
Constructing Interaction Test Suites for
Highly-Configurable Systems in the

Presence of Constraints: A Greedy Approach
Myra B. Cohen, Member, IEEE, Matthew B. Dwyer, Member, IEEE Computer Society, and

Jiangfan Shi, Student Member, IEEE

Abstract—Researchers have explored the application of combinatorial interaction testing (CIT) methods to construct samples to drive
systematic testing of software system configurations. Applying CIT to highly-configurable software systems is complicated by the fact

that, in many such systems, there are constraints between specific configuration parameters that render certain combinations invalid.
Many CIT algorithms lack a mechanism to avoid these. In recent work, automated constraint solving methods have been combined

with search-based CIT construction methods to address the constraint problem with promising results. However, these techniques can
incur a nontrivial overhead. In this paper, we build upon our previous work to develop a family of greedy CIT sample generation

algorithms that exploit calculations made by modern Boolean satisfiability (SAT) solvers to prune the search space of the CIT problem.
We perform a comparative evaluation of the cost effectiveness of these algorithms on four real-world highly-configurable software

systems and on a population of synthetic examples that share the characteristics of those systems. In combination, our techniques
reduce the cost of CIT in the presence of constraints to 30 percent of the cost of widely used unconstrained CIT methods without

sacrificing the quality of the solutions.

Index Terms—Combinatorial interaction testing, constraints, covering arrays, propositional logic, satisfiability (SAT) checking.

Ç

1 INTRODUCTION

SOFTWARE development is shifting from the production of
individual programs to the production of families of

related programs [1]. This eases the design and implementa-
tion of multiple software systems that share a common core
set of capabilities, but have key differences, such as the
hardware platform they require, the interfaces they expose, or
the optional capabilities they provide to users. Often times,
significant reuse can be achieved by implementing a set of
these systems as one integrated highly-configurable software
system. Configuration is the process of binding the optional
features of a system to realizations in order to produce a
specific software system, i.e., a member of the family.

The concept of a highly-configurable software system
arises in many settings differentiated by the point in the
development process when feature binding occurs. An
example of very early feature binding is seen in software
product lines (SPLs). An SPL uses an architectural model to
define a family of products built from a core set of platforms
and customized through the identification of points of
variability and commonality. Variability points allow the
developer to plug in different variants of features while still
maintaining the overall system architecture. At the other
end of the spectrum are dynamically reconfigurable

systems, where feature binding happens at runtime and
may happen repeatedly. NASA’s Deep Space 1 Remote
Agent software is an example of such a system that uses
online planning to activate and deactivate modules in the
system based on spacecraft and mission status [2]. In
between are the common class of user configurable systems.
These are programs such as desktop applications, web
servers, or databases that allow users to modify a set of
predefined options, e.g., command-line parameters or
configuration file settings, as they see fit and then run the
program with those options.

Highly-configurable systems present significant chal-
lenges for validation. The problem of testing a single
software system has been replaced with the problem of
testing the set of software systems that can be produced by
all of the different possible bindings of optional features. A
single test case may run without failing under one
configuration, however, the same test case may fail under
a different configuration [3], [4]. One cause for this is the
unintended interaction of two or more bindings for features.

Fig. 1 presents a simplified mobile phone product line
that we use to illustrate the challenges of testing highly-
configurable software; the challenges are present in systems
with later binding times as well. This product line is
hypothetical, but its structure is reflective of portions of the
Nokia 6000 series phones [5]. The product line supports
three display options (16MC, 8MC, and BW) and can have
either a text email viewer (TV), a graphical email viewer
(GV), or no viewer (NOV). A phone may be built with two
types of camera (2MP or 1MP) or without a camera (NOC),
with a video camera (VC) or without a video camera, and
with support for video ringtones (VR) or without that
support. There are a total of 108 ð3" 3" 3" 2" 2Þ different

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008 633

. The authors are with the Department of Computer Science and
Engineering, Avery Hall, University of Nebraska-Lincoln, Lincoln, NE
68588-0115. E-mail: {myra, dwyer, jfshi}@cse.unl.edu.

Manuscript received 29 Oct. 2007; revised 28 Feb. 2008; accepted 12 May
2008; published online 27 June 2008.
Recommended for acceptance by S. Elbaum and D.S. Rosenblum.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-10-0305.
Digital Object Identifier no. 10.1109/TSE.2008.50.

0098-5589/08/$25.00 ! 2008 IEEE Published by the IEEE Computer Society

phones that can be produced by instantiating this SPL. For
each one, we will need to run a test suite if we wish to fully
test the family of products.

A test run on two different software products may
behave differently even if those products only differ in
features that are seemingly unrelated to the test. For
instance, a problem with the email viewer may not appear
under the 8MC display, but may only appear with 16MC
because of its increased memory usage.

For large SPLs, testing the complete set of SPL instances is
impractical, however, testing techniques that sample that set
can be used to find interaction faults. A common approach to
such testing is to systematically sample the set of instances in
such a way that all t-way combinations of features are
included; pairwise or two-way combinations are the most
commonly studied. This is commonly called combinatorial
interaction testing (CIT) [6]. A significant literature exists that
describes foundational concepts, algorithms, tools, and
experience in applying interaction testing tools to real
systems [4], [6], [7], [8], [9], [10], [11], [12]. One prime objective
of this body of work is to produce the smallest subset of
configurations for a system that achieves the desired t-way
coverage [6], [8], [9], [13], [14], [15], [16], [17], [18], [19].

In most configurable systems, constraints or dependen-
cies exist between features. At the bottom of Fig. 1, we list
seven constraints that have been placed on the valid
product instances. Constraints may arise due to any
number of reasons, for example, inconsistencies between
certain hardware components, limitations due to available
memory and software size, or simply marketing decisions.
We present natural language representations of constraints
since that is how they are typically described in software
documentation. Taken together, these constraints reduce
the number of product instances to 31, but, rather than
simplifying CIT methods, constraints present significant
challenges for cost-effective CIT.

Constraints were first described as being important to CIT
in [6], but, rather than applying algorithmic techniques,
remodeling of the program input is required. This may result
in slightly different test models and requires manual
intervention. A similar approach is seen in [20]. Much of the
literature simply ignores constraints [8], [13], [16], [17], [18],
[19], but, as we show, this leads to CIT solutions in which the
overwhelming majority of the calculated configurations

violate the constraints and are thus useless for driving the
testing process. Some researchers have suggested approaches
that require the user to explicitly define all illegal configura-
tions for processing by their algorithm [14], [21], but, as we
show, even a small number of constraints can give rise to
enormous numbers of illegal configurations and asking a user
to produce those is intractable. Researchers have attempted to
bias CIT methods to avoid constraints [22], but, as we show,
those methods are guaranteed to produce illegal configura-
tions in the relatively common situation where multiple
constraints interact to produce additional implicit constraints.
Finally, researchers have concluded that the treatment of
constraints is a straightforward “engineering extension” that
is, presumably, not worthy of investigation, but, as we show,
the development of cost-effective CIT methods that treat
constraints is nontrivial.

In this paper, we build on our initial work on this subject.
We identified and quantified the fundamental challenges of
treating constraints in CIT methods and developed an
algorithmic framework for incorporating constraints into
existing greedy and simulated annealing algorithms for
interaction test generation using an off-the-shelf satisfiability
(SAT) solver [23]. Follow-on work proposed an optimization
for our greedy algorithm that more tightly integrated
intermediate calculations produced by the SAT solver to
significantly reduce the cost of CIT without negatively
impacting the quality of solutions [24]. This paper

1. provides an integrated presentation of our previous
constraint-aware greedy CIT methods,

2. develops an additional optimization to reduce
solution generation time significantly over the
approach in [24],

3. quantifies the number and complexity of constraints
and the problem with ignoring them in CIT using a
set of five real-world highly-configurable software
case studies on four software subjects, and, finally,

4. presents a comparative evaluation of our previous
and new CIT methods on those case studies and on
30 synthesized configurable system models that
mimic the characteristics of the case studies.

Our results demonstrate that high-quality interaction test
suites for systems that are highly constrained can be
generated using our carefully engineered CIT methods in
less time than in methods that ignore constraints.

The remainder of this paper is organized as follows: In
Section 2, we provide background on interaction testing,
satisfiability checking, and our previous work. Section 3
discusses the need for constraint support in CIT algorithms.
Section 4 presents a series of four greedy CIT algorithms
that explicitly treat constraints as variations on a common
core algorithm; this allows the differences between algo-
rithms to be clearly illustrated and justified. Section 5
presents our case studies, the methodology for synthesizing
configurable system models, and the results of applying our
algorithms to the case studies and a collection of synthe-
sized models. Section 6 discusses related work in more
depth and Section 7 concludes and discusses future work.

