
AutoInSpec: Using Missing Test Coverage to Improve Specifications in GUIs

Myra B. Cohen, Si Huang
University of Nebraska-Lincoln

Department of Computer Science & Engineering
Lincoln, NE 68588-0115

Email: {myra,shuang}@cse.unl.edu

Atif M. Memon
University of Maryland

Department of Computer Science
College Park, MD 20742
Email: atif@cs.umd.edu

Abstract—Developers of a software’s graphical user interface
(GUI) often fail to document the interface specifications.
Without these, models used for automated test generation
and execution remain imperfect and incomplete. This leads
to unexpected behavior that creates unrecoverable situations
for test harnesses, and missed coverage. In this paper, we
present AutoInSpec, a technique to infer an important class
of specifications, temporal and state-based invariants between
GUI events that have been incorrectly modeled. Unlike existing
specification mining approaches that require full execution
traces, or source code, and that mine all invariants, we
simplify the problem. We guide AutoInSpec with coverage
criteria and use a previously developed repair framework that
builds coverage-adequate test suites, removing unexecutable
sub-sequences from consideration. These failing sub-sequences
are input to a logic-based inference engine, armed with known
invariant templates, to obtain the missing specifications. We
validate AutoInSpec on a set of well studied GUI applications.

Keywords-GUI Testing; Specification Mining; Invariants;
Genetic Algorithm; Covering Arrays

I. INTRODUCTION

Absent, incomplete, and incorrect specifications of graph-
ical user interface (GUI) front-ends cause non-trivial prob-
lems for model-based test automation. An unexpected win-
dow, a disabled menu item—while not necessarily a func-
tional bug—will cause an automated GUI-based test harness
to hang or fail, forcing manual intervention and missed
test coverage. Models are needed for high quality system
testing in GUIs, since they guide test generation and ensure
sufficient coverage. Yet techniques that extract these models
use heuristics to approximate the interface behavior – a
tradeoff that enables scalability [1]–[4].

Although testers may be able to refine extracted models,
the information needed for these refinements is not easily
obtainable and often missed. Consider this specification:
“In MS Word for Mac 2011, the ‘Copy to Scrapbook’
menu-item remains disabled until the Scrapbook window is
open and, simultaneously, some copyable object has been
selected.” It is unlikely that we can find documentation that
details the above behavior. Nor will a developer be able
to precisely describe all such GUI behaviors. Consequently,
many model-based testing approaches will over-approximate
the system behavior assuming the menu-item is available

when it is not. End users may take for granted the absence
of such specifications – the interface disables the menu
when unavailable, and the user either notices this state and
infers the infeasibility of clicking on the disabled item,
or ignores it. However, automated test harnesses lack our
human cognitive ability; without precise specifications of
such behaviors, they may not be able to recover from the
unexpected unavailability of GUI actions, and an unantici-
pated dialog box can cause a harness to wait indefinitely if
it is not prepared to interact.

We might turn to automated specification inference; there
has been extensive research on this topic, mining logs and
execution traces [5]–[7], and running test cases to detect
white-box invariants [8]–[10]. But that work is too general
on its own. Specifications output by trace-based inference
techniques are only as good as the traces they consider and
GUIs have an enormous combinatorial space of events. The
number of traces/behaviors is so large that these techniques
will either not scale, or if provided with a small subset of
behaviors, may output incomplete specifications. Suppose a
user can invoke any of the following events on a drawing
canvas in any order: Copy, Paste, Resize, Rotate90, Color,
Erase. The sequence <Rotate90, Color, Copy, Paste> may
encounter different invariants than the sequence <Rotate90,
Color, Paste, Copy>, but we have 36 unique length-two
sequences, over 7,500 unique length-five sequences, and
more than 60 million length ten sequences.

Second, we are interested in system testing, which means
that we may not have full source code (e.g., for GUI
library functions) and cannot use techniques that rely on
instrumentation. Our invariant detection is limited to those
methods which are blackbox.

We can leverage the following insights to refine specifica-
tion inference for improving GUI test models. First, we have
models for GUIs that can be automatically extracted, and are
only interested in inferring those specifications that violate
the model; we don’t need to apply inference algorithms
to the full combinatorial space. Second, if we can use a
systematic test generation technique that covers a broad
(and measured) set of interface behaviors, we can ensure we
identify only the combinations of events that are of interest,
removing many invariants from consideration.

In this paper, we build upon several developments from
our prior work on GUI testing to create a novel technique for
GUI model specification inference and invariant detection
that we call AutoInSpec. AutoInSpec is driven by the use
of combinatorial testing, which forces the execution of all
combinations of events (of a specified arity) in all positions,
meaning we are more likely to find violations of our model
[11], [12]. We use the by-product of test suite repair [11],
which has been used to increase combinatorial coverage of
generated test suites, therefore we do not have to perform
extra work to obtain our invariant input set. The normal
output of test suite repair is a test suite that is coverage-
adequate. AutoInSpec uses only failed sub-sequences (those
missed by the repair), which is a fraction of the size of
the original test suite. It then extracts new specifications
for the model using an off-the-shelf logic programming
environment. Although our prior work suggested a set of
invariants that we might expect to find, these were not
formalized or evaluated against real applications; a step we
aslo take in this paper.

We have validated AutoInSpec on both synthetic programs
and on non-trivial GUI applications with as many as 45K
lines of code. Our results show that we learn some very
interesting invariants, previously unknown to us despite
using the same applications in many prior studies.

This paper makes the following research contributions:
• It presents an inference specification approach for

model based-GUI testing that is based on a systematic
combinatorial exploration of the event-space.

• We have formalized and encoded as logic templates a
class of GUI invariants that are at the same abstraction
level as the user interface, so that they can be easily
evaluated with an off-the-shelf solver.

• We show that a prototype of our approach is feasible on
a set of non-trivial GUI applications, finding previously
unknown invariants in well-studied applications.

The next section presents background and a motivating
example. Section III presents AutoInSpec and formally
defines the invariants. We present a description of our
implementation in Section IV along with a case study and
its results to evaluate our approach in Sections V and VI.
Section VII discusses related literature. Finally, we conclude
and discuss future work in Section VIII.

