one per subfigure).

Event-based and Cluster-based techniques (the ones in
the gray area of Figure 2 and to their right) perform better
than Probe-based techniques in terms of identifying correct
call-chains for all bound levels (the two left most boxes of
each subfigure). This suggests that simply allocating probes
without associating them with the target events is unlikelyto
provide much valuable data even in the presence ofhbound

values as high as 50%. We also note that Event-based tech-
niques perform at least as well as Cluster-based techniques

h_bound = 50

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 C

al
l-C

ha
in

s
C

or
re

ct
ly

 Id
en

tif
ie

d

 Mean
 ±SD
 Min-Max

h_bound = 75

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 C

al
l-C

ha
in

s
C

or
re

ct
ly

 Id
en

tif
ie

d

h_bound = 230

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 C

al
l-C

ha
in

s
C

or
re

ct
ly

 Id
en

tif
ie

d

h_bound = 450

R_Pr B_Pr R_Ev B_Ev P_Ev BP_Ev R_Cl B_Cl P_Cl BP_Cl

Techniques

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 C

al
l-C

ha
in

s
C

or
re

ct
ly

 Id
en

tif
ie

d

Figure 2. Identification of Call-Chains

R_Pr_50
B_Pr_50

R_Pr_450
B_Pr_450

R_Ev_50
B_Ev_50

R_Ev_450
B_Ev_450

R_Cl_50
B_Cl_50

R_Cl_450
B_Cl_450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
R

at
io

 o
f t

he
 N

um
be

r
of

 F
al

se
 C

al
l-C

ha
in

s
ov

er
 th

e
C

or
re

ct
C

al
l-C

ha
in

s
 Mean
 ±SD
 Min-Max

Figure 3. Falsely Reported Call-Chains

whenhbound = 450, but consistently worse for lowerhbound

values. We conjecture that the poor performance for lower
hbound might be caused by the imprecision in determining
individual events apriori.This confirms that Event-based
techniques can be beneficial when applied to events that
can be easily enumerated, but in general a Cluster-based
approach seems to be better, independent of thehbound con-
straints. An engineer can take this into consideration when
deciding which techniques to use.

When comparing random techniques to the search-based
techniques (balanced, packed, and balanced packed) in
terms of the correctly identified call-chains we found that,
within Event-based techniques, the improvement provided
is negligible, and within Cluster-based, balancing and pack-
ing may provide some benefits (6% over random on aver-
age).

To formally determine whether the observed tendencies
were the result of chance and to evaluate our hypotheses,
we performed an ANOVA on the dependent variable (cor-
rect call-chain identified) and the three independent vari-
ables (type of distributions, techniques andhbound). The
analysis over techniques andhbound was performed inde-
pendently within each distribution type. The summary of
the p-values of the analysis is shown in Table 3. P-values
smaller than 0.05 indicate a significant relationship between
the treatment and the dependent variable that cannot be at-
tributable to luck, and should be interpreted as a rejectionof
the null hypothesis.

The p-values in Table 3 show that the correct percent-
age of call-chains reported by the deployed sites varies sig-
nificantly across different types of distribution and bounds
(H1). Balancing did not seem to matter when utilizing
Probe-based distributions, but it did within the Event-based
and Cluster-based distributions (H2). As expected and
overall, thehbound level did affect the dependent variable
(H3), but it was interesting to see that its effect within
the Cluster-based distribution had a significant interaction

Table 3. p-values of the ANOVA Test
Hypo- Effect p-value
theses

H1 Type(Probes, Events, Clusters) 0.00
H2 Techniques Probes 0.69

(R, B, P) Events 0.02
Clusters 0.00

H3 hbound 0.00
H4 Techniques &hbound Probes 0.51

(R, B, P) Events 0.54
Clusters 0.00

(H4). We further explored this interaction through a Bon-
ferroni analysis to quantify when a technique and bound
level had an effect on the call-chain detection. We found
that only whenhbound is 50 and75, balanced and balanced-
packed enabled the detection of significantly higher percent-
age of correctly identified call-chains than random.