2 BACKGROUND

In the example in Fig. 1, the mobile phone SPL contains a total
of 108 possible product line instances before incorporating

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 1. Mobile phone product line.

system constraints. The number of possible instances of a
product line grows exponentially in relation to the number
of feature variants. If there are four features, each with five
possible variants, there are 54 possible product instantia-
tions. Developers may wish to generate a set of configura-
tions to perform testing of the whole product line. Testing
all possible instances of the product line, however, is
usually intractable; therefore, as a validation method, this
will not scale. One method that can be used is to system-
atically sample all pairs or t-way combinations of feature
variants [6]. We call this CIT sampling.1

Fig. 2 is an example of a pairwise or two-way CIT sample
for the phone SPL ignoring constraints; we will consider
them in the following sections. In this example, we have a
set of configurations (a product instance that has one variant
selected for each feature) that combines all pairs of variants
between any two of the features. For instance, all displays
are combined with both of the email viewers as well as
without any email viewer.

Many studies have shown that CIT is a powerful
sampling technique for functional input testing that may
increase the ability to find certain types of faults efficiently
[6], [7], [26] and may provide good code coverage [6], [11].
Recent work on CIT has studied its use on both user
configurable systems [3], [4] and on SPLs [25], [27] and has
shown that CIT performs more consistently than random
sampling [4].

A primary focus in the literature on interaction testing
has been on developing new algorithms to find smaller
t-way samples [9], [14], [15], [17], [19], [28]. However, much
of this literature ignores practical aspects of applying CIT to
real systems, which limits the effectiveness and applic-
ability of this work. In this paper, we focus on one difficult,
yet prevalent, issue which may confound existing algor-
ithms—the handling of constraints.

2.1 CIT Samples: Covering Arrays
Before we discuss the various techniques for constructing
CIT samples, we begin with some definitions. A t-way CIT
sample is a mathematical structure, called a covering array.

Definition 2.1. A covering array CAðN; t; k; jvjÞ is an N " k
array from a set v of symbols with the property that every

N " t subarray contains all ordered subsets of size t from the
jvj symbols at least once.

The strength of a covering array is t, which defines, for
example, two-way or three-way sampling. The k columns of
this array are called factors, where each factor has jvj values.
Although the trivial mathematical lowest bound for a
covering array is jvjt, this is often not achievable and
sometimes the real bound is unknown [14].

As seen in the phone product line, most software
systems do not have the same number of values for each
factor, i.e., we do not have a single jvj. A more general
structure can be defined that allows for variability in factor-
value domain size.

Definition 2.2. A mixed-level covering array
MCAðN ; t; k; ðjv1j; jv2j; . . . ; jvkjÞÞ is an N " k array on
jvj symbols, where jvj ¼

Pk
i¼1 jvij, with the following proper-

ties: 1) Each column i ð1 % i % kÞ contains only elements from
a set Si of size jvij and 2) the rows of each N " t subarray
cover all t-tuples of values from the t columns at least one
time.

We use a shorthand notation to describe mixed-level
covering arrays by combining entries with equally sized
value ranges, i.e., jvij ¼ jvjj, where i 6¼ j ^ 1 % i; j % k. For
example, three factors that can each take on two values can
be written as 23. We drop the explicit use of k from our
model since this can be inferred by adding the superscripts.
Fig. 2 illustrates a two-way CIT sample, MCAð9; 2; 3322Þ, for
the phone example. There are five factors in this model,
three of which have three values, while the other two are
binary. In this paper, when we use the term covering array
we will use it to mean both standard and mixed-level arrays
as appropriate.

2.2 Finding CIT Samples
Many algorithms and tools exist that construct covering
arrays. For certain values of t, k, jvj mathematical
techniques (both direct and recursive) can be used to
construct covering arrays [14], [19], [28]. Although con-
structions produce small covering arrays efficiently, they
are not general. Several examples of metaheuristic search
have appeared in the literature, such as simulated anneal-
ing, genetic algorithms, and tabu search [9], [16]. We do not
consider this class of techniques in detail in this paper, but
note that, in general, they tend to produce smaller covering
arrays at increased cost relative to greedy methods when
constraints are considered [23].

There are two primary classes of greedy algorithms that
have been used to construct covering arrays. The majority
of algorithms are the one-row-at-a-time variation of the
automatic efficient test case generator (AETG) [6]. This type
of algorithm is the focus of this paper and is described in
more detail in Section 4. A different type of greedy
algorithm is the In Parameter Order (IPO) algorithm [17].
Rather than focusing on a row-at-a-time, it generates all
t-sets for the first t factors and then incrementally expands
the solution, both horizontally and vertically, using heur-
istics until the sample is complete.

The presence of constraints demands a new definition for a
proper CIT sample. Constraints may, for example, disallow
combinations of options or require that when one option
value is selected that another also be selected. Clearly, a

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 635

1. The work on applying CIT to software product lines is still
emerging (see [25] for open challenges), but this example is representa-
tive of other types of configurable software on which CIT has been
shown to be effective [4].

Fig. 2. Pairwise CIT sample ignoring constraints.

configuration generated by a CIT method that does not
consider such constraints may be inconsistent with those
constraints and thus is not a valid system configuration.
Examining the first constraint presented in Fig. 1, we see that a
valid system cannot have both a black and white display and a
graphical email viewer. We refer to such a combination as a
forbidden tuple; Section 2.4 defines this concept precisely. In
our original CIT sample, Fig. 2, we see that this constraint has
been violated by the last configuration.

2.3 Boolean Satisfiability Solving
In Section 4, we will present a synergistic integration of
AETG and Boolean satisfiability solving algorithms. To
understand this integration, a basic understanding of
modern SAT solving algorithms is required.

Most practical SAT solvers work on formulae encoded in
conjunctive normal form (CNF). A CNF formula is a set of
clauses, each of which must be true for the formula to be
true. Clauses in turn are disjunctions of a set of proposi-
tional variables or their negation; we write such clauses
using set notation, e.g., fx1; !x2; x3g denotes the clause
x1 _ :x2 _ x3.

State-of-the-art SAT solvers are based on the classic DLL
backtracking search [29] that explores a tree of truth
assignments for propositional variables. There is a rich
literature on extensions to this algorithm to scale it to the
point where satisfiability can be checked on formulae with
many tens of thousands of variables. We discuss two
techniques that have been widely adopted in the SAT
community: Boolean constraint propagation (BCP) and
conflict-clause learning [30].

Fig. 3 illustrates the data structures built for a satisfia-
bility check of a partial row in a covering array for three
binary, g, i, and j, and two ternary, f and h, factors. Each
factor-value is assigned a unique value. For instance, factor
f has three values, v1, v2, and v3. The satisfiability problem
is expressed in terms of distinct propositional variables for
each possible factor-value assignment, e.g., f ¼ v3 is
modeled with x3.

The constraints in this CIT problem consist of four
forbidden tuples that restrict the values that can be bound
to those factors. For example, the first two forbidden tuples
require that h ¼ v6 if g ¼ v4. Two other types of constraints
needed for this problem are shown. These are at-least and
at-most constraints. These are needed to ensure that there
are no empty factors included in our solution (at-least) and
that we can assign only one value to a factor at a time (at-
most). The figure shows two branches of a search for a
satisfying assignment given an input clause x1, i.e., f ¼ v1.

SAT solvers divide the process of finding a satisfiable
assignment into two alternating phases: search and propaga-
tion. A search phase (denoted by solid edges) involves the
selection of a propositional variable and a truth assignment
for it. A propagation phase (denoted by a consecutive run of
dotted edges) involves using the current partial truth
assignment, defined by the path in the search tree, and
the set of CNF clauses to infer the values of propositional
variables. Note that the order in which variables and truth
assignments are chosen in the search phase and the order in
which clauses are considered in the propagation phase may
be randomized or controlled by heuristics that are specific
to a given SAT solver implementation. Consequently, the
example search in Fig. 3 illustrates one possible SAT search.

The BCP phase attempts to produce unit clauses in order
to infer a truth assignment for a variable; a unit clause has a
single unbound variable in it. Since all clauses must be true
for the CNF formula to hold, the polarity of a variable in a
unit clause implies its truth assignment. In Fig. 3, the first
step is an implicit search step reflecting the initial assign-
ment of x1 to true. The next five steps arise from BCP. For
example, in order for the clause f!x1; !x2g to be true when
x1 is true, it must be the case that !x2. After x10 is assigned,
the algorithm performs a search step where it chooses to
explore assignments with x4 in the left branch; each search
step increases the level of the search. A second BCP phase
follows where !x7 is inferred from the clause f!x4; !x7g, after
which !x8 is inferred. At this point, the formula can be
determined to be unsatisfiable since the clause fx6; x7; x8g
is false and the search backtracks. Satisfiability requires a
single truth assignment to be found and the right branch
illustrates such an assignment. The truth assignments x1,
x5, x8, x10, and x12 correspond to a covering array row in
which f ¼ v1, g ¼ v5, h ¼ v8, i ¼ v10, and j ¼ v12.

In general, when the search backtracks, some subset of
the truth assignment is responsible for a conflict among
clauses that leads to the failure to find a satisfying
assignment, denoted NOTSAT. In the example in Fig. 3,
the combination of x4 and !x6 will always lead to a conflict
with the clause fx6; x7; x8g. Conflict-clause learning tech-
niques in SAT solvers perform a dependence analysis of the
sequence of truth assignments and the clauses that
influenced those assignments to infer a minimal implicate
for the conflict, i.e., the weakest clause that implies that the
conflict is guaranteed to arise. The negation of the
conjunction of the conflicting terms is recorded by the
solver and used to prevent subsequent searches from ever
exploring truth assignments that falsify the clause. In our
example, the clause f!x4; x6g assures that the search will
never fail for the same reason as it did along the left branch.
Once detected, this clause will be present in all subsequent
SAT solver calls.