II. BACKGROUND AND MOTIVATING EXAMPLE

There has been extensive research on developing models
for GUI testing (please see [1] for an overview of the various
models and [2]–[4], [11], [12] for more general information
on GUI testing). In this section, we describe our earlier work
on combinatorial based coverage criteria for fault detection,
[12] because it is the most relevant to this work. Since our
existing techniques at the time resulted in an unacceptably
large number of infeasible test cases, we developed a frame-
work to improve coverage (or repair the test suites) [11]. We

also observed a set of constraints on combinations of events
that we identified in real programs; we formalize these as
invariants in Section III. This prior work, summarized next,
forms the background for our current work.

We use a running example (Figure 1) to help summarize
our prior work. The left part of Figure 1 shows two se-
quences (moving from top to bottom) of events in Paint. The
first sequence begins by choosing the Select All option on
the menu (top-left screen shot). This selects all of the objects
on the canvas which can be seen in the dotted rectangle. If
the user then selects Copy To from the menu, a dialog box
opens (the left-bottom screen shot). The second screen shot
sequence shows Copy preceding Copy To, but no dialog box
appears. This second behavior is, in fact, the more common
of the two, which happens when any event except Select
All directly precedes Copy To. A complete specification for
this GUI should include ‘when Copy To is directly preceded
by Select All, a dialog box will open’. Let us assume, that
this has been missed in the extracted model, and our test
generator/harness is unaware of this invariant.

A. Combinatorial Coverage

For a GUI, G, with a set of events EG, c is a finite
sequence < e0, e1, . . . , ek−1 >, where ei ∈ EG, 0 ≤ i < k,
and k is the length of the sequence. For convenience, we use
l(c) to denote the length of c. We also use cG,k to denote
the set of all such length-k event sequences. For a GUI, G,
Ck is a set of event sequences of the same length k for G.
Formally, Ck ⊆ cG,k.

A covering array (CA(N ; t, k, v)) is an N × k array on
v symbols with the property that every N × t sub-array
contains all ordered subsets of size t of the v symbols at least
once [13]. In other words, any subset of t columns of this
array will contain all t-way combinations of the symbols. We
use this definition of a covering array to define the GUI event
sequences. We view the same event in different positions in
the sequence as different events.

Suppose we want to generate sequences of length four,
and each location in this sequence can contain exactly one
of three events (Copy, Copy To, and Select All). There are
a total of 81 sequences. We can instead sample this system,
including all sub-sequences of shorter size, (length two) as
a CA(9; 2, 4, 3); we have 9 test sequences, and we cover all
2-way combinations in all locations at least once. There are
54 pairs that should be covered in this sample. The strength
of event combinations is t. We set t=2 in the example, and
include all pairs of events between all pairs of locations.

The v symbols are not necessarily the same for each
column; each can have its own (different) v symbols (or
values). One of all ordered subsets of size t of the v symbols
appearing on t of the k columns is called a t-set. The
total number of t-sets for a CA(N ; t, k, v) is

(
k
t

)
vt. Given

the strength t, the number of columns k, and the number

2

Select All followed by Copy To Copy To preceded by any other event 1. Part of Initial Covering Array

No Event Sequences Fail
Point

1 Draw Paste Clear
Select Redo Copy

To Draw Select
All

Copy
To Select Clear

Select 8

2 Select
All

Free
Select Redo Copy

To
Free

Select Redo Select Copy Paste Redo N/A

3 Paste Copy
To Redo Paste Select

All
Copy

To
Free

Select Undo Copy
To

Select
All 6

4 Select
All

Copy
To

Clear
Select

Clear
Select Select Copy Copy

To
Clear
Select Undo Cut 2

5 Copy
To

Clear
Select Undo Copy

To
Select

All Cut Clear
Select Paste Select Clear

Select N/A

6 Copy
To Cut Paste Select

All
Clear
Select

Copy
To Cut Free

Select
Clear
Select

Clear
Select N/A

7 Copy Select
All

Copy
To Select Select Draw Free

Select
Clear
Select Redo Draw 3

8 Redo Draw Free
Select

Free
Select Undo Redo Paste Select

All
Copy

To
Select

All 9

9 Undo Select Select
All

Copy
To

Free
Select

Select
All Undo Select

All
Select

All Paste 4

10 Select Free
Select Copy Select

All
Copy

To
Clear
Select Cut Select

All
Select

All Draw 5

11 Copy Copy Cut Paste Select
All

Copy
To Draw Select

All Copy Paste 7

… … … … … … … … … … ... …

4. Final Missed
t-sets

(Event, Position) pairs

{(Select All, 0),
(Copy To, 1)}

{(Select All, 1),
(Copy To, 2)}

{(Select All, 2),
(Copy To, 3)}

{(Select All, 3),
(Copy To, 4)}

{(Select All, 4),
(Copy To, 5)}

{(Select All, 5),
(Copy To, 6)}

{(Select All, 6),
(Copy To, 7)}

{(Select All, 7),
(Copy To, 8)}

3. New Event Sequences from GA

No Event Sequences Fail
Point

1 Select Select Copy Select
All

Free
Select

Copy
To Undo Clear

Select
Free

Select
Select

All N/A

2 Draw Free
Select Copy Select

All
Select

All Draw Select
All

Select
All

Copy
To Draw N/A

… … … … … … … … … … ... …

2. Initial Missed
t-sets

(Event, Position) pairs

{(Select, 0),
(Select All,3)}

{(Free Select, 1),
(Copy, 2)}

{(Free Select, 1),
(Select All, 3)}

{(Select All, 3),
(Copy To, 4)}

…

Figure 1. Motivating Example

of possible values v, the number of t-sets covered by an
arbitrary M×k array A is called its combinatorial coverage.

Consider the Paint example shown in Figure 1. The set of
11 events of interest is {Draw, Select All, Select, Free Select,
Clear Select, Copy, Copy To, Undo, Redo, Cut, Paste}. The
right part of the figure (1.) shows the initial covering array,
(CA(171; 2, 10, 11)). It has a total of 171 event sequences,
of which 11 are shown; each sequence has 10 events. For
t=2, these sequences have to cover

(
10
2

)
112=5445 t-sets to

satisfy our coverage criteria.

