
Configurations Everywhere: Implications for Testing and
Debugging in Practice

Dongpu Jin
Dept. of Comp. Sci. & Eng.
Univ. of Nebraska-Lincoln
Lincoln, NE 68588, USA

djin@cse.unl.edu

Xiao Qu
Industrial Software Systems
ABB Corporate Research
Raleigh, NC, 27606, USA
xiao.qu@us.abb.com

Myra B. Cohen
Dept. of Comp. Sci. & Eng.
Univ. of Nebraska-Lincoln
Lincoln, NE 68588, USA
myra@cse.unl.edu

Brian Robinson
ABB Inc.

Raleigh, NC, 27606, USA
brian.p.robinson@

us.abb.com

ABSTRACT
Many industrial systems are highly-configurable, complicat-
ing the testing and debugging process. While researchers
have developed techniques to statically extract, quantify and
manipulate the valid system configurations, we conjecture
that many of these techniques will fail in practice. In this
paper we analyze a highly-configurable industrial applica-
tion and two open source applications in order to quantify
the true challenges that configurability creates for software
testing and debugging. We find that (1) all three appli-
cations consist of multiple programming languages, hence
static analyses need to cross programming language barriers
to work, (2) there are many access points and methods to
modify configurations, implying that practitioners need con-
figuration traceability and should gather and merge meta-
data from more than one source and (3) the configuration
state of an application on failure cannot be reliably deter-
mined by reading persistent data; a runtime memory dump
or other heuristics must be used for accurate debugging. We
conclude with a roadmap and lessons learned to help prac-
titioners better handle configurability now, and that may
lead to new configuration-aware testing and debugging tech-
niques in the future.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Verification

Keywords
Configurable Systems, Testing, Debugging

1. INTRODUCTION
Many software systems are highly-configurable, allowing

the user to customize an individual instance of the program
while retaining a core set of functionality. This customiz-
ability provides benefit to the end-user, however, it also in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31-June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

troduces many challenges during testing and/or debugging,
because configurability complicates the process of finding
and/or reproducing the failure. Research has shown that
different instances of a highly-configurable system will be-
have differently while running under the same set of test
cases [6, 21, 28]. For instance, in the work of Qu et al. [21],
as many as 80% of the faults had the potential to go un-
detected if tested under certain configurations. Therefore,
configuration-aware testing techniques have been proposed,
to systematically explore the configuration space [21, 28].
But all of this work assumes that the configuration model
is known (or is easily extracted). During debugging, this is
also important. Knowing the exact configuration instance
that a user was in when the failure occurred can help with
reproducibility. Bettenburg et al. [1] found that there is a
strong mismatch in bug reports between what developers
need to reproduce and fix a bug, and that which is provided
by users. Other studies have also shown that bug reports
lack information needed for bug reproduction [2]. There has
research aimed at reproducing field failures [3, 14], but this
line of work does not explicitly consider the configuration at
the time of failure.

Given the complexity of today’s software systems, deter-
mining the configuration space may not be a trivial task. For
instance, in the industrial system studied in Qu et al. [20],
they reported that there are more than 500 configuration op-
tions that their users can modify. Firefox, the open source
web browser has over 1,900 configuration options available
to a user. The space of possible unique configurations grows
exponentially with the number of configuration options (or
preferences), therefore we can only evaluate a representative
sample of all possible configurations.

As we work more and more with highly-configurable sys-
tems in practice, we have discovered common issues that
arise which make available configuration-aware techniques
insufficient. For instance, in our industrial systems there
is usually no single document that describes the complete
set of possible configuration options. We can examine ex-
ternal preference files, but we find that there may be mul-
tiple files, and they still tell only a partial story because
there are hidden (but valid) preferences found only in the
source code. We can try to use an analysis technique such
as those proposed by Rabkin et al. [23,24] to reverse engineer
a complete mapping of our configuration space, but many
applications are written in multiple programming languages
such as C++, Java and JavaScript, and often use aliasing
to refer to preference names, neither of which are supported
by existing techniques. Finally, if we assume that we can



somehow obtain the ground truth model of the configura-
tion space, then in order to manipulate the configurations
for testing and debugging, we need mechanisms to automate
this process, as well as ways to capture which configuration
was active during a failure. Again, we have learned that the
complexity of real software makes this difficult – configura-
tions can be modified and viewed from multiple locations,
and are found in both dynamic and static structures. Fi-
nally, we have discovered that it is possible for the static
structures to be out of synchronization with the dynamic
ones at the time of failure.

In this paper we attempt to uncover and quantify the ex-
tent to which these problems exist on an industrial scale. We
empirically examine several large highly-configurable appli-
cations to understand the implications for testing and de-
bugging in practice. We study one industrial application
and two widely used open source applications. We quan-
tify the size of the configuration space and evaluate where
and if the ground truth for the configuration model exists.
We also examine how a user, tester or maintenance engi-
neer can manipulate the configuration options. Finally, we
examine the runtime factors involved in capturing the cur-
rent configuration space. Our study shows, somewhat sur-
prisingly, that both the industrial and open source appli-
cations have elements of configurability in common, which
leads to a set of lessons learned and a roadmap for devel-
oping configuration-aware testing and debugging tools. We
see this study as a way to share with practitioners the issues
configurability brings, and a springboard to accurate and us-
able configuration-aware testing and debugging techniques.

The contributions of this work are:

1. An abstraction of the general structure of configura-
tion manipulation in modern software systems

2. A case study that quantifies the complexity of three
modern highly configurable software systems

3. A set of lessons learned that will help practitioners to
better understand and control configuration instances
for software engineering tasks such as testing and de-
bugging

The rest of this paper is structured as follows. In the next
section we present some motivating examples motivating our
study. In Section 3 we present our case study. Results are
then given in Section 4, followed by lessons learned in Section
5. We highlight related work in Section 6 and conclude and
present future directions in Section 7.