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 3. Example SAT search.

2.4 Constrained CIT
Our previous work developed several approaches to
incorporating constraints in CIT. The presentation here
refines the approach in [24] and supersedes the approach in
[23]. We model constraints as Boolean formulae defined
over atomic propositions that encode factor-value pairs;
Fig. 1 informally introduced such propositions. We focus
here on how constraints expressed in a canonical form of
Boolean formulae are integrated into CIT problems; in [24],
we discuss the translation of different forms of natural
language constraints into that canonical form.

There are many different ways to encode a constraint
problem for SAT. We use a direct encoding for constrained
CIT (CCIT) problems. In certain applications, alternative
encodings, such as log encodings, may provide performance
benefits for SAT [31]. Typically, one considers such alter-
native encodings when the translation into SAT is particu-
larly expensive, e.g., it suffers exponential blowup, or when
the SAT solving algorithm is optimized for a particular
encoding. In our work, we have found that translating a CCIT
problem to SAT is fast, it avoids exponential blowup, and it
results in encodings that can be solved in less than 1 second
per SAT call across all of our experiments.

Let ff1; . . . ; fkg be the set of factors in a CIT problem and
let P be defined as a set of propositions, one for each
possible pair of factor, f 2 ff1; . . . ; fkg, and value, v 2 vf ,
e.g., f ¼ v, where v is the value assigned to f . In this paper,
we use vf to represent the set of values associated with a
factor and jvf j to represent the size of that set. We denote
the factor associated with a proposition p 2 P as fðpÞ.

We encode constraints as conjunctions of positive and
negative occurrences of propositions from P that may never
occur together in a row of a covering array.

Definition 2.3. A forbidden tuple is a set of propositions,
q & P , where each proposition defines a value for a distinct
factor, 8pi, pj 2 q, pi 6¼ pj : fðpiÞ 6¼ fðpjÞ.

Without loss of generality, a proposition may be replaced
with its negation in a tuple; for simplicity in our presenta-
tion, we only use positive occurrences of propositions.

Definition 2.4. A forbidden tuple constraint is defined as
!q ' :

V
p2q p and, if F is the set of forbidden tuples in the

CCIT problem, then !F '
V
q2F !q.

Note that the conjunction of a set of forbidden tuple
constraints may give rise to additional forbidden tuples. We
refer to these as implicit constraints [23] since they do not
appear in the initial formulation of the CIT problem.

A covering array has a value for each factor in each row
and this is encoded by at-least constraints in our model [15].
As illustrated in [23], at-least constraints are needed to
ensure the discovery of implicit constraints.

Definition 2.5. For each factor, f 2 ff1 . . . fkg, an at-least
constraint is f(1 '

W
v2vf f ¼ v. The set of all at-least

constraints is ('
V
f2ff1;...;fkg f(1.

An at-most constraint [15] ensures that at most one of the
propositions binding a value to a factor is true.

Definition 2.6. For each factor f 2 ff1 . . . fkg, an at-most
constraint is f%1 '

V
v;v02vf^v 6¼v0 f 6¼ v _ f 6¼ v

0. The set of
all at-most constraints is % '

V
f2ff1;...;fkg f%1.

Together, at-most and at-least constraints ensure that
exactly one factor-value proposition is true for each factor in
the CIT problem.

Definition 2.7. For a CIT problem, C ¼ !F ^ (^ % are the
set of base constraints.

All configurations produced for a CCIT problem must
satisfy the base constraints. We note that such a satisfiability
test naturally accounts for implicit constraints, so they need
not be included in C.

Definition 2.8. Given a CIT problem with base constraints C, a
given tuple encoded as a Boolean formula, s, is C-consistent if
!F ^ (^ % ^ s is satisfiable.

This definition is particularly convenient since it handles
partial configurations. This permits its use in greedy algo-
rithms, which must evaluate a configuration’s consistency
incrementally during the construction of each covering
array row. We extend the definition of a CIT sample to
enforce C-consistency.

Definition 2.9. A constrained mixed-level covering array,
CMCAðN; t; k; ðjv1j; jv2j; . . . ; jvkjÞ; CÞ, is an N " k array on
jvj symbols with constraints C, where jvj ¼

Pk
i¼1 jvij, with the

following properties: 1) Each column 1 % i % k contains only
elements from a set Si of size jvij, 2) the rows of each N " t
subarray cover all C-consistent t-tuples of values from the
t columns at least one time, and 3) all rows are C-consistent.

3 THE NEED FOR CONSTRAINT SUPPORT

There has been relatively little discussion in the CIT
literature of how to construct a covering array in the
presence of constraints. Bryce and Colbourn demonstrate
that determining whether a configuration exists that
satisfies a given set of constraints is an NP-hard problem
[22]. They also argue that there is a strong need for a
workable solution. In [23], we survey existing CIT techni-
ques, assess their support for constraints, and argue
qualitatively that the support is lacking in several regards.
In this section, we revisit and quantify the extent to which
existing CIT techniques are insufficient for supporting
constraints that arise in realistic CIT problems.

We summarize details of a quantitative analysis of five
case studies introduced in [23], [24] and a collection of CIT
problems that we synthesized to reflect the number and
diversity of constraints in those case studies—the data are
presented in detail in Section 5. Specifically, we present data
on the impact of ignoring constraints and the prevalence of
implied forbidden t-sets (forbidden tuples matching the arity
of the strength of testing). As explained in [23], the coverage
of all required t-sets in the CIT sample is the stopping
criteria for most CIT algorithms, making the discovery of
implicit t-sets necessary.

3.1 The Impact of Ignoring Constraints
It seems natural to ask if it is viable to generate covering
arrays without regard to constraints, followed by a
postprocessing pass to delete the configurations violating
constraints and to regenerate new configurations that cover
the t-sets that deleted configurations uniquely covered.
Intuitively, this makes sense if the number of constraints
and arity of constraints relative to the CIT problem is such that

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 637

a small proportion of configurations will need to be
regenerated. Unfortunately, it is our experience that, for
realistic CIT problems, a significant majority of the config-
urations will need to be regenerated. Consider the seven
constraints at the bottom of Fig. 1. Violating any one
constraint in a configuration will cause the configuration to
be judged invalid and force its removal from the covering
array. In Fig. 2, seven out of nine configurations violate some
constraint—configurations that do not violate a constraint are
starred. For example, configuration 3 violates constraint 7.
The two valid configurations (1 and 2) cover only 35 percent
of the legal two-way combinations for this system; 65 percent
must be covered by newly generated configurations. While
this is a simple example with a seemingly large ratio of
constraints to factors, having only 78 percent of the MCA
configurations violate constraints is actually better than the
situation we found in our broader study.

Table 3 shows data for 35 CIT problems with constraints.
The numbers are averages over 50 runs of each algorithm.
The fourth column (labeled mAETG size/SAT rows) gives
data on the number of configurations generated for each
problem using the unconstrained AETG algorithm (size)
and, separated by a “/”, the number of those configurations
that satisfied all constraints (SAT rows). On average,
96 percent of the configurations of an unconstrained sample
violate at least one constraint. The minimum percentage of
configurations violating constraints was 64 percent, while
the median and mode were both 100 percent. This is strong
evidence that constraint handling must be incorporated into
CIT generation methods rather than added on as a
postprocessing phase. The algorithms we present in
Section 4 do precisely that.

3.2 The Prevalence of Implied Forbidden t-Sets
Consider a CIT problem that is targeting t-way coverage.
Each forbidden tuple of arity t trivially implies a t-way
combination that cannot be present anywhere in the CIT
sample. More generally, the conjunction of a set of
forbidden tuples of varying arity imply a number of t-sets,
none of which can be present in the CIT sample.

These forbidden t-sets may not be obvious to the person
modeling a highly-configurable system [12]. Consider
constraints (5-6) from Fig. 1. The three forbidden pairs
are: f!V C; !NOCg, f!V C; !BWg, and f!VR; !V Cg, where we
use value names for propositions. It is not difficult to prove
that the conjunction of these clauses implies the clause
f!VR; !BWg. In other words, there may be constraints on
legal configurations of a CIT problem that are not stated
explicitly—we call these implicit forbidden tuples.

Some researchers have proposed approaches that require
users to explicitly state all forbidden configurations which
will bypass the need to know about implicit constraints [21].
As we argue in [23], in the worst case, there may be
combinatorially many invalid configurations and calculat-
ing them would be effectively infeasible for a user, but it is
unclear how frequently implied constraints occur in
practice. The data in our evaluation shed some light on
this. Across the set of 35 realistic CIT problems we studied,
there are a total of 840 explicit forbidden pairs, or two-sets,
and 24,247 implicit forbidden pairs. This suggests that the
worst case can appear in practice. It is important to note that
there is significant diversity across the 35 problems we
considered; three problems have no implicit forbidden

pairs, five problems have fewer implicit than explicit
forbidden pairs, and three problems have two orders of
magnitude more implicit than explicit forbidden pairs.