B. Test Suite Repair

When we try to execute all sequences from the covering
array on the GUI, some fail because of the missing specifica-
tion. We see this in Figure 1 (1.) in the column marked Fail
Point. This entry is N/A if the test runs to completion and
the number of the last executable event otherwise. In the first
sequence the test stops running on the eighth event, Copy To,
as it waits for the dialog box to close – an occurrence that
will not happen without previous model knowledge. Some
t-sets are missed due to this and other problems; a few are
shown in the Initial Missed t-sets (2.) part of the figure.

In [11], we developed a framework for repairing test
suites to improve combinatorial coverage. The input to the
framework is the GUI model and an initial set of test
sequences in the form of a covering array. We use a genetic
algorithm (GA) to generate new sequences that increase the
coverage, while avoiding failed sub-sequences.

In Figure 1 (3.), we see some new sequences were
obtained as a result of the GA repair, which covers all the
t-sets that we had missed earlier, with the exception of the

pairs Select All, Copy To in each of the possible consecutive
locations. This results in 8 missed pairs in positions, 0 and
1, 1 and 2, 2 and 3, 3 and 4, ..., 7 and 8. This set of missed
t-sets is shown in Final Missed t-sets of Figure 1 (4.). These
t-sets will never be covered due to the design of the GUI. It
is this insight that helps us to reduce the problem of invariant
detection, focusing only on what has not been covered.

We also created a classification of some types of infeasible
sequences that we observed in several real applications. We
term these event constraints or simply constraints. We sug-
gest four broad categories: disabled, requires, consecutive
and excludes. The Disabled event constraint occurs when an
event is always disabled. The Requires constraint indicates
that some event needs another event to be executed before
it is enabled. The Event Consecutive constraint means that
two events cannot be executed consecutively. Usually, in this
type of constraint, the execution of the first event disables
the second event, making it unexecutable. The Excludes
constraint is similar, however once the first event has been
enabled there is no way to re-enable the second event within
the current group of events. We use these as a starting point
to formalize our invariants in the next section.

III. AUTOINSPEC

We present an overview of AutoInSpec’s process in Figure
2. There are four key steps in AutoInSpec, numbered in
boxes. We begin (#1) with a test suite that is coverage
adequate. The use of a systematic and broad coverage and
sequences which are long enough to expose context [12]
provides our starting point. Since we are forcing all combi-
nations of events up to some strength t, and are doing this for

3

New Sequences

Replayer

GUI

Missing Coverage

!"! !#! $! !"%!

$!

Genetic

Algorithm

!"! !#! $! !"%!

!#! !&! $! !&!
!&! !'! $! !"!
$!

!#! !#!

Coverage-Adequate
Test Suite

!"!%#$%&#$"!"#$'&($
!"!"#$)&#$"!##$*&($$
!"!"#$)&#$"!#(#$+&(
!"!)#$,&#$"!#%#$-&(

feasible/infeasible

!"! !#! $! !"%!

$!

! e1 can follow e2
!  e1 can follow e3
!  …
!  ei can follow ej

!  e1 cannot be first event.
!  …
!  e9 cannot be executed
anytime after e4.

Invariants

Invariant
Detector

Test Suite Repair
1 2 3

4

Figure 2. AutoInSpec: Invariant Inference Process

every position in the sequence, we have confidence that we
are executing a broad range of scenarios. We also know that
the missing coverage is the only coverage that violates our
model; we can assume anything that did not fail is correct.
If some of the test sequences do not execute to completion,
then we pass these to our test suite repair framework (#2),
which tries to complete the missing coverage. Although the
normal output of this stage is a coverage-adequate test suite,
we return only a by-product – the set of event-combinations
that we cannot cover (#3). This is in the form of a list of
t-sets combined with their relative positions in the sequence.
These are then passed to our invariant detection engine (#4)
which suggests the unknown specifications.

We now provide definitions and examples of the invariants
that we have considered in this work. In all our definitions,
k is the length of the sequences, e and its subscripted forms
are events from the event set E, p and its subscripted forms
are integers 0 . . . k − 1.

Our repair framework returns a set, χ, of missed t-sets,
each of the form {(ex1 , p1), (ex2 , p2), . . . , (ext , pt)}, where
1 ≤ t ≤ k, and 0 ≤ p1 < p2 < p3 < . . . pt ≤ k− 1. We use
the notation φ(s) to say that the t-set s ∈ χ was missed.
Definition: disabledAtPosition(Event,Position) invariant. In-
tuitively, this invariant, read as “Event is always disabled at
Position in all sequences” holds if and only if all t-sets that
contain (Event, Position) are missed. More formally,

disabledAtPosition(e, i) iff φ({(e, i)}).
Definition: disabled(Event) invariant. Now, we can define
the disabled invariant in terms of disabledAtPosition.
Intuitively, Event is disabled if and only if all t-sets
that contain it—irrespective of the position of Event—are
missed. Formally,

disabled(e) iff ∀i=0...k−1disabledAtPosition(e, i).
Definition: consecutive(EventSequence) invariant. This in-
variant holds if and only if all t-sets that “contain”
EventSequence, < e1, e2, . . . , et >, are missed. By “con-
tain”, we mean that e1, e2, . . . , et appear in consecutive
positions. Formally,

consecutive(< e1, e2, . . . , et >) iff
∀i¬(disabled(ei)) ∧
∀i=0...k−t−1φ({(e1, i), (e2, i+ 1), . . . , (et, i+ t− 1)})

Definition: excludes(EventSequence, Event) invariant. In-

tuitively, EventSequence, < e1, e2, . . . , et >, excludes
Event if and only if all t-sets in which EventSequence
precedes Event are missed. Formally,

excludes(< e1, e2, . . . , et >, e) iff
(¬(consecutive(< e1, e2, . . . , et >))∧
(∀i¬(disabled(ei))∧
∀i=0...k−t−2∃p(i+ t ≤ p ≤ k − 1)∧
φ({(e1, i), (e2, i+ 1), . . . , (et, i+ t), (e, p)}))

Definition: requires(EventSequences, Event) invariant.
Whenever a t-set that contains Event is not missed, it
is only when Event is preceded by a member of the set
EventSequences. In other words, all other t-sets that
contain Event will be missed. Formally,

requires(SetOfSequences, e) iff
(∀ei∈SetOfSequences¬(disabled(ei)) ∧ ¬(disabled(e)∧
∀{(e1,i),(e2,i+1),...,(et,i+t)}∈(U−SetOfSequences)

φ({(e1, i), (e2, i+ 1), . . . , (et, i+ t), (e, p)}))

where U is the set of all event sequences.