Figure 3 shows the ratio of falsely reported call-chains
over the correctly identified ones across the three types of
distributions. Due to space constraints, for each type of
distribution, we only show Random and Balanced tech-
niques on two extreme bound values (50 and 450). We
can see different tendencies between Probe-based, Event-
based, and Cluster-based types ashbound increases: the
number of falsely reported call-chains by the Probe-based
techniques, as shown by the 4 leftmost box-plots, increases
while the number decreases for Event-based and Cluster-
based types. We conjecture that in the case of Probe-based
techniques, the more probes inserted leads to more incom-
plete events in a variant. In contrast to Event-based and
Cluster-based types, increasinghbound increases the likeli-
hood that longer call-chains are accommodated. Further-
more, in addition to having a large variance (0.055), the
number of falsely reported call-chains in Event-based tech-
niques is10 times higher than the Cluster-based technique
whenhbound is 50. This value improves significantly when
hbound is 450, though it is still8 times higher than the num-
ber falsely reported by the Cluster-based technique.

Implications. When the acceptable overhead that bounds
the profiling effort is small (less than 10% in our study),
Cluster-based allocation techniques that balance the distri-
bution across clusters of probes are the most effective in re-
taining the value of field data. When many probes can be
placed in a variant, the Event-based type distribution seems
to perform well regardless of the technique. In general, any
distribution technique working with clusters reported sig-
nificantly less false call-chains than the Probe-based and
Event-based distributions, which translates into savingsfor
the engineer investigating such chains.

7. Conclusion
Profiling overhead limits what we can observe and learn

from deployed software. To address this limitation, this pa-
per investigates ways to distribute probes across variantsto
meet profiling overhead constraints while maximizing cap-
tured field information. We have formalized the problem of
distributing probes across variants, presented several distri-
bution techniques, and carefully assessed their performance.

From our findings we can draw several interesting obser-
vations. First, probe distribution techniques are consistently
relevant when overhead bounds are set below 10% (a rea-
sonable practice when the objective is to remain below the
threshold of user noticeability). Second, distributions that
balance probes across variants perform consistently better
than those that do not, independent of the overhead bounds
and the type of distribution. Last, Cluster-based distribu-
tions tend to be less expensive to set up than Event-based,
collect more correct information than Event-based or Probe-
based, and report the least false information.

As continuing work we are starting to address the vari-
ous costs involved in large scale profiling efforts. For exam-
ple, analyzing the target program to relate probes to events
and to determine an optimal probe placement may be expen-
sive. We have shown that approximations through cluster-
ing can be effective to lower those costs but we have not yet
quantified this. The cost of the probe distribution algorithm
is computationally expensive, taking days to converge on a
distribution in the presence of thousands of target events and
profiling locations. More flexible convergence criteria and
more efficient implementations of the algorithms are neces-
sary to make this approach scalable. Finally, we must weigh
the additional costs introduced by deploying and maintain-
ing multiple program variants, against the benefit of having
more variants which lowers the amount of instrumentation
per deployed instance. Future studies should examine the
trade-off between variants and bounds, and more generally,
the costs and benefits of large scale profiling efforts.

8. Acknowledgments
This work was supported in part by NSF CAREER

Award 0347518 and an NSF EPSCoR First Award. We
are thankful to Zhimin Wang for preparing MyIE, and the
study’s participants.¡¡¡¡¡¡¡ paper.bbl

References

[1] M. Arnold and B. Ryder. A framework for reducing
the cost of instrumented code. InConf. on Prog. Lang.
Design and Impl., pages 168–179, 2001.

[2] T. Ball and J. Laurus. Optimally profiling and trac-
ing programs. InSymp. on Principles of Prog. Lang.,
pages 59–70, Aug. 1992.

[3] M. Diep, S. Elbaum, and M. Cohen. Profiling De-
ployed Software: Strategic Probe Placement. Tech-
nical Report TR-05-08-01, University of Nebraska -
Lincoln, Aug. 2005.