The problem of implied forbidden t-sets is exacerbated
as the strength of CIT coverage increases relative to the
arity of constraints. When forbidden tuples of arity less
than t are present, the number of implied forbidden t-sets
will, in general, be exponential in the number of factors.
Our data bear this out. Across the 35 CIT problems, the
total of 25,087 forbidden pairs, explicit and implicit, and
122 explicit forbidden triples give rise to over 3 million
implied forbidden triples. As in the case of pairs, the data
show significant diversity, but even the problems with the
smallest numbers of pairs give rise to many hundreds or
thousands of implied forbidden triples.

Clearly, the prevalence of implied forbidden t-sets
demands that they be accounted for in an automated fashion.
The algorithms we present in Section 4 do precisely that.

4 ALGORITHMS FOR CCIT
In this section, we present a series of AETG-like algorithms
for computing CMCAs for CCIT problems. We begin with a
basic integration of C-consistency checks, realized through
calls to existing SAT solvers, into the AETG algorithm. We
then discuss two optimizations of this algorithm that seek to
more tightly integrate the AETG and SAT algorithms. These
optimizations observe that the basic algorithm alternates
phases in which AETG and SAT each search the space of
possible assignments of values to factors in a configuration.
While AETG and SAT operate on different encodings of a
configuration and employ completely unrelated heuristics,
they can produce information during their respective
phases that can be used to reduce the cost of subsequent
search phases. The first optimization exploits properties of
the sequence of SAT solver calls to mine information about
assignments to unbound factors that can optimize subse-
quent AETG search phases; this was first presented in [24].
We call this AETG-History. The second optimization is
novel and involves an aggressive mining of variable
assignments made by SAT after a threshold point has been
reached in constructing a configuration. We call this AETG-
Threshold. Finally, we combine these two optimizations in a
way that leverages both of their strengths.

4.1 AETG with C-Consistency Checks
Many algorithms and tools exist that construct covering
arrays, but we focus in this paper on one-row-at-a-time
greedy-algorithms in the style of the AETG [6]. Multiple
variants of AETG have appeared in the literature, e.g., [8],
[10], [13], [18]. We refer to these as AETG-like.

Algorithm 1 sketches the basic structure of this algorithm.
Prior to execution, an initialization step is used to calculate the
number of t-sets for the given problem; covering all such sets
drives continued execution of the algorithm. The algorithm
constructs an array with numTests rows. A single row for
the array is constructed in each iteration of the loop at line 4
until all t-sets have been covered. The algorithm constructs
numCandidates different rows, line 5, and selects the best
one to add to the array, lines 15-17. The choice of the size of
candidate set is one of the differentiators of AETG-like
algorithms. Our algorithm uses the value 50 for numCan-
didates to be consistent with the original description of
AETG [6].

638 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

To build a single row, heuristics are applied to select the
first factor and its value, lines 7-9. In AETG, a factor-value
pair is chosen that currently has the largest number of t-sets
left to cover. The order in which the remaining factors are
processed is randomly shuffled, line 10, and then the best
value for each factor is selected, lines 12-13, where the best
value produces the most previously uncovered t-sets. In
each step, where a “best” decision is made, as well as where
the first factor and value is selected in lines 7-9, ties are
broken randomly, causing nondeterminism in differing
runs of the algorithm. Other greedy algorithms [13], [18] use
slightly different heuristics to select the factor ordering.

Algorithm 2 illustrates the integration of C-consistency
checks into our AETG-like algorithm, which we first
presented in [23]. In this algorithm, the CAModel has been
extended to include constraints. The original AETG-like
algorithm is modified in three areas. 1) We piggy back onto
the initialization step (not shown) a calculation of the set of
factors that is involved in at least one constraint, factor-
Involved—binding values for uninvolved factors does not
require a consistency check. 2) If a consistency check fails,
we must undo a factor-value binding and try another;
lines 6a-6b and 11a-11c and 12b realize this. 3) Consistency

checks, lines 8a and 12a, are introduced to determine if
there exists an extension of the partial row to a full row that
is consistent with the constraints. If we reach maxTries
without reaching a satisfiable solution, the test candidate is
removed from the potential set of solutions (not shown).

4.1.1 Leveraging Incremental SAT Solving
Most modern SAT solvers are incremental in the sense that
they use conflict-clause learning to infer additional clauses
across a sequence of SAT problems. SAT problems arising
in CCIT solutions have a natural two-level structure: 1) the
sequence of calls within a row and 2) the sequence of rows.
Conflict-clause learning based on the entire SAT formula
can be performed within a row, but one cannot learn
clauses that are dependent on the values within one row
and then use those clauses to solve SAT problems for
another row. For this reason, we use MiniSAT [32], which
allows a set of clauses to be passed as assumptions. Its
conflict-clause learning algorithm only stores clauses that
are independent of assumption clauses. We define clauses
for the base constraints and incorporate the clauses
encoding the partial configuration as an assumption. In
this way, learned conflict-clauses related to base constraints
are accumulated across all SAT calls in a CCIT problem; in
our current approach, we do not apply clause learning
within a row. We use this incremental MiniSAT technique
to implement the AETG-SAT algorithm, which serves as a
baseline method in the evaluation presented in Section 5.

4.2 Exploiting SAT History
Clause-learning improves SAT performance based on
CMCA row-independent information. We improve perfor-
mance further by exploiting the similarity of SAT calls
within a row. In Algorithm 2, the loop beginning at line 11
processes a row one factor at a time and, in each iteration, it
assigns a value for the current factor. As discussed in
Section 2.4, all formulae for a CCIT problem have a
common set of base constraints, C, that are conjoined with
the partial configuration being built for the row. The
formula constructed on the jth iteration of the loop is
C ^ f1 ¼ v1 ^ f2 ¼ v2 ^ . . . ^ fj ¼ vj, using individual dis-
tinct atomic propositions to encode each fi ¼ vi. If the
checkSAT call on line 12a succeeds, then, on the ðjþ
1Þst iteration of the loop, the formula C ^ f1 ¼ v1 ^ f2 ¼
v2 ^ . . . ^ fj ¼ vj ^ fjþ1 ¼ vjþ1 will be checked for satisfia-
bility. The description of SAT solving in Section 2.3 makes it
clear that checking this formula for SAT will involve an
initial, level 1, BCP phase that infers the variable assign-
ments that are solely dependent on the given partial
assignment and the base constraint clauses.

Given propositional formulae, p, q, and r,
ðp) qÞ) ððp ^ rÞ) qÞ. In other words, if all satisfying
truth assignments for p make q true, then all satisfying truth
assignments for an extension of p, via conjunction, will also
make q true. In our setting, p is comprised of the conjunction
of base clauses and the factor-value assignment for the
partial row at the point where the jth SAT search call is
made, q is comprised of the conjunction of assignments
inferred in the level 1 BCP phase of that search, and r is
comprised of the conjunction of a set of factor-value
assignments that will be submitted to a future SAT call
made for the current row. Consequently, mining assign-
ments from the level 1 BCP phase of a SAT search yields a

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 639

set of variable assignments that can be fed back to AETG to
prune its search for a row.

There are two interesting cases. These cases are illu-
strated in Fig. 4, which shows how the result of the SAT
search in Fig. 3 starting with factor-value binding f ¼ v1 is
used to prune future AETG processing:

1. When level 1 BCP infers a positive variable assign-
ment, e.g., x10, this implies that all satisfying assign-
ments for rows that extend the current partial
assignment, e.g., f ¼ v1, must have the designated
factor-value binding, e.g., i ¼ v10. We refer to this as
must information for factor-value bindings. AETG
exploits must information to skip the assignment of
values to the factor later in a row, as described below.

2. When level 1 BCP infers a negative variable assign-
ment, e.g., !x6, this implies that no satisfying
assignment of a full configuration that extends the
current partial assignment, e.g., f ¼ v1, can possibly
have the designated factor-value binding, e.g.,
h ¼ v6. If we subtract such negated variables from
the set of variables for that factor, the resulting set of
variables is referred to as may information for factor-
value bindings. AETG exploits may information to
prune the set of possible values it chooses from for
assignment to the factor later in a row as described
below, e.g., for h, only v7 and v8 need be considered.

An additional subtlety arises in our approach. When
conflict-clause learning determines that certain assignment
combinations prevent a satisfying assignment in the context
of a given partial row, e.g., f!x4; x6g from the discussion of
Fig. 3, this can introduce additional must or may informa-
tion. Our implementation does not attempt to extract this
information directly from the calculated conflict-clauses;
rather, we let the conflict-clause learning mechanism assert
those clauses for use in subsequent SAT calls for the given
row. The effect of this is illustrated by the dashed arrow in
Fig. 4, which indicates that a subsequent SAT call will

exploit the conflict-clause to extend the level 1 BCP phase to
infer !x4 and, subsequently, x5, which yields the must
information g ¼ v5.