IV. INVARIANT DETECTOR

We use the logic programming language Prolog to imple-
ment our invariant detector and describe its implementation
as such in pseudo Prolog code, but we can use other off-
the-shelf logic engines to achieve the same goal. Using
Prolog gives us certain advantages and makes our code more
readable. First, it is based on the declarative programming
paradigm, we are able to describe what our program should
accomplish—as declarative clauses and facts—rather than
how it should accomplish it. Hence, we are able to cleanly
transcribe the formal definitions into executable code. Sec-
ond, Prolog’s inference engine is based on unification, an
algorithmic process that attempts to find a substitution which
makes two terms the same. As we will demonstrate via
an example, this is a powerful tool. Third, because Prolog
already combines pattern matching with backtracking, trying
out all possible solutions, we do not need to explicitly write
code to compute all possibilities for inference, making our
code simpler.

Finally, we can simply ‘turn on’ a flag to obtain a
“proof” of Prolog’s reasoning, and output the reason why a
particular invariant holds. For our example from Section II,

4

the program’s output may be “Select All cannot precede
Copy To” because the following t-sets were missed: {(Select
All, 0), (Copy To, 1)} {(Select All, 1), (Copy To, 2)} {(Select
All, 2), (Copy To, 3)} {(Select All, 3), (Copy To, 4)} {(Select
All, 4), (Copy To, 5)} {(Select All, 5), (Copy To, 6)} {(Select
All, 6), (Copy To, 7)} {(Select All, 7), (Copy To, 8)}. Such
detailed reasoning is helpful both for debugging and for
manual verification of the existence of the invariant.

We will use a running example to explain our implemen-
tation. Suppose that we have the following 18 missed t-sets,
for t=2, from our test suite repair: { {(a, 0), (a, 1)}, {(a, 0),
(b, 1)}, {(a, 0), (c, 1)}, {(a, 0), (a, 2)}, {(a, 0), (b, 2)}, {(a,
0), (c, 2)}, {(a, 1), (a, 0)}, {(a, 1), (b, 0)}, {(a, 1), (c, 0)},
{(a, 1), (a, 2)}, {(a, 1), (b, 2)}, {(a, 1), (c, 2)}, {(a, 2), (a,
1)}, {(a, 2), (b, 1)}, {(a, 2), (c, 1)}, {(a, 2), (a, 0)}, {(a, 2),
(b, 0)}, {(a, 2), (c, 0)}}.

Also, suppose that we have only length 3 sequences; and
our event set consists of 3 events, a, b, and c. The 18
missed t-sets form the input to our Prolog program. They
are represented as a collection of 18 Prolog facts, one fact
for each t-set. For example, the t-set {(a, 2), (c, 1)} is
represented as the fact phi t 2(a, 2, c, 1), where “phi t 2”
is our name for the fact. In all, we have 18 such facts that
encode our input for this example.

Program execution in Prolog is done via queries. An
example of a query is “?:-phi t 2(A, X, B, Y).” where the “?”
indicates a query, and A, B, X, and Y are uninstantiated (or
unbound) variables that can be unified with literals. Given
this query, the inference engine tries to find all possible
solutions. It will “look at” all facts that match phi t 2 and
attempt to instantiate all variables. One possible instantiation
is “A=a X=2 B=c Y=1” when a match is made with the
fact phi t 2(a, 2, c, 1). Because our particular query has all
uninstantiated variables, they can be bound to any literal;
and because Prolog will find all possible solutions, it will
return 18 solutions, one for each fact that matches the query.

Another example is “?:-phi t 2(a, X, a, Y).” where the first
and third parameter are not variables; they are literals, in this
case ‘a’. In our facts listed above, there are 6 facts that have
‘a’ in parameter 1 and 3. Hence, we get 6 solutions. Prolog
allows many types of complex queries; a more detailed
discussion is beyond the scope of this work.

We now define the disabledAtPosition invariant as: �
d i s a b l e d A t P o s i t i o n (Event , P o s i t i o n , K):−

f o r e a c h (e v e n t (E) ,
f o r e a c h (between (0 , K−1, P) ,
P != P o s i t i o n i m p l i e s
p h i t 2 (Event , P o s i t i o n , E , P))) . � �

i.e., the invariant holds for Event at Position if there exist a
number of t-sets, enumerated by the two foreach clauses; the
first enumerates all events E and the second enumerates all
possible positions P between 0 and K-1 (the largest value
for an event’s position). For our example of 3 events, the

first foreach enumerates, in E, events a, b, and c. Because
for us, K=3, the second foreach enumerates in P the values
0, 1, and 2. Hence, the two foreach are really a compact way
of enumerating a number of required facts.

We further explain using two example queries. If we
are interested in finding all events that are disabled at
position 1, we issue the query “?:-disabledAtPosition(X, 1,
3).” We leave the event, the first parameter X, unbound for
Prolog to return its solution. The second parameter is the
position 1, and third is the length of our sequences. In the
body of our definition of disabledAtPosition, the two foreach
enumerate 3 × 3 = 9 possibilities as discussed above, and
“P!=Position” filters out value ‘1’ for P; finally, there are 6
enumerations of phi t 2(Event, 1, E, P), for E having values
a, b, and c; P with values 0 and 2. All 6 match only when
Event=a. Because Event and X, in our query, are unified,
both unbound, Prolog’s solution is “X=a”.