[4] M. Dmitriev. Profiling java applications using code
hotswapping and dynamic call graph revelation. InInt.
Workshop on Soft. and Performance, pages 139–150,
2004.

[5] S. Elbaum and M. Diep. Profiling deployed software:
Assessing strategies and testing opportunities.IEEE
Trans. Soft. Eng., 31(4):312–327, 2005.

[6] S. Elbaum and M. Hardojo. An empirical study of pro-
filing strategies for released software and their impact
on testing activities. InInt. Symp. on Soft. Testing and
Analysis, pages 65 – 75, June 2004.

[7] A. Glenn, T. Ball, and J. Larus. Exploiting hardware
performance counters with flow and context sensitive
profiling. ACM SIGPLAN Notices, 32(5):85–96, 1997.

[8] S. Graham and M. McKusick. Gprof: a call graph
execution profiler.ACM SIGPLAN SCC, 17(6):120–
126, June 1982.

[9] M. Harrold, R. Lipton, and A. Orso. Gamma:
Continuous evolution of software after deployment.
www.cc.gatech.edu/aristotle/Research/Projects/gamma.html.

[10] D. Hilbert and D. Redmiles. An approach to large-
scale collection of application usage data over the In-
ternet. In Int. Conf. on Soft. Eng., pages 136–145,
1998.

[11] InCert. Rapid failure recovery to eliminate application
downtime. www.incert.com, June 2001.

[12] D. Leon, W. Masri, and A. Podgurski. An empirical
evaluation of test case filtering techniques based on
exercising complex information flows. InICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 412–421, New York, NY,
USA, 2005. ACM Press.

[13] B. Liblit, A. Aiken, Z. Zheng, and M. Jordan. Bug
isolation via remote program sampling. InConf. on
Prog. Lang. Design and Impl., pages 141–154. ACM,
June 2003.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. Jor-
dan. Scalable statistical bug isolation. InConf. Prog.
Lang. Design and Impl., pages 15–26, June 2005.

[15] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan,
D. Schmidt, and B. Natarajan. Skoll: Distributed con-
tinuous quality assurance. InInt. Conf. on Soft. Eng.,
pages 449–458, May 2004.

[16] Microsoft. Windows quality online services, 2005.

[17] A. Orso, T. Apiwattanapong, and M.J.Harrold. Lever-
aging field data for impact analysis and regression test-
ing. In Foundations of Soft. Eng., pages 128–137.
ACM, September 2003.

[18] A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma
system: Continuous evolution of software after de-
ployment. InInt. Symp. on Soft. Testing and Analysis,
pages 65–69, 2002.

[19] C. Pavlopoulou and M. Young. Residual Test Cov-
erage Monitoring. InInt. Conf. of Soft. Eng., pages
277–284, May 1999.

[20] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and
G. D. Smith.Modern Heuristic Search Methods. John
Wiley & Sons, Ltd., West Sussex, 1996.

[21] S. Reiss and M. Renieris. Encoding Program Execu-
tions. In Int. Conf. of Soft. Engineering, pages 221–
230, May 2001.

[22] D. Richardson, L. Clarke, L. Oster-
weil, and M. Young. Perpetual testing.
www.ics.uci.edu/ djr/edcs/PerpTest.html.

[23] A. Rountev, S. Kagan, and M. Gibas. Static and dy-
namic analysis of call chains in java.SIGSOFT Softw.
Eng. Notes, 29(4):1–11, 2004.

[24] A. L. Souter and L. L. Pollock. Characterization and
automatic identification of type infeasible call chains.
Information and Software Technology, 44(13):721–
732, 2002.

[25] M. Tikir and J. Hollingsworth. Efficient instrumenta-
tion for code coverage testing. InInt. Symp. on Soft.
Testing and Analysis, pages 86–96, 2002.