2. MOTIVATION
A configurable system is a software system with a core

set of functionality and a set of variable features which are
defined by a set of configuration options (or preferences).1

Changes to the value of a preference changes the program’s
behavior in some way. For instance, Firefox, a popular web
browser, is a highly-configurable system and one that we use
to motivate some of the problems that we have encountered.
In Firefox, an example configuration option that can be set
via the option menu is called Warn me when closing multiple
tabs. This is a Boolean configuration with two values, {true,
false}. Its default value is set to true which means that if you
try to close a window when multiple tabs are open, you will

1In the remainder of this paper, we use configuration option
and user preference interchangeably.

get a warning asking if you want to close all of the tabs. If
you uncheck this on the menu (set it to false) it will prevent
a warning from being produced and immediately close the
window. The actual preference name for this (found in the
preference file) is called browser.tabs.warnOnClose. There
is another closely related preference in the preference files
called browser.tabs.warnOnCloseOtherTabs which is set to
true by default, but has no menu counterpart. When test-
ing the system, or when a failure occurs, we need to have
information about the values that were selected for each of
these configuration options, something that may not be ob-
vious by examining just the menu alone.

We assume an idealized use case for testing and debugging
as shown in Figure 1. In this scenario we have three entities
that interact with the configurable system. The end-user
can modify configurations and will send bug reports to (and
possibly read reports from) customer support. As can be
seen in the figure, he or she may use the menu, or they can
directly write to configuration files. A set of configuration-
aware techniques and tools sit between the application and
the tester and maintenance engineer, which feed informa-
tion about configurations back to the bug reporting/cus-
tomer support system. The challenge is to enable these
configuration-aware techniques. We have identified three
important requirements. We need

1. a Model of the possible configuration space. In order
to sample the configuration space for testing or debug-
ging, the configuration model needs to be known,

2. to Know the Mapping of the configuration space to
programmatic elements. This is required in order to
understand the impact a configurable item can have,
and to automate the modification of configurations for
testing and bug reproduction, and

3. an Accurate Configuration Snapshot to provide
the full state of the application when a bug is encoun-
tered.

!!!!!!!!!!!!

End- User !!!!!!!!!!!!

Maintenance  
Engineer 

applica&on)

configura)on*
environment*

configura*on+aware!
techniques!
and!tools!!!!!!!!!!!!!

Test  
Engineer 

bug)report)
customer)support)

Figure 1: Configuration-aware testing and debug-
ging: expected use case

We examine each of these requirements in relation to the
existing work. Configuration-aware testing techniques [5,
10,21] propose various methods to sample and prioritize the
configuration space for testing, but all of this work assumes
that the configuration model is known (or is somehow ex-
tracted from the code). Based on our informal examination
of systems like Firefox, we do not believe that this can be
easily achieved. First, we have discovered that the config-
uration control is not found within a single location of the
code or in specific external files. In fact, most of the systems



we have studied have a multi-tiered layout of how configu-
rations are defined and accessed and this can be done both
offline and at run time. Figure 2 shows a schema that rep-
resents all of the systems we have studied. First, there is
a static view of the system (labeled #1). This includes any
existing user manuals, web pages, etc. that contain docu-
mentation on the possible configuration options and their
values. This often is incomplete or out of date (see our dis-
cussion of hidden or dead preferences in Section 5). The
second static element is the source code itself. This contains
the ground truth, but source code may not be available to
everyone who wants and needs to understand the configura-
tion model. Moreover, as we shall see, using this to extract
the full configuration space is non-trivial.

When controlling what configurations are set, there are
usually external mechanisms (#2 in Figure 2) such as pref-
erence files or databases. These can often be accessed in-
dependently of the program (even while it is running) and
therefore may or may not contain the current state of the
configurations. We have also seen that these may not con-
tain the ground truth of the configuration space.

Finally, as is shown in #3, there are usually some run-
time access mechanisms that connect to the internal data
structures (or database). For instance, most programs have
a menu system that allows the user to set preferences, but in
the systems we have studied this accounts for only a subset
of the full set of configurations. Other specialty tools exist
such as the about:config mechanism of Firefox, that allows
one to pull up a web page where configurations can be mod-
ified dynamically. Again, these may not show the complete
set of configuration options that are available. There may
also be an API to allow programmatic access to an internal
memory structure (such as the hash table in Firefox). This
should be the ground truth of what preferences are set at any
point in time, but it will not contain the hidden preferences.

Static View 

Runtime Access 
User%Manual%

Preference%Menu%%

External Control 

Preference%Files%

Source%
Code%

Database%or%
Memory%

1 
Database%

Specialty%Tools%

2 

3 

Figure 2: General view of configuration layers

Suppose instead of using the menus or preference files, we
want to extract the preferences from the code itself, which
also helps to build a mapping between the configuration
space and code. Rabkin et al. [23,24] presented techniques to
statically analyze Java programs with JChord. Upon study-
ing their work in more detail, we find that it does not directly
apply to a system like Firefox. First, it assumes a single pro-
gramming language (Java); second, they assume all of the
preference manipulation code exists as (name, value) pairs
and is found in a single class; and finally, they assume that
configuration manipulation methods start with get or set.

As shall see, these assumptions do not hold for any of the
applications we studied. For instance there are instances in
Firefox where the preference code includes JavaScript and
other languages such as the markup language XUL. We see
instances where the Javascript API is able to query and
update a preference, however, it uses the XUL code as a
reference to the given preference name (binding it to a user
interface element). We also see preference code that is not
using the (name, value) pair mechanism but instead uses
references, macros, or member fields to refer to the prefer-
ence name. Another issue that we have encountered is that
the API method names of Firefox do not always start with
get or set. We need more different techniques if we plan to
extract all of these configuration options from the code.

Finally, if we are concerned with knowing the current state
of the configuration space at some point in time, we need a
technique that captures an accurate configuration snap-
shot at runtime. Indeed it may not be straightforward to
get this information from the system. In some of the ap-
plications we have studied (Firefox and LibreOffice), when
the user modifies a preference value dynamically through
the option menu, the change is reflected immediately in the
dynamic memory and preference files. However, in our in-
dustrial application, the change made by the user will be
stored temporarily and the new preference will take place
on the next startup. Therefore the running configuration
and the one reflected in the persistent memory after the ap-
plication closes may be inconsistent.