Lets suppose that we issue another query
“?:-disabledAtPosition(X, Y, 3)” where we also leave the
position unbound. We are asking Prolog to return all events
X that are disabled in any position Y. This query has 3
solutions: “X=a Y=0”, “X=a Y=1”, and “X=a Y=2”, i.e.,
event ‘a’ is disabled at positions 0, 1, and 2.

In fact, in our example, event ‘a’ is disabled at all posi-
tions, which naturally leads us to our encoding of disabled.�

d i s a b l e d (Event , K):−
f o r e a c h (between (0 ,K−1, P o s i t i o n) ,

d i s a b l e d A t P o s i t i o n (Event , P o s i t i o n , K)) . � �
which checks whether Event is disabled for all values of
Position between 0 and K-1. The query “?:-disabled(X, 3)”
returns “X=a”.

We note that our definition for disabled uses disable-
dAtPosition. In general, because the definitions of some
invariants use other invariants, the inference process is done
in a specific order and intermediate results are stored in
a learned database which is read before the next rule
processes. Our implementation infers invariants in the order
we have defined them, i.e., disabledAtPosition, disabled,
consecutive, excludes, and requires.

Because of the nature of event execution using a test case
replayer, certain timing conditions or close events may cause
incorrect reporting of missed sequences. In fact, we see this
in our real example of {Select All, Copy To}. Since the test
harness closes after the last event is triggered, the open dia-
log will not impact execution when it is in the last position.
Suppose that due to replayer timing conditions {(a, 0), (b,
1)} in the above example is not reported as a missed t-set.
Our previously described encoding would prevent us from
inferring the invariant. The query “?:-disabledAtPosition(X, 0,
3)”, asking “which event X is disabled at position 0?” would
return no result. The query “?:-disabledAtPosition(X, Y, 3)”
would return only 2 solutions: “X=a Y=1”, and “X=a Y=2”.

5

And the query “?:-disabled(X, 3)” would return no result. All
this because of an unreported missed t-set.

In order to handle such unexpected replayer-related prob-
lems, and still get some useful information from the in-
variant detector, our particular implementation allows for
some error. We have rewritten our Prolog programs to
work with imperfect data; i.e., some number of t-sets may
be misclassified as not missed. The key to adding fuzzy-
matching logic to our implementation is to maintain two
integer values with each inferred invariant: (1) T, the total
number of t-sets expected to be reported as missed for the
inference and (2) Er, the number of t-sets that were expected
to be reported as missed but were not. We then compute the
error percentage as (Er/T) ∗ 100.

V. CASE STUDY

We conduct a case study to evaluate AutoInSpec using a
set of well-understood applications which have been used
in multiple papers on GUI testing. Experimental artifacts
including inference inputs and results can be found on the
AutoInSpec website1. We answer the following research
questions in this study:
RQ1: How well does AutoInSpec uncover seeded invari-
ants?
RQ2: To what extent does AutoInSpec find invariants that
are unknown?
RQ3: How well does the AutoInSpec invariant detecter
classify real invariants with respect to a manually derived
oracle?

A. Objects of Study

We use two sets of Java GUI subjects for these experi-
ments. The first set are used for RQ1 and were originally
created for validating the quality of the repair framework
in improving the coverage of our sequences [11]. These
applications are synthetic – their only functionality is to
implement a specific invariant. We call them seeded. We
provide a summary of these in Table I and point the reader
to [11] for more details. The first subject, 2Cons contains a
single 2-way consecutive invariant, Event 0 cannot precede
Event 1. 2Excl has a 2-way invariant that disables Event
1 after Event 0 is performed. Likewise, the Disb program
has a disabled event and the Reqs contains a 2-way requires
invariant (Event 2 requires Event 1). The last program, Cmpd
contains three invariants.

For the other two research questions, we have selected a
set of non-trivial Java GUI subjects that we have used in
earlier work [12]. Unlike the synthetic subjects, we do not
know the true invariants. The selected subjects include four
applications from the TerpOffice series and two open source
programs from SourceForge – CrosswordSage and Free-
Mind. TerpPaint, TerpPresent, TerpWord and TerpSpread-
Sheet are office-like applications that are used for painting,

1http://www.cse.unl.edu/∼myra/artifacts/autoinspec 2012/

Table I
SYNTHETIC APPLICATIONS

No. Name #Events 2-way requires
1 2Cons 3 2-way consecutive
2 2Excl 3 2-way excludes
3 Disb 3 disabled
4 Reqs 3 2-way requires
5 Cmpd 5 (compound) Reqs, 2Cons,

3Cons(3-way consecutive)

presentation, word processing and spreadsheet processing,
respectively. CrosswordSage is a tool for creating profes-
sional looking crosswords with powerful word suggestion
capabilities, and FreeMind is a mind-mapping software.

The events in these programs were divided [12] into sub-
groups of events with like functionality. This is one way
that a designer/maintainer/tester may reduce the complexity
of the overall task while combining events which are likely
to interact. The numbers of events in each group are listed
in Table II. Each group focuses on one specific task. For
example, events in group 1 of TerpWord 3.0 (abbreviated as
TW-G1) are all related to Table operations; events in group
2 of FreeMind 0.80 (abbreviated as FM-G2) are all used for
formatting the map and displays. We also show the lines of
code for each subject in the table. We used the length 10,
2-way covering arrays from [12] as our starting point. For
this study, we selected the groups that had missing coverage,
and that we were able to run and reproduce.

B. Methodology

We reuse existing covering arrays from [12], but rebuild
the models for the programs using the GUITAR framework
[14]. Due to some changes in versions of Java and the
change in the replayer from the original work we had a
small number of events that we could not replay. We set
these to NULL. These account for 2 events out of 114 in
our experiments. These are passed into our repair framework
[11] which utilizes the CASA covering array generator for
combinatorial coverage [15]. We use t=2. This is the weakest
(least expensive) coverage, but believe most invariants will
be of this arity.