=======

References

[1] M. Arnold and B. Ryder. A framework for reducing the cost
of instrumented code. InConf. on Prog. Lang. Design and
Impl., pages 168–179, 2001.

[2] T. Ball and J. Laurus. Optimally profiling and tracing pro-
grams. InSymp. on Principles of Prog. Lang., pages 59–70,
Aug. 1992.

[3] M. Diep, S. Elbaum, and M. Cohen. Profiling Deployed
Software: Strategic Probe Placement. Technical Report TR-
05-08-01, University of Nebraska - Lincoln, Aug. 2005.

[4] M. Dmitriev. Profiling java applications using code hotswap-
ping and dynamic call graph revelation. InInt. Workshop on
Soft. and Performance, pages 139–150, 2004.

[5] S. Elbaum and M. Diep. Profiling deployed software: As-
sessing strategies and testing opportunities.IEEE Trans.
Soft. Eng., 31(4):312–327, 2005.

[6] S. Elbaum and M. Hardojo. An empirical study of profiling
strategies for released software and their impact on testing
activities. InInt. Symp. on Soft. Testing and Analysis, pages
65 – 75, June 2004.

[7] A. Glenn, T. Ball, and J. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling.
ACM SIGPLAN Notices, 32(5):85–96, 1997.

[8] S. Graham and M. McKusick. Gprof: a call graph execution
profiler. ACM SIGPLAN SCC, 17(6):120–126, June 1982.

[9] D. Hilbert and D. Redmiles. An approach to large-scale col-
lection of application usage data over the Internet. InInt.
Conf. on Soft. Eng., pages 136–145, 1998.

[10] InCert. Rapid failure recovery to eliminate application
downtime. www.incert.com, June 2001.

[11] D. Leon, W. Masri, and A. Podgurski. An empirical eval-
uation of test case filtering techniques based on exercising
complex information flows. InICSE ’05: Proceedings of
the 27th international conference on Software engineering,
pages 412–421, New York, NY, USA, 2005. ACM Press.

[12] B. Liblit, A. Aiken, Z. Zheng, and M. Jordan. Bug isola-
tion via remote program sampling. InConf. on Prog. Lang.
Design and Impl., pages 141–154. ACM, June 2003.

[13] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. Jordan.
Scalable statistical bug isolation. InConf. Prog. Lang. De-
sign and Impl., pages 15–26, June 2005.

[14] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt,
and B. Natarajan. Skoll: Distributed continuous quality as-
surance. InInt. Conf. on Soft. Eng., pages 449–458, May
2004.

[15] Microsoft. Windows quality online services, 2005.
[16] A. Orso, T. Apiwattanapong, and M.J.Harrold. Leverag-

ing field data for impact analysis and regression testing. In
Foundations of Soft. Eng., pages 128–137. ACM, September
2003.

[17] A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma sys-
tem: Continuous evolution of software after deployment. In
Int. Symp. on Soft. Testing and Analysis, pages 65–69, 2002.

[18] C. Pavlopoulou and M. Young. Residual Test Coverage
Monitoring. In Int. Conf. of Soft. Eng., pages 277–284, May
1999.

[19] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D.
Smith. Modern Heuristic Search Methods. John Wiley &
Sons, Ltd., West Sussex, 1996.

[20] S. Reiss and M. Renieris. Encoding Program Executions.In
Int. Conf. of Soft. Engineering, pages 221–230, May 2001.

[21] A. Rountev, S. Kagan, and M. Gibas. Static and dynamic
analysis of call chains in java.SIGSOFT Softw. Eng. Notes,
29(4):1–11, 2004.

[22] A. L. Souter and L. L. Pollock. Characterization and auto-
matic identification of type infeasible call chains.Informa-
tion and Software Technology, 44(13):721–732, 2002.

[23] M. Tikir and J. Hollingsworth. Efficient instrumentation for
code coverage testing. InInt. Symp. on Soft. Testing and
Analysis, pages 86–96, 2002.

¿¿¿¿¿¿¿ 1.2