Faced with the complexity that we have described infor-
mally so far, we want to quantify how often we see these
problems with the aim of developing a generic model of
how modern highly-configurable software is structured and
manipulated. We also want to know if there is a ground
truth for the configuration model and dynamic configuration
states in modern configurable systems. We next present a
case study that we have developed for this purpose.

3. CASE STUDY
Our study has two main objectives. First, we want to

quantify the complexity of the configuration space and what
mechanisms are used to define and manipulate this space.
Second, we want to understand what are the challenges that
we will face as we develop configuration-aware testing and
debugging techniques. To address these issues we will center
our study around answering the following research questions.
RQ1: What is the complexity of the configuration space in
modern configurable software systems?
RQ2: How are configuration options structured, changed
and accessed by the user in these systems?
RQ3: Are the selected configuration options synchronized
between the different parts of the system and throughout the
lifecycle of program execution?

3.1 Software Subjects Studied
We have selected three different software systems to study.

The first is a large real-time embedded software system de-
veloped at ABB (called ABBc hereafter). ABBc has ap-
proximately 10 Million lines of code, is highly-configurable,
and has more than 58 modules; each module defines a sub-
system that implements a different set of functionality of the
system. The second subject, Firefox [19], is an open source
web browser which works on multiple operating systems and
has over 300 Million users worldwide and over 9.6 Million



lines of code. The third subject is LibreOffice. It is an open
source office productivity suite consisting of a word proces-
sor, spreadsheet application, presentation tool, drawing ap-
plication, math formula tool and database [9]. LibreOffice
has 6.8 Million lines of code and 25 Million users worldwide
estimated by The Document Foundation in 2011 [27]. We
believe that these subjects are different from each other in
functionality and in development style, yet they are all large,
highly-configurable, and used in a production environment
by a large pool of users.

3.2 Study Design
To answer our research questions, we collect configura-

tion information from both a static and dynamic perspec-
tive on each system. We manually study all artifacts that
are publicly available to users, including documents (e.g.,
user manuals and online help pages), software option menus
on the user interface, preference files and source code. We
also utilize tools or APIs that have been provided to pro-
grammatically manipulate internal data structures that hold
configuration information. For ABBc we have a user man-
ual that is written for those who will modify and change
preference files. In addition, we have asked questions of de-
velopers to confirm our assumptions. In Firefox we utilize
the source code, examine the internal dynamic data struc-
tures via an API call when the application is running, as
well as study the about:config page (a utility for modify-
ing configurations). We also study the Options menu, the
SQLite database that holds page specific preferences, and
online documentation. For LibreOffice, with the help of on-
line documentation, we study the preference files and use
an API to connect to the dynamic data structures when
the program is running. To answer RQ1, we calculate the
ABBc configuration space based on the user manual and we
calculate the configuration space for Firefox and LibreOf-
fice through a program we wrote to query the dynamic data
structures at runtime.

When we collect the configuration information, we make
some assumptions. First, constraints between options are
ignored. We realize that this might over approximate the
configuration space slightly, but extracting the exact con-
figurations options may not be feasible without in-depth
knowledge of each system. Second, the plug-ins (add-ons)
are not included in our calculations. In Firefox and Libre-
Office, we build clean versions of the system from source
code for study. Any default plug-ins that come with those
will have their configuration options included, however no
additional plug-ins are enabled. To calculate the number
of values associated with an option, we have detailed infor-
mation for many of the configuration options in the ABBc

manual. However, when they are not available, and for Fire-
fox and LibreOffice, we use a set of rules to come up with
a small set of categories. For Boolean configuration options
we use true or false. For integers we use a ‘default value’,
a ‘non-default legal value’ and an ‘illegal value’, resulting in
3 values. For strings we use ‘no string’, an ‘empty string’
and a ‘legal string’, again resulting in 3 values. In ABBc we
have some strings with constraints. For these we use 4 values
by adding an ‘illegal string’. This partitioning may under-
estimate the true configuration space, (it is a conservative
model), but it is consistent with prior work [5].

For RQ2 and RQ3 we analyze the systems further and
experiment with the various ways that one can modify con-

figurations when the system is not running. We also analyze
what happens if configurations are modified while the pro-
grams are running as well as what occurs with the changed
configuration options during startup and shutdown. We ex-
amine some of the preference setter code and also look for
hidden preferences that may not have been exposed earlier.
We look at both menu access as well as file access. We also
use the specialized tools such as the about:config to inter-
face with Firefox and the ABB tools (denoted as ABBa and
ABBb) to interface with ABBc.

3.3 Threats to Validity
As with any study there are threats to validity which we

document here. First, we have only studied three software
systems. While we believe they are different enough (one is
an industry application while two are open source applica-
tions with different sets of developers) we can not be sure
that our results will generalize to all configurable applica-
tions. Our second main threat is that we are not developers
of these systems so we have relied on the documentation and
code to extract the information that we need. With ABBc

we were able to confirm our questions with developers. In
the Firefox and LibreOffice environment we do not have this
as a source of validation. But we used third party APIs that
are commonly used to interact with the configuration envi-
ronments and made an effort to validate our result internally.
We have made the tools we used to query Firefox and Libre-
Office available online as well as the artifacts that we have
obtained to reduce this threat. Finally, we could have mea-
sured different elements for this study, but feel that the set
of metrics we collected supports our research questions.

4. RESULTS
We now present our results for each of the three research

questions. Supplemental data for the open source applica-
tions (and our tools for gathering the data) can be found
on our associated website (see http://cse.unl.edu/~myra/

artifacts/SEIP-2014/).