In [12], preliminary efforts had been made to improve
the models manually by first running all possible length-2
event sequences. Enabling events have been identified and
added to reveal constraints on the structural operations. For
example, before a Save As dialog is closed, no events on
the parental window can be performed. Therefore, an event
Save will be added after all the necessary operations on the
Save As dialog to close it. We incorporate these events into
our starting model. Some non-structural enabling events had
also been added, which are invariants that were discovered
through iteration with the subjects [12]. For example, when
there is an Undo at the beginning of a sequence, it is
ignored and the rest of the sequence is executed. We do not

6

Table II
NON-TRIVIAL APPLICATIONS

No. Program LOC Group No. Abbreviated Task Description
Name Events Name

1 TerpPaint 3.0 13315 4 11 TPa-G4 Clipboard Operations
2 TerpPresent 3.0 44591 5 14 TPr-G5 Content
3 TerpWord 3.0 22806 1 14 TW-G1 Table Operations
4 TerpSpreadSheet 3.0 6337 1 14 TS-G1 Format Cell
5 5 8 TS-G6 Table Format
6 CrosswordSage 0.35 3220 4 14 CS-G4 Preference Settings
7

FreeMind 0.80 24665
1 11 FM-G1 Map Operations

8 2 18 FM-G2 Format
9 4 10 FM-G4 Clipboard Operations

include these in our models, but leave them as invariants
that AutoInSpec should find.

We use the missed t-sets to detect invariants in two
ways. First we asked one of the co-authors of this work to
independently determine (manually) the invariants based on
the missed t-sets. This was done by examining the patterns
and running the applications. We use this as our oracle. We
then passed these to our Prolog programs using an error
of 25% (which we chose heuristically), that provided us
with another set of invariants. We recorded these and the
remaining two authors validated each against the oracle,
and by running the application to confirm differences. All
of the actual output is available on the website containing
experimental artifacts.

C. Threats to Validity
We list some of the primary threats to validity here. First,

since the authors were involved in developing the oracle
(manually determining invariants in the real applications)
this may cause a bias. To mitigate the threat, only one author
was responsible for that part and was most familiar with the
low level details of each application. The other two authors
independently developed and evaluated the invariants with
the automated technique without discussion or interaction
with the other author. We also acknowledge that a different
set of invariants may provide similar results, but leave this
as a future evaluation.

Second, we cannot know if our results will generalize
to all applications, but have selected applications that have
been used in other testing research. Third, for the real
applications, some of the invariants found may be an artifact
of the event grouping. We believe that this threat does not
invalidate our results since we are only concerned with the
detection of invariants, and the modeling was done for a
different study and considered to be correct by the person
who performed that work (not one of the authors of this
paper). The use of existing artifacts reduces other threats,
which was our reason for using them. We plan to reduce
the grouping threat by removing it in future experiments.
Finally, we have validated our internal programs used in this
work to a reasonable degree and have made our artifacts

available to other researchers, but it is possible that there
may be some faults remaining in the implementations.

VI. RESULTS

In this section we present the results of our case study
and answer each of our research questions in turn.

A. RQ1: How well does AutoInSpec uncover seeded invari-
ants?

We ran AutoInSpec on the synthetic subjects and present
these results in Table III. For each subject (row) we list
the invariants that were detected in order. For the first four
subjects, we see that the invariants match exactly with the
expectation. For instance, in 2Cons the invariant E0 cannot
precede E1 is the known invariant for this subject. For
the last subject, Cmpd we see a sightly different result. In
this subject we have three invariants so this should help us
understand how well AutoInSpec works when we have more
than one invariant together. Two of the three invariants were
correctly detected (the Requires and Consecutive). We see
that E4 requires E2 and that E0 cannot precede E1. Both
of these are expected. The last invariant found (Disabled),
says E4 is disabled in position 0. This invariant is a result of
the first one – since E4 requires E2 it cannot be in the first
position and strengthens the behavior specification, but it is
not something that we considered prior to this experiment.
We also missed one invariant present in this program (a 3-
way Consecutive invariant), but since it is a 3-way invariant
and we used a 2-way covering array, we did not expect to
find it. The arity of invariants will impact our ability to
detect them. We need to perform more experimentation to
understand the arity of invariants in practice.
Summary of RQ1: AutoInSpec is effective at finding the
known invariants in isolation, as well as when invariants
exist together. It also found an additional invariant that we
did not expect, which strengthens what we know about the
behavior of the Cmpd application.

B. RQ2: Does AutoInSpec discover unknown invariants?

For this RQ we turn to Table IV. It shows the manual
oracle on the left side and the invariants we found with

7

Table III
INVARIANTS FOUND IN THE SYNTHETIC APPLICATIONS

Invariants
Subj. Disabled Excludes Requires Consecutive
2Cons none none none E0 can’t precede E1
2Excl none E0 Excl. E1 none none
Disb E0 disb. none none none
Reqs none none E2 req. E1 none
Cmpd none E4 disb. at pos. 0 E4 req. E2 E0 can’t precede E1

AutoInSpec on the right. In the middle we use a Y to indicate
that our invariants match, N to indicate they do not, and an
S in the special case where one invariant is a subset of the
other. We return to this column in RQ3.

AutoInSpec found 19 invariants in these subjects (the
oracle found 25). Some of these invariants, such as the first
one for TW-G1, Undo cannot appear in the first position, is
an invariant that we knew about before using AutoInSpec.
We still consider this a discovered invariant, but believe it
is one that would be easy for us to model. However, only a
small number of the invariants fit into this category.

The rest are invariants that were not known and/or mod-
eled in our prior work using these subjects [12]. Given
that these are very well studied applications which have
been used by us before, we find this result compelling. For
instance we were unaware of a dialog opening when Select
All is followed immediately by a Copy To, creating the first
invariant that we find in this table.

Another interesting observation is that we have two groups
with events that we thought were in the same group, in fact,
were not. This can be seen in FM-G2 where the Cloud
Color event can never be enabled and TS-G1 and TS-G5
where Undo and Redo are never enabled. In the original
experimentation, these invariants were not obvious to the
modeler, and despite the existence of infeasible sequences,
were not detected.

An example of another invariant that we missed during
modeling is in CS-G4. In this invariant, a set of fields
require a specific check box to be checked before they can
be enabled. This box is the first box on the window so the
automated model extraction tool would visit this box first
and assume the rest of the fields are enabled. However, the
default for this window when opened is that this box is
unchecked. Without having tried the extra combinations, we
would not catch this invariant.
Summary of RQ2: We conclude that we are able to discover
unknown invariants using AutoInSpec.