Algorithm 3 illustrates the extensions to Algorithm 2
(AETG-SAT) with must/may optimizations—the new
statements are shown in bold. We define two methods that
mine the path in the SAT search tree corresponding to the
SAT assignment. More specifically, the portion of that path
corresponding to BCP level 1 is analyzed in:

. mineMayAssignments to return, for each factor,
the possible value assignments that have not been
eliminated by the existence of a negative occurrence
of a proposition for a factor-value assignment, and

. mineMustAssignments to return the set of factor-
value pairs that must be present due to the existence
of a positive occurrence of a proposition for that
factor-value assignment.

May assignment information is calculated, at line 11d, and
used, at line 12, to prune the set of possible values from which
AETG will select its best value. This reduces the chance of
selecting a value that will lead to an inconsistent partial
configuration. Note that it is still possible for the AETG-
History algorithm to produce unsatisfiable partial configura-
tions. This is because the mined assignment information is
based only on the current partial configuration and sub-
sequent choices for factor-value assignments may subse-
quently force a may value to be inconsistent. Note also that
may information only prunes values that are guaranteed to be
inconsistent with the current assignment, thus preserving the
full space of possible factor-value assignments for AETG and
its t-set coverage heuristics to explore.

Must assignment information is calculated, at line 13a,
and used, in lines 13b-13d, to enforce additional factor-
value assignments that are common to all satisfiable

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 4. Example of mining must/may assignments from a SAT search.

assignments that model extensions of the current partial
configuration. When a factor is assigned a value at line 13c,
we delete that factor from p, at line 13d, so it is not explicitly
targeted for a value assignment by the loop at line 11. This
completely eliminates the need for AETG processing of
those factors or for any subsequent SAT calls to confirm the
satisfiability of those factor-value assignments. Our evalua-
tion of the effectiveness of this optimization in [24] revealed
that it reduced the number of SAT calls needed to compute
a CMCA by an average of 59 percent across a set of
35 realistic CCIT problems.

4.3 Threshold Triggered SAT Assignments
Our evaluation of the AETG-History algorithm [24] indicated
that it was very effective at reducing CCIT solution time with
no negative effect on solution quality. Subsequent perfor-
mance profiling revealed that less than 10 percent of AETG-
History solution time was spent in formulating and solving
SAT problems. Clearly, the bottleneck to further performance
reduction lies in AETG processing.

The presence of constraints tends to reduce the size of
the valid solution space and, as a row is built, this may lead
to an increasingly limited set of valid choices of factor-
values, especially late in the row. An expensive portion of
an AETG-like algorithm is the method selectBestValue,
line 12, which requires a linear scan of each possible value
for the current factor and, for each value, it requires j

t

! "

evaluations to compute how many new t-sets will be
covered by that choice, where j is the current loop iteration
starting at line 11. This requires a total of v" j

t

! "
computa-

tions for each call of this method. In the constrained portion
of the search space that lies near the end of a row, the cost of
this scan may yield little benefit since few consistent values
may remain for a factor.

When the SAT solver finds a satisfying assignment, it
calculates a complete configuration. That configuration may
not, however, be one that drives the overall CCIT solution
to a small CMCA—this is the intent of the AETG heuristics.
The time needed to generate a CMCA can be reduced by
short-circuiting the AETG calculations in lines 11–13 using
the assignment calculated by the most recent successful
SAT call. Fig. 4 illustrates this process when only one out of
five, 20 percent, of the factors are assigned. The remaining
four factor-value bindings are extracted from the satisfying
assignment—illustrated by dotted arrows—and used to
complete the row.

Short-circuiting AETG calculations early in a row can
speed up solution times, but this may lead to larger
CMCAs. Waiting until 100 percent of the factors are
assigned yields no performance improvement, but no
increase in CMCA size. For algorithmic frameworks like
this, it is necessary to identify the parameter value that
provides a desirable cost-benefit trade-off—we refer to this
parameter as the row threshold and discuss finding a good
value for the threshold in Section 5.

Algorithm 4 presents the AETG-Threshold algorithm. It
differs from Algorithm 2 (AETG-SAT) only after the
threshold has been reached. In the initialization step, the
threshold value is input as a percentage of the row size and
translated into the threshold index, the switching point
in this algorithm. Then, in step 11, at 11aa, a check is made
to determine if this threshold has been reached. If it has not,
the algorithm continues as normal, allowing AETG to select

the best symbol, followed by consistency checks using the
SAT solver. Once the threshold value has been reached,
execution switches and we mine the SAT assignment from
the most recent SAT call (mineRemainingAssign-

ments) and save this as the satAssignedSet. The entire
assignment is then used to fill in the remaining factor-
values without the use of the AETG strategy in lines 13b–
13e. We note that the SAT solver makes random decisions at
points in its search that are independent from that of the
AETG-like algorithm.

4.4 Combining History and Threshold
Optimizations

The history and threshold optimizations both seek to fill in
multiple factor-value bindings in a single step. The
advantage of the AETG-History is that it guaranteed not
to interfere with AETG heuristics and, consequently, it will
not increase CMCA size, as is possible with AETG-Thresh-
old. On the other hand, since, in general, AETG-History
only fills in a portion of the row, it will not reduce solution
time as much as AETG-Threshold.

We consider a simple combination of these two algo-
rithms which we call AETG-History-Threshold. The algo-
rithm is not shown since it is a straightforward variation of
Algorithm 3, which is used as the base algorithm up until a
threshold has been reached for each row. After the
threshold is reached, the algorithm switches strategy and
mines the current SAT assignment to fill in the remaining
factor-values as in Algorithm 4.

5 EMPIRICAL INVESTIGATION

We begin our empirical investigation by summarizing five
case studies based on four software subjects that we first

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 641

conducted in [23], [24]. These show the abundance and
types of constraints found in real software systems. We then
present an analysis designed to evaluate the performance of
the algorithms presented in Section 4 with respect to
generation time and sample size. We utilize the five case
studies and generate an additional set of synthesized CCIT
problems for this analysis.

5.1 Case Studies
We have chosen four nontrivial highly-configurable soft-
ware systems—SPIN [33], GCC [34], Apache [35], and
Bugzilla [36] to study with respect to constraints. We
analyzed the configuration options for these tools based on
available documentation and constructed models of the
options and any constraints among those options. All of our
models should be considered an approximation of the true
configuration space of the programs. One way we do this is
by ignoring options we regard as overlapping, i.e., an
option whose only purpose is to configure another set of
options is ignored, as well as options that serve only to
define program inputs. Another is by underestimating the
number of possible values for each option. If an option takes
an integer value in a certain range, we apply a kind of
category partitioning and select a default value, a non-
default legal value, and an illegal value; clearly, one could
use more values to explore boundary values, but we choose
not to do that. Similarly, for string options, we choose
values modeling no string given, an empty string, and a
legal string. Ultimately, the specific values chosen are
determined during test input generation for a configuration,
a topic we do not consider here. We report data on the size
of these models, the number and variety of constraints, and
the existence of implied forbidden t-sets.

5.1.1 SPIN Model Checker
SPIN is a widely used publicly available model checking
tool [33]. SPIN serves both as a stable tool that people use to
analyze the design of a system they are developing,
expressed in SPIN’s Promela language, and as a vehicle
for research on advanced model checking techniques; as
such, it has a large number and wide variety of options. We
examined the manual pages for SPIN, available in [37], and
used it as the primary means of determining options and
constraints; in certain cases, we looked at the source code
itself to confirm our understanding of constraints.

SPIN can be used in two different modes: as a simulator
that animates a single run of the system description or as a
verifier that exhaustively analyzes all possible runs of the
described system. The “-a” options select verifier mode. The
choice of mode also toggles between partitions of the
remaining SPIN options, i.e., when simulator mode is
selected, the verifier options are inactive and vice versa.
While SPIN’s simulator and verifier modes do share
common code, we believe that the kind of bimodal behavior
of SPIN warrants the development of two configuration
models—one for each mode.

The simulator configuration model is the simpler of the
two. It consists of 18 factors and, ignoring constraints, it could
be modeled as an MCAðN ; 2; 21345Þ, i.e., 13 binary options
and five options each with four different values; this
describes a space of 8:3" 106 different system configurations.
It has a total of 13 pairwise constraints that relate nine of the 18
factors. The nature of the interactions among the constraints

for this problem, however, gives rise to no implied forbidden
pairs. As for most problems, constraints for this problem can
have a dramatic impact—enforcing just one of the 13 con-
straints eliminates over 2 million configurations.

The verifier configuration model is richer. It is worth
noting that running a verification involves three steps: 1) A
verifier implementation is generated by invoking the spin
tool on a Promela input with selected command line
parameters, 2) the verifier implementation is compiled by
invoking a C compiler, for example, GCC, with a number of
compilation flags, e.g., “-DSAFETY,” to control the cap-
abilities that are included in the verifier executable, and
3) finally, the verifier is executed with the option of passing
several parameters. We view the separation of these phases
as an implementation artifact and our verifier configuration
model coalesces all of the options for these phases. This has
the important consequence of allowing our model to
properly account for constraints between configuration
options in different phases. The model consists of 55 factors
and, ignoring constraints, it could be modeled as a
MCAðN ; 2; 24232411Þ; this describes a space of 1:7" 1020

different configurations. This model includes a total of
49 constraints—47 constraints that either require or forbid
pairs of combinations of option values and two constraints
over triples of such combinations. An example of a
constraint is the illegality of compiling a verifier with the
“-DSAFETY” flag and then executing the resulting verifier
with the “-a” option to search for acceptance cycles; we note
that these kinds of constraints are spread throughout
software documentation and source code.