4.1 RQ1 Configuration Complexity
To answer RQ1, we turn to Tables 1, 2 and 3. Table 1 pro-

vides the basic statistics for our applications. It first shows
the operating system and versions of the two open source
applications. We then list the primary languages that are
used in each application. We show all languages that make
up at least 1% of the code. We leave out markup languages
such as XML or XUL. All three applications consist of at
least two languages. Firefox has the most with C++, C,
JavaScript, Python, Assembly and some shell script. Libre-
Office has both C++ and Java. ABBc has a mixture of
three languages, C++, C and C#. We also list the number
of preference files that are used to store the current set of
preferences and that are read at startup. As we see, this
ranges from 6 files in ABBc to 193 in LibreOffice (there are
six preference files in ABBc, but we were unable to access
one of them, so all of the computation that follows uses only
five files). Finally, we list the total numbers of unique pref-
erences that we counted in each of these applications. This
ranges from 524 in ABBc to 36,322 in LibreOffice.

We next look at Tables 2 and 3. We show a breakdown
of the configuration options by the data types and number
of values associated with each type. Table 2 has data for
ABBc and Firefox. As we can see, we have only three types



Table 1: Quantifying number of preference files and preferences of ABBc, Firefox and LibreOffice
ABBc Firefox LibreOffice

Operating System Embedded System Ubuntu 12.04 Ubuntu 12.04
Version - Mozilla Firefox 27.0a1 LibreOffice 4.0
LOC (M) 10.0 9.6 6.8

Primary
Languages

C++(3.7%),
C(29.6%),C#(8%)

C++(41%),C(21%),
JavaScript(16%),Java(3.1%),

Python(2.7%), Assembly(1.2%),
Shell script(1%)

C++(82%),
Java(6%)

Total Pref Files 6 11 193
Total Prefs 524 1957 36322

Table 2: Categorization of configuration space for ABBc and Firefox. The total number of preferences are
shown as cn where c is the cardinality of the preference (number of values) and n is the number of times
we have this cardinality). We have combined like cardinalities together therefore the total boolean values for
example may include some from the others category.

Types ABBc Firefox
Boolean (2) 92 846
Integer (3) 271 517
String (3) 27 594
String with condition (4) 110 –
Others 24 –

Total 2963303411464718391161181 284631111

Table 3: Categorization of the configuration space for LibreOffice broken down by module
Types Writer Calc Impress Draw Math Database Others Total
Boolean (2) 201 58 69 44 77 44 3940 4433
Integer (3) 157 43 26 22 110 15 5087 5460
Others 298 70 32 3 141 167 25718 26429
Total 22013455 2583113 269358 244325 2773251 2443182 23940330805 24433331889

in Firefox resulting in 846 boolean options and 1,111 options
of either integer or string, each with three values. The total
configuration space is equal to 2846 × 31111. ABBc has a
variety of cardinalities for its configuration options. We have
a more exact model due to better documentation. Our total
configuration space for this application is 6.46× 10259.

Finally we look at Table 3 which shows the configuration
options in LibreOffice broken down by individual modules
within the suite of tools. This is based on the hierarchical
path used to display the configuration option name. For
instance all of the preferences under Writer have the prefix
org.openoffice.Office.Writer. We do not believe that all
36,322 would be used together in any test or debug model.
Instead one would test an application such as Writer indi-
vidually. Although we can identify which preferences be-
long to specific applications such as Writer or Calc, there
are some categories such as UI which may be shared among
applications. These all fall into the Others category. The
complete categorizations are contained on our website.

ABBc has preference files that contain additional infor-
mation not found in the open source applications. This is
because it is an embedded system with configuration op-
tions that can be customized for different drivers or ports.
The number of devices and ports is open ended. The two
additional pieces of information in these preference files are
category and instance. Certain preferences are grouped into
a category, and for each category we have one or more in-
stances that consist of the same set of preferences. Each
category may contain multiple instances, therefore one pref-
erence can appear multiple times. To understand this better,

we can consider a situation where each instance is associated
with a specific hardware or virtual device. Some devices are
in the same category, thus have the same set of preferences,
however the device that is being controlled differs.

An example of a snippet of the ABBc preference file is il-
lustrated in Figure 3 (the names are changed for proprietary
purposes). There are five options in this figure (bold fonts):
Name (string), Count (integer), Unit (string), Length
(integer), and Status (boolean). Name and Count are
grouped under CATEGORY A, while Unit, Length, and Sta-
tus are grouped under CATEGORY B. There are three instances
in CATEGORY A: in the first instance (line 3), the Name is
assigned with value x and Count is assigned with 2 ; in the
second instance (line 4), the Name is assigned with y and
Count is assigned with 5 ; in the third instance (line 5), the
Name is z and Count is the default value.2 Similarly, there
is one instance in CATEGORY B (line 8): the option Unit is
assigned with X, the Length is assigned with 10, and the
Status is assigned with ON.

Table 4 shows the number of configuration options grouped
by categories and the number of categories for each prefer-
ence file. In this paper, when we compute the configuration
space shown in Table 2, we made a conservative assump-
tion that all options will appear a single time (regardless of
instances), to make it in consistant with other systems.

2The ABBc user manual states that “if the option is as-
signed the default value, then it will not be listed in the
configuration file” and this is why the third instance only
has one option explicitly written.



1.  #$

2.##CATEGORY#A:$

3.$$$$'Name$“x"$'Count$“2"$

4.$$$$'Name$"y"$'Count$"$5"$

5.$$$$'Name$"z"$$

6.$$$$$#$

7.$CATEGORY#B:$

8.$$$'Unit"$X"$'Length/"10"$'status$“ON"$

Figure 3: Example of ABBc preference file

Table 4: Number of options grouped by categories
in ABBc

Preference Number of Number of
Files Categories Options
File 1 3 26
File 2 11 50
File 3 10 78
File 4 7 22
File 5 39 348
Total 70 524

4.2 RQ2 Configuration Access
We begin answering RQ2 by examining the structure of

one of our open source systems, Firefox. Figure 4 shows
this schematically. In this figure there are a number of pref-
erence files (both user and default) that contain values for
specific preferences. During the application startup, the de-
fault configuration options are read (there are 1932 of them),
and after that, the user preferences are read (there are 50 of
them initially). These are read by the preference modules.
The user can modify these on disk directly if they under-
stand the format. The next time the application opens,
these files will be read (assuming that they have not been
overwritten in the meantime – see RQ3 for a discussion of
that mechanism) and the preferences will be activated. The
user can also open Firefox and use the about:config web-
page to control (or look at) the preferences. If a user modifies
a preference in the about:config it will be written to the
user preference file and be set via the preference modules in
the code. Additionally the user can go through the options
menu. This contains only a subset of the full set of possi-
ble options, only 126 out of the 1957 (calculated in Table
1). We do not quantify (or discuss) the Add-on configura-
tion options in this paper, but these are also manipulated
through a menu. Finally, there is an SQLite database which
contains page-specific option settings for the browser (e.g.
if a user zooms in on a particular website, this information
will be stored for the next time they open that site).