C. RQ3: How does the AutoInSpec invariant detector com-
pare with a manual oracle on real invariants?

The last question asks how well we compare with the
manual oracle. We match 14 of the 25 invariants the oracle
found exactly. (In CS-G4, we found 2 invariants, while the
oracle found only one, bringing the total invariants to 26

– we use this as our denominator in calculations). Seven
invariants were not found at all. In the remaining five cases,
we have a subset match. In each case, either one of the
oracle or AutoInSpec is a subset of the other. We have
made the events bold-faced that are not found in the other.
For instance, in TW-G1, Undo needs one of a set of events
to enable it. The oracle includes Redo while AutoInSpec
missed this. We believe this is due to the other invariants
in this group. Since Redo cannot appear in the first two
positions and has an additional invariant requiring an Undo,
it is possible there was too much noise in the dataset to find
this. In the same subject, we see in the last invariant that
Redo cannot precede Redo. We determined that this invariant
is correct; the manual oracle missed this one.
Summary of RQ3: AutoInSpec matches 54% of the oracles
exactly. In 19% of the cases, it matches partially, sharing
most of the events in common. In total, it missed 27%.

VII. RELATED WORK

Software specification inference is used to discover the be-
havior of software systems when specifications are missing
or incomplete. Unlike our work, most inference algorithms
use system traces; we first derive a subset in the form
of missing t-sets. The class of specifications on which
we focus are temporal or state-based. Gabel and Su mine
temporal properties to find bugs [16], while Ramanathan
et al. use inter-procedural path-sensitive static analysis to
infer function precedence protocols [17]. Krka et al. [18]
utilize inferred program invariants and method invocation
sequences to obtain an object-level model. Others use
inference techniques for discovering interactions between
components [19].

Ernst et al. [9], [10] lay the foundations for dynamic
detection of invariants. They instrument variables within the
code to detect invariants, but we work at the black box level.
Recent work on database invariants [20], considers a state-
based environment, but defines a mapping between database
elements and variables; we require no such mapping. Data
from repositories may be used to infer certain classes of
specifications. Wasylkowski and Zeller mine temporal spec-
ifications by combining static analysis with model checking
[21]. Livshits and Zimmermann extract likely error patterns
by mining software repositories [22]. Xie and Pei develop
algorithms for mining API usages from code [23]. Other

8

Table IV
INVARIANTS LEARNED. MATCH IS ONE OF (Y)ES, (N)O OR S(UBSET). * INDICATES THAT THE INVARIANT WAS KNOWN AHEAD OF TIME

Subject Oracle Match? Automated Invariant
TPa-G4 Select All and Copy To cannot execute consecutively Y Select All cannot precede Copy To

TPr-G5

Two consecutive Opens cannot be executed Y Open cannot precede Open
Open, Save and Save As cannot be immediately followed
by Save

Y Open, Save, and Save as cannot precede Save

Insert Image, Undo and Redo cannot be immediately fol-
lowed by Close if they are in the first position

N no invariant found

TW-G1

*Undo cannot appear in the first position Y Undo always disabled at position 0
Undo needs one of Insert Table, Append Row, Undo requires one of Insert Table, Append Row,
Append Column, Insert Row, Insert Column, Delete Row, Append Column, Insert Row, Insert Column, Delete Row,
Delete Column, Redo, Write on Document Pane or Delete Column, Write on Document Pane
Write on HTML Pane to enable it S Write on HTML Pane, Next Cell or Previous Cell
Each Undo event needs an undoable before it N no invariant found
*Redo cannot appear in the first or second position Y Redo always disabled at position 0 and 1
Redo needs an Undo to enable it N Redo requires Previous Cell or Write on syntax pane
Delete Row cannot be followed by any table-related opera-
tions

N no invariant found

Insert Table, Append Row, Append Column, Insert Row, Insert Table, Append Row, Append Column, Insert Row,
Insert Column, Delete Row, Delete Column, Insert Column,Delete Row, Delete Column,
Write on Document Pane and Write on HTML Pane Write on Document Pane and Write on HTML Pane,
cannot be followed by Redo S and Redo cannot precede Redo

TS-G1 Undo and Redo are disabled Y Undo and Redo are disabled
TS-G5 Undo and Redo are disabled Y Undo and Redo are disabled

CS-G4

Proxy Address, Proxy Port, User Name and Password Proxy Address, Proxy Port, User Name and
require Use Proxy to be checked (unchecked at startup) Y Password are disabled at position 0

Proxy Address, Proxy Port, User Name and Password
require Auto-check for Newer Version
or Use Proxy Server or New Crossword

S or Solve New Word

FM-G1

*Undo cannot appear in the first position. Y Undo is always disabled at position 0
Undo needs one of Automatic Layout, Blinking Node Undo requires one of Scale, Toggle Toolbar,
or Show Icon Hierarchically to enable it Toggle Left, Zoom In, Zoom Out,

Zoom to Fit to Page, Automatic Layout,
S Blinking Node or Show Icon Hierarchically

*Redo cannot appear in the first or second position Y Redo is always disabled at position 0 and 1
Redo needs an Undo to enable it N no invariant found

FM-G2 Cloud Color is disabled Y Cloud Color is disabled

FM-G4

*Undo cannot appear in the first position Y Undo is always disabled at position 0
Undo needs Paste to enable it Undo requires one of Paste, Paste Format, Cut, Copy,

S Copy Single, Select Visible Branch
Each Undo event needs an undoable before it N no invariant found
*Redo cannot appear in the first or second position Y Redo always disabled at position 0 and 1
Each Redo needs an Undo before it N no invariant found
Paste cannot be immediately followed by Redo Y Paste cannot precede Redo

work in the domain of GUIs, usability evaluation, of Dwyer
et al., describes how static analysis may be used to reason
about user-interaction properties of GUIs [24].

AutoInSpec is unique in that its reduces the inference
problem by considering only missed coverage, and it uses
an off-the-shelf solver. Furthermore it works entirely from
the blackbox perspective.