The set of SPIN verifier constraints span the majority of the
factors in the model—33 of the 55 factors are involved in
constraints. Furthermore, the interaction of these constraints
through the model gives rise to nine implied forbidden pairs.

5.1.2 GCC Optimizer
GCC is a widely used compiler infrastructure that supports
multiple input languages, e.g., C, C++, Fortran, Java, and
Ada, and over 30 different target machine architectures. We
analyzed version 4.1, the most recent release series of this
large compiler infrastructure that has been under develop-
ment for nearly 20 years. GCC is a very large system with
over 100 developers contributing over the years and a
steering committee consisting of 13 experts who strive to
maintain its architectural integrity.

As was done for SPIN, we analyzed the documentation
of GCC 4.1 [34] to determine the set of options and
constraints among those options; in some cases, we ran
the tool with different option settings to determine their
compatibility. We selected a core component of GCC, the
machine-independent optimizer, and modeled it with
199 factors and 40 constraints.

The optimizer model, without constraints, can be
modeled as an MCAðN ; 2; 2189310Þ; this describes a space
of 4:6" 1061 different configurations. Of the 40 constraints,
three are three-way and the remaining 37 are pairwise.
These constraints are related to 35 of the 199 factors and
their interaction gives rise to two implied forbidden pairs.

Examples of constraints on optimizer settings include:
“-finline-functions-called-once . . . Enabled if -funit-at-a-time
is enabled.” and “-fsched2-use-superblocks This only
makes sense when scheduling after register allocation, i.e.,
with -fschedule-insns2.” We took the following approach to

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

defining constraints. The commonly used “-O” options are
interpreted as option packages that specify an initial set of
option settings, but which can be overridden by an explicit
“-fno” command. Interpreting these more strictly gives rise
to hundreds of constraints, many of which are of higher
order, i.e., they constrain three or more factor-values.

5.1.3 Apache HTTP Server 2.2
The Apache HTTP Server 2.2 is an open source widely used
web server that works on both UNIX and Windows
platforms. It can be customized by the system administrator
through a set of directives. The directives for Apache fall into
nine categories, which include the core program, exten-
sions, server configuration, etc. In total, there are 379 con-
figurable options that contribute to these categories. For the
purposes of our case study, we initially limited our
examination to the 166 options related to h directives from
the user manual. Upon further examination, we found that
several of the constraints on this set of options involved an
additional six factors that were not part of the h directives.
We added those options to our model for a total of
172 options. The final model has mostly binary options
(92 percent) with a small number of factors that have
between three and six options. The unconstrained Apache
can be modeled as an MCAðN; 2; 215838445161Þ, i.e., there
are 158 binary, eight ternary, four four-valued, and one
factor each that have five and six values. This leads to an
unconstrained configuration size of 1:8" 1055.

During our analysis, we uncovered seven constraints in
the Apache documentation that relate between two and five
different options. An example of a constraint for Apache is
that the “Require” directive that selects which authenticated
users can access a resource, must be accompanied by the
“AuthName” and “AuthType” directives, as well as direc-
tives for “AuthUserFile” and “AuthGroupFile” (to define
users and groups). Without these other directives being
defined, “Requires” will not function properly. In total, only
18 options are involved in the seven constraints. Of these
constraints, all but one are binary and one is a ternary. There
are no implicit two-way constraints in this system.

5.1.4 Bugzilla 2.22.2
Bugzilla [36] is an open source defect tracking system from
Mozilla. It provides developers with a mechanism to track
outstanding bugs in their systems. The software includes
advanced search capabilities, email notifications, multiple
bug reporting formats, scheduled reports, time tracking, etc.
It supports multiple database engines and is customizable
by the user. After examining the documentation, we
selected three sections of the user manual to which we
have restricted our analysis. These are the sections that
contain the core functionality: Chapter 3: Administering

Bugzilla, Chapter 5: Using Bugzilla, and Chapter 6: Customiz-
ing Bugzilla. Our analysis uncovered 44 options.

When conducting our analysis, we found 10 additional
options that were not included in one of the listed chapters,
but that were somehow related through constraints to
options within the scope of our analysis; we added these
into our model to be complete. Our final model has
52 factors, of which 94.2 percent are binary. The final model
for Bugzilla is an MCAðN; 2; 2493142Þ. There are 49 binary,
one ternary, and two four-valued factors. This leads to an
unconstrained configuration space of 2:7" 1016. Bugzilla’s
documentation describes five constraints—four relating two
options and one relating three options. An example of a
Bugzilla constraint is, when the “Mail Transfer Agent” is set
to “Postfix,” it requires that the “sendmailnow” option be
turned on. In total, 11 options were involved in the five
constraints. We did not uncover any two-way implicit
constraints for this system.

5.2 Synthesized CCIT Problems
The five case studies are essential elements of our
evaluation, but they do not provide a large population of
problems on which to compare algorithm performance. The
time required to develop the case study models was
significant and we felt that it was impractical to produce a
significantly larger number of case studies in a timely
fashion. Instead, we used the five case studies to develop a
characterization of the abundance, type, and complexity of
constraints found in real systems and then used that
characterization to synthesize a large number of CCIT
problems to include in our evaluation.

In Table 1, we provide a summary of the CCIT models
for the five case studies, highlighting their main character-
istics. The table shows counts of the number of factors
(Num Factor) and explicit constraints (Num Cons) for each
problem. It also provides the number and percentage (in
parentheses) of factors with 2, 3, 4, or more values.
Similarly, for constraints, it provides the number and
percentage (in parentheses) of constraints of arity 2, 3, or
more. As discussed in Section 4, it is possible to skip
constraint processing during CMCA construction for factors
that are not involved in constraints—the second column
(Factor Invol.) under the Constraints subheading provides
the number and percentage (in parentheses) of factors
involved in constraints. The last two columns in the table
show the dual of this information—they provide the
number of constraints in which a factor participates. This
provides an indication of the extent to which constraints are
“coupled” and may give rise to implied constraints. For
example, if a factor is involved in only a single constraint, it
will fall into the first (1 Cons Per Factor) category. We do

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 643

TABLE 1
Case Study Characteristics: Number and Percent of Factors/Constraints

not show data for factors involved in more than two
constraints due to space limitations.

We use the summarization of case study characteristics
to synthesize random covering array models with con-
straints that share the characteristics of the case study
systems. Our synthesis algorithm starts by randomly
generating a number of factors between 18 and 199—the
range of factors found in our case studies. The case studies
had between 72 percent and 95 percent of their factors with
only two values; 90 percent of the factors across all of the
studies were binary. We skewed the number of binary
factors toward the average across all case studies by
selecting between 85 percent and 95 percent of the number
of factors to be binary and the rest to involve between three
and six factors. We weighted the latter decision with a
40 percent probability that three will be chosen and a
20 percent probability for the rest.

The ratio of constraints to factors in the case studies
varied from 0.04 to 0.89, but this degree of variation leads to
large numbers of models that bear no resemblance to the
case studies. We chose to generate constraints by using the
range of actual constraints, between 5 and 49, found in the
case studies. Between 37 percent and 100 percent of the
constraints are binary in our case studies; 90 percent of the
constraints across all of the studies were binary. As with
binary factors, we skewed the number of binary constraints
toward the average across case studies by selecting
80-100 percent of constraints per problem to be binary.
The remaining constraints were chosen as three, four, or
five-way with equal probability. We used a greedy
synthesis approach, so, at each decision point, if all
constraints are assigned to a category, synthesis stops.

Another consideration that we tried to enforce is to make
sure that between 40 percent and 100 percent of the factors
involved in constraints are involved in only a single
constraint while 10-20 percent of the factors are involved
in two constraints; the latter range represents the skewing
of factor involvement toward the average across all five case
studies. Any constraints that are not bound to factors are
configured to be involved with between three and nine
constraints with equal probability.

We automated this approach to generate CCIT problems.
In [24], we implemented a similar mechanism to generate
data sets based on these case studies, but the approach
described here refines that approach to better reflect the full
range of possible factors, values, and constraints found in our
case studies. Seventeen of the synthesized CCIT problems
from [24] were judged to be consistent with the approach
described here and we include them to allow comparability
between the study results in this paper and [24].

We generated 24 new CCIT problems; five of those
problems had inconsistent sets of constraints and were,
thus, unsatisfiable. From the remaining 19 problems, we
randomly selected 13 more for use in our evaluation. The
CMCA models, numbers, and arity of constraints for all
30 synthesized CCIT problems are shown in Table 3. For
each of the case studies and synthesized CCIT problems, it
enumerates the factors for the CAModel and the con-
straints. This information is given in an abbreviated form
that shows the numbers of factors with a given number of
values in the form #values#factors and the number of
constraints with a given arity in the form arity#constraints

(column No. Cons.).