The preference modules are accessible through a set of
preference APIs. The APIs are used to interface with a
dynamic hash table which contains all active configurations
when an application is running. There is a 1 to 1 mapping of
the preference files to the hash table, but an N to 1 mapping
of the menu items. These are used as variables in the code
and several names may map to the same individual option in
memory. Finally the code itself (program modules) contain
the ground truth for the configuration space. We have dis-
covered several options in the code that are hidden. These
are options without default values that can be set if a user

SQLite'
DB'

Hash'Table'

SQLite'
Modules'

Page7specific'prefs'
e.g.'zoom7in/out,'image'loading'

Preferences'
Modules'

1:1'

1:N'

1:N'

1:1'

N:1'

N:1'

Program'
Modules'

Hidden'
Prefs'

N:1'

!!!!!!!!!!!!

User 

about:config'
Page' Pref'APIs'

Pref'Files'
(user+default)'

OpMons'
Menu'

Add7ons''
OpMons'Menu'

Mapping'

Workflow'

Figure 4: Firefox configuration structural diagram

knows about them, but which do not appear in our results
for RQ1 since they are not in the hash table or preference
files unless explicitly set by the user.

We have analyzed the user interface (UI) source code of
the Firefox option menu and retrieved 126 preferences that
are bound to the option menu UI elements. Listing 1 shows
an example of binding the preference browser.startup.page,
(which specifies the start-up page Firefox opens), to a drop-
down menu list in the option menu. Thus only 6.4% of the
total preferences exist in the option menu in Firefox.

We note that both the ABBc and LibreOffice systems
have similar structures, therefore, we do not show them all
here, but an extraction of the general structure is illustrated
in Figure 2 and introduced in Section 2.

We next investigate how configuration values are read in
the code. First, we take a look at the APIs used to access
the configurations in the code. In Firefox, the return value is
almost always passed by reference. For example, the signa-
ture of a boolean preference access functions from the source
file prefapi.h under /modules/libpref/src is shown in Listing
2. As we can see, the configuration option value return val is
passed as a pointer in the formal parameter list. The func-
tion returning value (i.e., nresult) is just an binary indicator
of whether the actions defined in this function succeed or
fail. This prevents us from using the techniques developed
by Rabkin et al. [23,24] because the preference type cannot
be inferred by tracking return value types.

// main.xul
<preference id=”browser.startup.page”

name=”browser.startup.page” type=”int”/>
...
<menulist id=”browserStartupPage”

preference=”browser.startup.page”>
<menupopup>
<menuitem label=”&startupHomePage.label;”

value=”1” id=”browserStartupHomePage”/>
<menuitem label=”&startupBlankPage.label;”

value=”0” id=”browserStartupBlank”/>
<menuitem label=”&startupLastSession.label;”

value=”3” id=”browserStartupLastSession”/>
</menupopup>

</menulist>
//main.js
let startupPref =

document.getElementById(”browser.startup.page”);
...
startupPref.updateElements();

Listing 1: Setting Firefox preferences using XUL



nsresult PREF GetBoolPref(const char ∗pref, bool
∗return val, bool get default);

Listing 2: Return value is passed by reference

Second, the preferences are accessed via multiple program-
ming languages. The Listing 1 and 3 show two examples of
the Firefox source code interfacing with the preference sys-
tem via XUL and JavaScript respectively. The JavaScript
performs most of the manipulation, but the XUL code in-
terfaces and dereferences the preference name.

// nsBrowserContentHandler.js
var choice = prefb.getIntPref(”browser.startup.page”);
// nsBrowserGlue.js
Services . prefs . setIntPref (”browser.startup.page”, 3);

Listing 3: Setting Firefox preferences using
JavasScript

Third, the preference name can be in various forms when
passing to preference APIs. The name of the preference is
usually passed as the first parameter to the preference APIs.
Listing 4 shows a few examples of passing the preference
name as a string, a variable, an object macro, a function
macro, or a class member.

// String
rv = mPrefBranch−>GetBoolPref(

”autoadmin.append emailaddr”, &appendMail);
// Variable
prefBranch−>GetIntPref(

kCookiesLifetimeBehavior, &lifetimeBehavior);
// Object macro
rv = branch−>GetIntPref(

DISK CACHE CAPACITY PREF, &capacity);
// Function macro
rv = prefs−>GetIntPref(

HTTP PREF(”connection−retry−timeout”), &val);
// Class member
rv = prefBranch−>GetBoolPref(

externalProtocolPref.get() , &externalProtocol);

Listing 4: Different types of API preference name
parameters

Finally, we show examples of hidden preferences. In the
String example in Listing 4, the preference
autoadmin.append emailaddr appears in the source code, but
it does not exist in any preference files unless added by the
user.

Preferences shown in Listing 5 are some other examples
of hidden preferences from Firefox source code. Our config-
uration space analysis (RQ1) misses these preferences. We
do not know how many exist in Firefox.

pref .browser.homepage.disable button.bookmark page
pref .browser.homepage.disable button.current page
pref .browser.homepage.disable button.restore default

Listing 5: Hidden preferences

We also investigate how configuration values are read in
the code in ABBc. First, there is a configuration manager
class (written in C) that reads the values at different levels:
it may read values of a single preference, it may read a single
instance that contains a couple of preferences, or it may read
all instances that under the same configuration category.