VIII. CONCLUSIONS

We have presented AutoInSpec, a technique to automat-
ically uncover a class of GUI invariants, (temporal and

state-based invariants which are incorrectly modeled). Our
approach leverages covering arrays and a test suite repair
process. The covering arrays give us fine-grained control
over the event sequences, allowing us to precisely specify
how they should be synthesized. By using missed coverage,
we have a mechanism to examine only sequences disallowed
by the GUI. We used AutoInSpec to uncover invariants in
both synthetic and real applications. We found 100 percent
of the known invariants for our synthetic applications that
were discoverable by our chosen covering array strength, and
found an additional invariant that tightened our knowledge

9

of the GUI behavior. In the real applications, we found 25
invariants (14 of which we matched exactly). We missed
27% but most of these were of a similar type of invariant.
We plan to add that invariant class as future work.

We have identified several factors to explore as future
work. The length of the sequence will impact not only the
types of invariants found, but the precision of our results.
The covering array strength controls how well we sample the
sequences and the error percentage allows for consideration
of imperfect data. Finally, the human must play a role in
this work, as discovered specifications may be intended or
may be faulty behavior. We intend to study the impact of
these factors and incorporate the results into AutoInSpec.

ACKNOWLEDGMENTS

We thank B. Nguyen for help with the replayer infras-
tructure and X. Yuan for sharing her experimental artifacts.
This work was partially supported by the US National Sci-
ence Foundation under grants CCF-0747009, CNS-1205472,
CNS-0855139, CNS-1205501 and CNS-0855055, the Air
Force Office of Scientific Research through award FA9550-
10-1-0406, and the Office of Naval Research under grant
N00014-05-1-0421.

REFERENCES

[1] F. Belli, M. Beyazit, and A. Memon, “Testing is an event-
centric activity,” in Intl. Conf. on Soft. Secur. and Reliab.,
(SERE), 2012, pp. 198–206.

[2] A. M. Memon, “An event-flow model of GUI-based applica-
tions for testing,” Soft. Testing, Verif. Reliab., vol. 17, no. 3,
pp. 137–157, 2007.

[3] F. Belli, C. J. Budnik, and L. White, “Event-based modelling,
analysis and testing of user interactions: approach and case
study: Research articles,” Softw. Test. Verif. Reliab., vol. 16,
no. 1, pp. 3–32, Mar. 2006.

[4] L. White, H. Almezen, and S. Sastry, “Firewall regression
testing of GUI sequences and their interactions,” in Intl. Conf.
on Soft. Maint., (ICSM), 2003, pp. 398–408.

[5] T.-A. Doan, D. Lo, S. Maoz, and S.-C. Khoo, “LM: A miner
for scenario-based specifications,” in Intl. Conf. on Soft. Eng.,
(ICSE), 2010, pp. 319–320.

[6] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Per-
racotta: mining temporal API rules from imperfect traces,” in
Intl. Conf. on Soft. Eng., (ICSE), 2006, pp. 282–291.

[7] D. Lo and S. Maoz, “Scenario-based and value-based spec-
ification mining: better together,” in Intl. Conf. on Aut. Soft.
Eng., (ASE), 2010, pp. 387–396.

[8] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and
A. Zeller, “Automatically generating test cases for specifica-
tion mining,” IEEE Trans. on Soft. Eng., vol. 38, pp. 243–257,
2012.

[9] J. H. Perkins and M. D. Ernst, “Efficient incremental algo-
rithms for dynamic detection of likely invariants,” SIGSOFT
Soft. Eng. Notes, vol. 29, no. 6, pp. 23–32, 2004.

[10] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin,
“Quickly detecting relevant program invariants,” in Intl. Conf.
on Soft. Eng., (ICSE), 2000, pp. 449–458.

[11] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI
test suites using a genetic algorithm,” in Intl. Conf. Soft. Test,
(ICST), April 2010, pp. 245–254.

[12] X. Yuan, M. Cohen, and A. Memon, “GUI interaction testing:
Incorporating event context,” IEEE Trans. on Soft. Eng.,
vol. 37, no. 4, pp. 559 –574, 2011.

[13] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge, “Constructing test suites for interaction testing,”
in Intl. Conf. on Soft Eng., (ICSE), 2003, pp. 38–48.

[14] “GUITAR – a GUI Testing frAmewoRk,” website, 2009,
http://guitar.sourceforge.net.

[15] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved
meta-heuristic search for constrained interaction testing,” in
Symp. on Search Based Soft. Eng. (SSBSE), May 2009, pp.
13–22.

[16] M. Gabel and Z. Su, “Symbolic mining of temporal specifica-
tions,” in Intl. Conf. on Soft. Eng., (ICSE), 2008, pp. 51–60.

[17] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-
sensitive inference of function precedence protocols,” in Intl.
Conf. on Soft. Eng., (ICSE), 2007, pp. 240–250.

[18] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic,
“Using dynamic execution traces and program invariants to
enhance behavioral model inference,” in Intl. Conf. on Soft.
Eng., (ICSE), 2010, pp. 179–182.

[19] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic gener-
ation of software behavioral models,” in Intl. Conf. on Soft.
Eng., (ICSE), 2008, pp. 501–510.

[20] J. Cobb, J. A. Jones, G. M. Kapfhammer, and M. J. Harrold,
“Dynamic invariant detection for relational databases,” in Intl.
Work. on Dyn. Anal., (WODA), 2011, pp. 12–17.

[21] A. Wasylkowski and A. Zeller, “Mining temporal specifica-
tions from object usage,” in Intl. Conf. on Aut. Soft. Eng.,
(ASE), 2009, pp. 295–306.

[22] B. Livshits and T. Zimmermann, DynaMine: Finding Usage
Patterns and Their Violations by Mining Software Reposito-
ries. CRC Press, 2011.

[23] T. Xie and J. Pei, “MAPO: Mining API usages from open
source repositories,” in Intl. Work. on Min. Soft. Repo., (MSR),
2006, pp. 54–57.

[24] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser, “Analyzing
interaction orderings with model checking,” in Intl.Conf. on
Aut. Soft. Eng., (ASE), 2004, pp. 154–163.

10