5.3 Performance Evaluation
Our initial implementation of AETG-SAT [23] provided
evidence indicating that our techniques perform as well as
or better than existing constraint handling techniques. The
overhead required to find solutions using this technique
was, however, nontrivial. In further work [24], we explored
the use of incremental SAT solving and developed the
AETG-History algorithm. Evaluation of these enhance-
ments indicated that they could significantly reduce CMCA
generation time with no negative impact on the quality of
solutions.

In this section, we compare the performance of AETG-
History, AETG-Threshold, and AETG-History-Threshold
using an incremental SAT version of AETG-SAT as the
baseline. Our goal is to empirically evaluate the algorithms
with respect to both the computational time required
(efficiency) and the size (quality) of the resulting solutions.
Before comparing AETG-History and AETG-Threshold,
however, it is first necessary to select a threshold value. Our
first study evaluates various threshold values to find the best
balance of efficiency and quality in our data samples.

5.4 Finding a Good Threshold Point
The AETG-Threshold algorithm triggers a switch in the
algorithmic behavior at a given threshold point. Once this
threshold has been reached, the algorithm stops any further
AETG evaluations and instead fills in all of the remaining
factor-values using the last satisfying assignment found by
the SAT solver. We expect a range of behavior for this
algorithm. When the threshold is set very low, we expect
solutions that are effectively random in achieving interac-
tion coverage, while thresholds closer to the end will likely
save little computation. Since the selection of the threshold
will affect our results, we compare both time and size over a
range of threshold values. To determine a threshold, we
randomly selected five samples from our synthesized data.
These are sample numbers 14, 15, 21, 28, and 29 from
Table 3. We evaluate threshold in 10 percent increments
from 10 percent to 90 percent. For each threshold, we run
AETG-Threshold 50 times and collect both the time in
seconds as well as the size of the resulting CMCA.
Initialization is performed once and this time is divided
evenly among samples. Fig. 5 shows box plots for time and
size for each of the 50 runs summed across these five
samples. The graph on the left plots size, while the graph on
the right plots execution time. These plots capture the
variability in the 50 runs of the algorithm, while showing
the median total times and sizes based on different
threshold values.

As expected, the CMCA sizes for low thresholds are
large compared with the sizes calculated for a threshold of
50 percent or greater. The runtimes are dramatically lower
for thresholds below 50 percent and runtime increases
rapidly with increasing threshold.

Visual inspection of the plots suggests that a threshold in
the 50-70 percent range provides a good balance between
speed and CMCA size. We are interested in confirming this
intuition by calculating the threshold that provides the best
cost-benefit trade-off. We use a normalization technique to
equalize the values for time and size to contribute equally in
our decision. It is possible to associate more weight to one
or the other of these metrics, depending on the final
objective, but, for our initial investigation, we chose an

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

equal contribution. Given the different scales, we reduce the
impact of each to a relative importance. We first calculate
the timeRatio and sizeRatio by subtracting the minimum time
(or size) from the time (or size) of each threshold point. For
instance, in the timeRatio, all times will subtract 103.0, as is
seen in Table 2. We then divide this number by the range of
times (or range of sizes). This gives us a number between
zero and one for each ratio. Zero means that the time (or
size) matches the minimum value for all thresholds and
one means it matches the maximum time (or size). We
use a weighted sum of these, combinedTimeSize, and
select the minimum value to set our best threshold. Since
the ranges of data for time and size vary by a factor of
sizeRange=timeRange (10.7 in our data set given a time
range of 662.7 and a size range of 62.2), we multiply the size
ratio by this value, giving us the following formula:

combinedTimeSize ¼
timeRatioþ ðsizeRange=timeRangeÞ " sizeRatio:

The data for these calculations for the five samples is given
in Table 2. We use the average of the sum of the 50 data
repeats as a basis for this calculation. The results of this
analysis show that the threshold value of 60 percent
provides the best balance of both time and size. In Table 3,
we present only the data for this threshold value.

5.5 Comparing Algorithms
We compare the four variations of AETG-SAT presented in
Section 4, with a threshold of 60 percent for AETG-
Threshold and AETG-History-Threshold and the uncon-
strained AETG algorithm. All of our implementations are

written in C++ and use miniSAT v1.14.1 written in C [32].
All program runtime data is gathered by executing
implementations on an Opteron 250 processor with 4 Gbytes
of RAM running the Fedora Core 3 installation of Linux.

For each technique and CCIT problem, we ran 50 trials;
this helps account for the random variation that is inherent
in AETG-like algorithms. We collect both CMCA size and
execution times for each of the 50 trials. Once again, we
divide the initialization times evenly among all runs. Table 3
shows the results of generating samples for t ¼ 2 for the five
case studies as well as the 30 synthesized CCIT problems.
The first three columns identify the CCIT problem and
characterize the CAModel and problem constraints. The
remaining columns are split into two groups of five,
reporting for each of the five techniques in terms of CMCA
size and execution time in seconds; each cell in the table
gives the average over the 50 trials for either size or time.
The last row of the table is the sum of averages across all
data sets.

The variation in covering array size across techniques is
relatively modest. It is noteworthy that less than 3 percent
of the MCA rows produced by the unconstrained AETG
technique satisfy constraints. AETG-SAT and AETG-His-
tory produce nearly identical sizes as do AETG-Threshold
and AETG-History-Threshold. A difference of three rows
between AETG-Threshold and AETG-History-Threshold
across the more than 1,500 is within the expected variation
attributable to randomization in AETG, as can be observed
by the range in the box plots of the CMCA size data in
Fig. 5. The 60 percent Threshold algorithms appear to
provide a modest reduction, approximately 3 percent in
CMCA size. We conjecture that the effectively random

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 645

Fig. 5. SAT threshold performance for five random samples.

TABLE 2
Time and Size of Five Samples for Threshold Percentages

selection made after the threshold point provides a
relaxation in the aggressive one-row-at-a-time greedy
technique, allowing better decisions to be made in later
rows. We know that metaheuristic search techniques that
construct the entire array at a time (rather than fix one-row-
at-time) and relax intermediate solutions by allowing
occasional “bad choices” in general produce smaller cover-
ing arrays for both unconstrained and CCIT problems [9],
[23]. Further analysis is needed to confirm this conjecture.

The variation in execution time data across techniques is
more significant. AETG-History yields a 9 percent reduction
in solution time over AETG-SAT and a 5 percent reduction
in solution time over unconstrained AETG; these results are
consistent in [24]. AETG-Threshold, as expected, signifi-
cantly speeds up solution time by skipping AETG proces-
sing on 40 percent of each row; it yields a 67 percent
reduction in solution time relative to AETG-SAT.

The AETG-History-Threshold shows that the History
and Threshold optimizations target different aspects of
AETG-SAT algorithm since the data reveal that their
benefits accumulate when the optimizations are composed.
The AETG-History-Threshold technique yields a 71 percent
reduction in solution time relative to AETG-SAT. We
believe that additional improvements are possible by more
tightly integrating History and Threshold. The current
combination attempts to clearly separate the portions of the

row in which each technique is active; however, it is
possible to accelerate progress toward the threshold by
counting the must assignments produced by History as
making progress through the row. This integration would
further reduce solution time without impacting solution
quality—since Threshold will not overwrite must assign-
ments from History.

These data demonstrate unequivocally that integrating
constraints into CCIT solution algorithms can not only be
efficient, but can actually make solution times significantly
faster. This result may seem counterintuitive at first, but it
can be attributed to the fact that the techniques leverage
SAT to aggressively prune the AETG search space. The cost
benefits of this pruning more than compensate for the
additional overhead of mining SAT solver data structures,
maintaining threshold counters, and identifying implicit
constraints during initialization.

5.6 Further Analysis of the Threshold
We performed additional analyses to examine the impact of
increasing the covering array strength and of changing the
characterization of the covering array on the threshold.
First, we examine the threshold when our algorithms are
run for higher strength, i.e., different values of t. When we
run all of the same samples for t ¼ 3, we see the threshold
move to 80 percent (this threshold analysis is not shown).

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE 3
Average Size and Time over 50 Runs

We also see a steady decrease in the resulting covering
array size. This differs from the t ¼ 2 data, where our size
was minimal at the 60 percent threshold. Our conjecture is
that the random choices made by the SAT solver affect a
much larger set when t ¼ 3, which means we are less likely
to make good choices by chance. Table 4 shows time and
size data for our case study subjects when t ¼ 3. Although
our threshold is now 80 percent, we still see a large time
savings when we use AETG-Threshold. This is because the
runtimes are much longer overall. For instance in GCC, the
time saved by using an 80 percent threshold is approxi-
mately 8 hours. Our smallest arrays are found with AETG-
History for t ¼ 3. Which algorithmic technique provides the
greatest cost savings will now depend on the cost of
running tests for a single configuration versus the cost of
constructing the covering array.