Just like in Firefox, all these values are passed by reference.
Second, the name of the preferences can be in various forms,
such as string, variable, and macro. Finally, there are several
configuration options that are accessed in the code but not in
the document (hidden preferences) and there are also some
configuration options that are in the document but are never
read in the code (dead preferences).

Table 5: Number of configurations accessible at dif-
ferent layers

System Static View Extern Control
Tab. 1 Code Manual Files Menu

ABBc 524 428 + 166 524 < 524 < 524
Firefox 1957 > 1957 NA > 1957 126

Table 5 summarizes the number of configuration options
that are accessible at different layers (defined in Figure 2).
The first column (Table 1) shows the values we obtained for
RQ1. The last column (Menu), is used to represent con-
figuration control via menu in Firefox and via ABBa and
ABBb in ABBc. For ABBc there are (428 + 166 = 594) op-
tions accessed in code. 428 options are also described in the
manual, but 166 options only appear in code (hidden pref-
erences), and (524 − 428 = 96) options only appear in the
document (dead preferences). This shows that the document
is not updated accordingly as the code is changed, although
the document is a very important artifact that tightly con-
nects the system with customers. We do not have accurate
numbers of the preferences accessible by external control el-
ements, but quote the manual which says “if the option is
assigned the default value, then it will not be listed in the
preference file.”; there are also preferences not in ABBa or
ABBb given that “some configurations have to be changed
in preference files”.

4.3 RQ3 Configuration Synchronization
To answer RQ3, we map the lifecycle of a running appli-

cation to understand when and where its configurations are
synchronized between its layers. We model three distinct
phases, startup, runtime, and shutdown. Figure 5 shows the
behaviors of Firefox and LibreOffice, and Figure 6 shows
the behaviors of ABBc. The numbers on the leftmost side
specifies the number of preference files in different groups of
files. Solid arrows represent direct connections, while dashed
arrows indicate the need for a mapping/traceability.

In all three systems at startup, the configurations are read
from persistent storage (configuration files) and loaded into
memory. There is a specific order in which these are loaded.
If the same configuration options are repeated, set to dif-
ferent values, the last one read will be the one which holds.
While the applications are running, a user can modify the
configuration files directly. This is not immediately reflected
in the dynamic memory. If a failure occurs at this point the
persistent memory is out of sync with the dynamic. In all
three systems the user can also dynamically modify the con-
figurations while the application is running. In Firefox and
LibreOffice these will take effect immediately and be written
back to the preference files. In ABBc the dynamic memory
is not updated. The changed configurations are held in tem-
porary memory and take effect at the next startup.

On shutdown, in Firefox and LibreOffice the dynamic
memory overwrites the current preference files before the



Start-up Running Shut-down 

Schema 

Config 

Admin 

Config 

User 

Config 

Option  

Menu 

Memory 

Memory 

Schema 

Config 

Admin 

Config 

User 

Config 

Memory 

Default 

Prefs 

User 

prefs 

Option  

Menu 

Memory 

Memory 

Memory 

about: 

config 

read 

read 

write 

write 

modify 

modify 

LibreOffice  

Prefs Lifecycle 

Firefox Prefs  

Lifecycle 

SQLite 

Schema 

Config 

Admin 

Config 

User 

Config 

            

            

1 

1 
Permanent 

User Prefs 

Default 

Prefs 

User 

prefs 

Permanent 

User Prefs 

Default 

Prefs 

User 

prefs 

Permanent 

User Prefs 

User 

User 

1 

9 

19 

173 

Figure 5: Firefox and LibreOffice lifecycle diagram

application closes. In Firefox the user preference file is over-
written, but the default ones are not. This means that if a
user modified the user preference files during runtime, those
changes will never be seen (not even on the next startup).
However, if they modified other preference files they will
appear on next startup.

ABBc has a more complicated“restart”behavior described
next. When the system is restarted normally (denoted as
start-I): the current system will be stopped. All system pref-
erences will be saved. Restarting this way will activate any
configuration changes. A second option is to restart and
select another configuration (start-II). In this case the cur-
rent system will be stopped. All system preferences will be
saved, so that the system state can be resumed later. The
last restart is to restart and return to default settings (start-
III). After restart, the system state will be resumed but any
changes done to system preferences will be lost. Instead, sys-
tem preferences are read from the originally installed system
on delivery.

Furthermore in ABBc there are three sets of preferences:
active (loaded by default), backup, and default. During
startup, instead of loading different sets of preferences in
order (as happens in Firefox and LibreOffice), the system
only loads one set of preferences into memory, based on the
type of restart. During normal start and start-I, the ac-
tive preferences are loaded, during start-II, a selected set of
previous backup preferences are loaded, and during start-
III, the factory default preferences are loaded. During run
time, the users can make configuration changes in preference
files directly, or through ABBa or ABBb, but changes will
not take effect until a restart. The changes will be stored
temporarily in a memory different from the active prefer-
ences. Users can also save the currently active preferences
as a backup. Finally, all changes made at the runtime will
be written back into the active preference files when the sys-
tem is normally shutdown or restarted in I or II. Note that
if the users select a start-III, all changes will be lost.

5. LESSONS LEARNED
In this section we summarize the implications and lessons

learned from our study. The first two lessons learned are
geared towards practitioners since they reflect the state-of-
the-art. The last two provide a roadmap for researchers who
plan to develop new tools and techniques for configuration-
aware testing and debugging.

Start%up(
(normal,(start%I,(start%II,(start%III)(

(

Running( Shut%down((
(normal,(start%I,(start%II,(start%III)(

(
Ac:veUser(

Prefs(

ABB_a(

Memory(
Memory(

Memory(

ABB_b(

normal,(start%I(

modify(
ABB_c(Prefs((
Lifecycle(

Ac:veUser(
Prefs(

!!!!!!!!!!!!

(
BackupUser(

Prefs(

(
Default(
Prefs(

(
BackupUser(

Prefs( (
Default(
Prefs(

(
Ac:veUser(

Prefs(

(
BackupUser(

Prefs(

(
Default(
Prefs(

backup!

NOT$for$$
start+III$

(

Start%III(

Start%II(

6(

6(

6(

Figure 6: ABBc lifecycle diagram�



�
	1. Configuration Modeling Should Merge Multiple

Layers

We return to our first question of how one can model the
full configuration space when performing testing and debug-
ging. Although the application code is the ground truth,
the maintenance engineers may not always have access to
code. If instead we use the user manuals/documentation, we
most certainly miss out on some configurations. Moreover,
in the applications studied, the menu on the user interface
contained only a small subset of the configuration options.
While these might contain the most widely used preferences,
they do not provide a true indication of the real configura-
bility of a system. Finally, we can use the persistent configu-
ration preference files, but we must first understand how (in
what order) and when these are activated in the dynamic
system. Two issues that have arisen during our analysis
are those of hidden preferences and dead preferences. These
constitute a small part of the configuration space model,
but one should be aware of their potential existence. Given
the results of our study, we believe that to obtain an accu-
rate model of the configuration space one should consider
and merge multiple artifacts which includes preference files,
menus and documentation. Additionally, since documenta-
tion is the primary artifact a user would read, it should be
updated as the design and code changes in a timely man-
ner, particularly when it comes to system testing or other
configuration related tasks.�� ��2. Configuration Traceability is a Necessity

Given the variety of places that configurations are ac-
cessed and mentioned, it seems that the task of simply set-
ting a configuration option requires deep knowledge of the
application. If we return to our example, Firefox, one needs
to know the mapping of menu names to preference variable
names to modify them automatically. Furthermore we have
seen (both in Firefox and ABBc), a many-to-one mapping
of variables in the code and preference files and dynamic
memory. Providing traceability mapping between elements
of the configuration manipulation mechanism are essential
to making configuration-aware techniques work.�



�
	3. Analysis Tools Need to Cross the Programming

Language Barrier

As we have seen, the current state of research in anal-
ysis for extracting configurations from code expects a sin-



gle programming language and single class files where the
configuration information code (such as setting and getting
configuration) lies. Yet this is not realistic for the large scale
subjects that we have studied. Our configuration options are
manipulated and referenced across programming language
barriers and in multiple modules. We need, therefore, new
analysis techniques that cross these boundaries, can handle
aliasing, and that use additional heuristics to identify the
actual getter and setter code.�



�
	4. Configuration State Capture or Approximation

Techniques are Needed

As we argued at the start of this paper, we need a way
to capture the active configuration when the system fails so
that we can reproduce and debug the failing test case. Each
of the three systems we studied, allows the user or mainte-
nance engineer to modify the configurations both externally
or internally during runtime. While our open source ap-
plications update the memory and files immediately, in our
industrial application, the configuration is not activated un-
til possibly startup (with the exact behavior dependent on
the type of reboot selected). Even if we understand how the
configuration manipulation works, there is the possibility of
race conditions in all of the applications, depending on the
exact timing of the configuration modification and failure.
It is also possible to make changes to external files for mod-
ifications at startup, yet these may be overwritten during a
normal shutdown. In order to extract the ground truth of
the configuration at failure, monitors are needed that cap-
ture this information. But these may incur overhead and
cause concerns for privacy. Alternatively, we know that the
persistent memory contains a large portion of the correct
configuration space, so algorithms that work from this point
and search close by may be useful for reproducibility. Re-
search has shown that failures tend to have feature local-
ity [11], so it is possible we can leverage some of those ideas
for this work.

6. RELATED WORK
We provide a short overview of several areas of research

that are closely related to this work. The role of software
users and essential information in bug-fixing has been em-
phasized in several studies [1,2,25,31]. Bettenburg et al. [1]
found that there is usually a strong mismatch in bug reports
between what developers need to reproduce and fix a bug
and what is provided by users. Herbold et al. [13] developed
a tool to capture usage logs for replaying bugs. Other work
tries to reproduce field failures [3, 14], however the focus is
on using the call graph. None of this work tries to capture
the software configuration used during the failure.

Several researchers have been focusing on extracting con-
figuration options from code. Rabkin et al. [23, 24] propose
a method to statically detect system configurations, but as
already mentioned this analysis works on a single language
(Java) and assumes that all configurations are contained in
a single class. Yin et al. [29] conducted empirical studies to
understand the configuration errors in commercial and open
source systems. Zhang et al. [30] have proposed a technique
to diagnose crashing and non-crashing errors related to soft-
ware misconfigurations. Again their tool only works on a
single language (Java) and the configurations they study are
simple. We look at more complex configuration spaces with
multiple languages and multiple preference layers, etc.

From a traceability perspective, there has been a large
body of research [4, 7, 12, 16–18], but most focuses on the
traceability of requirements, architecture and quality at-
tributes. Recent research has looked at extracting trace-
ability for feature models (a type of configuration model
space) [8,15], but this has been achieved only through docu-
mentation, rather than by examining the multiple layers of
the software preference space. We believe some of this work
can be leveraged for configurability.

Finally, there has been a large body of work in the testing
community that demonstrates the need for configuration-
aware testing techniques [20–22, 28] and proposes methods
to sample and prioritize the configuration space [5,10,26,28].
There has also been recent work that uses configurability as
a way to avoid failures through self-adaptation [11]. But all
of this work assumes that the configuration model is known
(or is somehow extracted).

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a case study to evaluate

the complexity that configurability adds for developers and
testers. To do so we have studied three highly-configurable
software systems. We have shown that our open source and
industrial applications all have similar mechanisms for main-
taining and modifying configuration options and presented
an abstraction of this mechanism. We also see that there
is no single (easily available) ground truth to determine the
full possible configuration space. To this end we recommend
merging multiple sources, developing cross-language anal-
ysis tools and providing traceability between the different
configuration layers. We have also seen that the dynamic
behavior can be difficult to understand, therefore we need
to be cognizant of the lifecycle of the application to under-
stand our exact configuration state during debugging. In
future work we plan to implement some configuration merg-
ing techniques, and traceability links between the various
layers. We also plan to examine a larger variety of highly-
configurable systems to understand if the same model holds.

8. ACKNOWLEDGMENTS
This research was supported in part by the National Sci-

ence Foundation awards CCF-1161767, CNS-1205472, and
the Air Force Office of Scientific Research award FA9550-
10-1-0406.

9. REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss,

R. Premraj, and T. Zimmermann. What makes a good
bug report? In International Symposium on
Foundations of Software Engineering, FSE, pages
308–318, 2008.

[2] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: improving
cooperation between developers and users. In
Conference on Computer Supported Cooperative Work,
CSCW, pages 301–310, 2010.

[3] J. Clause and A. Orso. A Technique for Enabling and
Supporting Debugging of Field Failures. In
International Conference on Software Engineering,
ICSE, pages 261–270, Minneapolis, Minnesota, May
2007.



[4] J. Cleland-Huang, J. H. Hayes, and J. M. Domel.
Model-based traceability. In ICSE Workshop on
Traceability in Emerging Forms of Software
Engineering, TEFSE, pages 6–10, 2009.

[5] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
IEEE Transactions on Software Engineering,
34(5):633–650, 2008.

[6] M. B. Cohen, J. Snyder, and G. Rothermel. Testing
across configurations: implications for combinatorial
testing. SIGSOFT Software Engineering Notes,
31(6):1–9, 2006.

[7] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and
D. Poshyvanyk. Enhancing software traceability by
automatically expanding corpora with relevant
documentation. In International Conference on
Software Maintenance, ICSM, pages 22–28, Sep 2013.

[8] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher,
J. Cleland-Huang, and P. Heymans. Feature model
extraction from large collections of informal product
descriptions. In The Joint Meeting on Foundations of
Software Engineering, ESEC/FSE, pages 290–300,
2013.

[9] LibreOffice. http://libreoffice.org/, 2013.

[10] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter.
Feedback driven adaptive combinatorial testing. In
International Symposium on Software Testing and
Analysis, ISSTA, pages 243–253, 2011.

[11] B. Garvin, M. B. Cohen, and M. B. Dwyer. Failure
avoidance in configurable systems through feature
locality. In J. Camára, R. Lemos, C. Ghezzi, and
A. Lopes, editors, Assurances for Self-Adaptive
Systems, volume 7740 of Lecture Notes in Computer
Science, pages 266–296. Springer Berlin Heidelberg,
2013.

[12] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grunbacher, and G. Antoniol. The quest
for ubiquity: A roadmap for software and systems
traceability research. International Requirements
Engineering Conference, RE, 0:71–80, 2012.

[13] S. Herbold, J. Grabowski, S. Waack, and U. Bünting.
Improved bug reporting and reproduction through
non-intrusive GUI usage monitoring and automated
replaying. In International Conference on Software
Testing, Verification and Validation Workshops,
ICSTW, pages 232–241, 2011.

[14] W. Jin and A. Orso. BugRedux: reproducing field
failures for in-house debugging. In International
Conference on Software Engineering, ICSE, pages
474–484, 2012.

[15] L. C. Lamb, W. Jirapanthong, and A. Zisman.
Formalizing traceability relations for product lines. In
ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE, pages 42–45, 2011.

[16] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Recovering traceability links in software artifact
management systems using information retrieval
methods. ACM Transactions on Software Engineering
and Methodology, 16(4), Sept. 2007.

[17] J. I. Maletic and M. L. Collard. TQL: A query
language to support traceability. In ICSE Workshop
on Traceability in Emerging Forms of Software
Engineering, TEFSE, pages 16–20, 2009.

[18] A. Marcus, X. Xie, and D. Poshyvanyk. When and
how to visualize traceability links? In ICSE Workshop
on Traceability in Emerging Forms of Software
Engineering, TEFSE, pages 56–61, 2005.

[19] Firefox. http://www.mozilla.org/en-US/firefox/,
2013.

[20] X. Qu, M. Acharya, and B. Robinson. Configuration
selection using code change impact analysis for
regression testing. International Conference on
Software Maintenance, ICSM, 0:129–138, 2012.

[21] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: An empirical
study of sampling and prioritization. In International
Symposium on Software Testing and Analysis, ISSTA,
pages 75–85, July 2008.

[22] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial
interaction regression testing: A study of test case
generation and prioritization. In International
Conference on Software Maintenance, ICSM, pages
255–264, Oct 2007.

[23] A. Rabkin and R. Katz. Static extraction of program
configuration options. In International Conference on
Software Engineering, ICSE, pages 131–140, 2011.

[24] A. Rabkin and R. H. Katz. Precomputing possible
configuration error diagnoses. In Automated Software
Engineering, pages 193–202, 2011.

[25] S. K. Sahoo, J. Criswell, and V. Adve. An empirical
study of reported bugs in server software with
implications for automated bug diagnosis. In
International Conference on Software Engineering,
ICSE, pages 485–494, 2010.

[26] C. Song, A. Porter, and J. S. Foster. iTree: efficiently
discovering high-coverage configurations using
interaction trees. In The International Conference on
Software Engineering, ICSE, pages 903–913, 2012.

[27] The Document Foundation.
http://blog.documentfoundation.org/2011/09/28/,
2011.

[28] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, Jan 2006.

[29] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N.
Bairavasundaram, and S. Pasupathy. An empirical
study on configuration errors in commercial and open
source systems. In Symposium on Operating Systems
Principles, SOSP, pages 159–172, 2011.

[30] S. Zhang and M. D. Ernst. Automated diagnosis of
software configuration errors. In International
Conference on Software Engineering, ICSE, pages
312–321, 2013.

[31] T. Zimmermann, N. Nagappan, P. J. Guo, and
B. Murphy. Characterizing and predicting which bugs
get reopened. In International Conference on Software
Engineering, ICSE, pages 1074–1083, 2012.