We also examined synthesized data sets for t ¼ 2 that do
not follow the characteristics of our case study subjects.
Specifically, we decreased the number of factors, but
increased the average number of values for each factor to
be between 3 and 30 values. In this situation, we also saw an
increase in the threshold to 80 percent, leading us to
conclude that the threshold will be sensitive to the
parameters of the constrained covering array. Conse-
quently, we believe that selection of specific threshold
values is best determined by balancing the value of CMCA
size versus generation time in a particular testing context.

5.7 Threats to Validity
The most significant threats to our findings is their
generalization to other subjects. We cannot be sure that
the subjects chosen and the respective simulated data are
representative of all configurable software. We have,
however, tried to control for this by using four different
subjects from differing domains that have large user
population bases. All of these are open source programs,
however, which may not be reflective of proprietary
systems. We have also seen that the size data of our
resulting samples and the resulting threshold is sensitive to
the parameters of the covering array. This means that both
the software being modeled and the strength of the array
may affect the threshold value. The time data, however,
appears to be more stable across all experiments and should
generalize better.

We have taken special measures to assure the internal
validity of our findings. We have independently checked
the constrained covering arrays through random sampling
with different programs to confirm that they generate the
correct constrained covering arrays. We have also validated
the programs that are used to perform that checking.

While it is clear that one could develop many measures
for judging the value of a CCIT method, we believe that
CMCA size and generation time are the core elements of
such an evaluation. Their relative weights in drawing value
judgments may be varied depending on usage context, but
we leave such exploration to future work.

6 RELATED WORK

Although few algorithmic solutions for constraints in CIT
have been presented in the literature, their existence has
been discussed by others. Hartman formalizes CCIT where
he defines forbidden configurations [28]. Our use of
forbidden tuples can be thought of as partial forbidden
configurations. Bryce and Colbourn [22] differentiate
between forbidden combinations and combinations that
should be avoided but may legally be present. They term
these soft constraints.

Implicit constraints have been discussed and handled in
a few different ways in the research community. The
difficulties are discussed by the designers of AETG [6], [12],
although they do not suggest an algorithmic extension to
AETG to incorporate these during greedy construction.
Rather, they remodel the input and/or postprocess their
resulting CMCA samples. PICT is a Microsoft internal tool
[10]. It uses an AETG-like algorithm optimized for speed.
Specifically, it sets numCandidates ¼ 1 in line 1 of Algo-
rithm 1 (Section 4). This may reduce the quality of the
resulting solution since the default of generating 50 candi-
dates for each configuration in AETG provides a set of
choices each time from which the best can be selected. In
[10], a discussion of the algorithm and constraint handling
states that, as they build their solutions, they check to see if
the solution is legal, but the paper does not provide detail
about how this check is actually implemented or how
implicit constraints are uncovered.

Some tools expose implicit constraints by requiring the
user to expand or partition the input. One tool that requires
an expansion is the Intelligent Test Case Generator (Whitch)
[21] that includes two algorithms for finding covering
arrays, TOFU and Combinatorial Test Services (CTS) [28].
The TestCover service [20] uses direct product block notation
to identify a set of allowed test cases computed as a direct
product of compatible factor-values. It takes a collection of
these products as input data to define the set of all allowed
test cases, implicitly defining the constraints. The construc-
tion techniques used in TestCover are primarily mathema-
tical constructions and are therefore specific to covering
arrays with particular relationships between different
parameter combinations of t, k, and jvj.

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 647

TABLE 4
Average Size and Time over 50 Runs for t ¼ 3

In [22], the authors extend the AETG-like deterministic
density algorithm (DDA) [13] to include constraint handling
by weighting tuples as desirable or not. They use this
method to avoid tuples if possible. When implicit constraints
exist, their algorithms will fail to avoid them. Although they
provide a discussion of hard constraints which match our
forbidden tuples, their algorithm does not attempt to
handle these. Additionally, their work is limited to the
avoidance of forbidden pairs.

Hnich et al. [15] use constraint solving to build
unconstrained CIT samples by translating the definition
into a Boolean satisfiability problem. They encode at-least
and at-most constraints as disjunctive clauses, as well as
each of the required t-sets that must be covered. Their
approach has limited scalability to realistically sized
problems due to the exponentially large constraint set.
Although they use a SAT solver to directly construct a CIT
sample, they refer to the forbidden tuples discussed in this
paper as “side-constraints” and leave the handling of these
as a future extension. Our work uses the SAT solver only for
the base constraints, while it uses the AETG algorithm to
handle the required t-sets.

A significant emphasis of the computer-aided verification
community recently has been the integration of various
decision procedures into the SAT solving framework. These
Satisfiability Modulo Theory (SMT) approaches (e.g., [38])
use SAT as a backbone and integrate other decision
procedures as reasoning steps. Our work differs from this
approach because we use AETG as the driving application in
interacting with SAT. Furthermore, we extract intermediate
results from SAT computations for AETG, whereas, in SMT,
the decision procedures are run to completion and then only
their results are consumed. Thus, our work represents a finer
and domain-specific integration of SAT techniques as
opposed to the coarser and general SMT approach.

Finally, we place our work in a larger context of a body
of work that solves optimization problems arising in
software engineering, commonly termed search-based soft-
ware engineering. There has been a lot of recent research
activity that leverages both greedy and metaheuristic search
techniques for tackling problems that cannot be solved
through exhaustive enumeration. We do not present a
complete survey of that literature here, but refer readers to
[39] for a more thorough discussion. Both greedy and
metaheuristic techniques use heuristics to guide the search
toward a “good,” although perhaps less than optimal,
solution. The two classes of algorithms differ in that the
greedy techniques are often less expensive computationally
and may be easier to implement while often providing
solutions that are not as close to optimal as their metaheur-
istic counterparts. The choice of algorithm will depend on
trade-offs that weigh the cost of the algorithm, the
complexity of the search terrain, and requirements of the
problem solution.

Metaheuristic search formulates the problem as an
objective function subject to a set of conditions. Common
metaheuristic search algorithms include genetic algorithms,
simulated annealing, and tabu search. Examples of search
activity in software testing include the use of genetic
algorithms for test case generation [40], [41], [42], greedy
algorithms for regression test case selection and prioritiza-
tion [43], and our own work that uses simulated annealing
for generation of CIT samples [9], [44]. Recent work on
multiobjective optimization, such as that in [45], has

commonality with the work in this paper because it
provides a method to handle multiple orthogonal search
objectives at once. The primary goal of most of the search-
based research, however, has been to solve one particular
optimization problem and has not addressed ways to
incorporate additional external problem constraints such
as the type that we discuss in this paper. We believe there is
significant promise in integrating SAT tightly with other
search-based CIT methods. Metaheuristic search methods
such as simulated annealing offer the potential for generat-
ing smaller CIT samples than greedy methods [9] and a
basic integration of SAT with search appears to offer
significant opportunities for optimization [23].

7 CONCLUSIONS AND FUTURE WORK

The conventional wisdom in the CIT community is that
constraints significantly complicate the problem of comput-
ing a CIT sample. In this paper, we have presented a set of
algorithms that synergistically integrate Boolean satisfiability
algorithms with greedy CIT generation algorithms. The most
efficient of these algorithms allows high-quality CIT samples
to be computed in less than one-third the time of widely used
unconstrained CIT algorithms. Moreover, this performance
benefit was observed on a collection of CCIT problems that
reflect the richness of constraints found in real-world
systems. We believe this represents a promising step in
advancing CIT methods toward even broader applicability
for the testing of highly-configurable software systems.

The key insight in this work is to leverage the fact that
both CIT generation and SAT solver algorithms perform a
search of the same space. By formulating CCIT sample
generation as alternating phases of CIT and SAT search, we
leverage information from one search to inform the other.
This leads to significant pruning of the CIT search and
reductions in execution time, while retaining the portions of
the search space that contain high-quality solutions.

We believe that the techniques in this paper open the
way for more aggressive scaling of the application of CCIT
methods. In addition to scaling the size of subjects, an
additional, and orthogonal, dimension of scaling is to
consider higher CIT strength. While our evaluation con-
sidered mostly pairwise CCIT, it is likely that, for mission-
critical systems, engineers will target higher order coverage,
which will dramatically increase the cost of CIT. The
analyses we performed on some instances of CCIT for t ¼ 3
in [23] and in this paper indicate that runtimes are
dramatically larger than for t ¼ 2. We also observed that
the threshold point for retaining high-quality solutions
increases. We have not yet explored the impact on strengths
of t > 3. More study is needed to better understand the
scalability of our CCIT methods to extremely large-scale
highly-configurable mission-critical systems.

ACKNOWLEDGMENTS

The authors thank the following for helpful comments on
this subject: Alan Hartman, Tim Klinger, Christopher Lott,
and George Sherwood. This work was supported in part by
an EPSCoR FIRST award and by the US Army Research
Office through DURIP award W91NF-04-1-0104 and by the
US National Science Foundation through Awards 0747009,
0720654, 0541263, 0429149, and 0454203. Any opinions,

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the US Army Research Office and US
National Science Foundation.

REFERENCES

[1] D.L. Parnas, “On the Design and Development of Program
Families,” IEEE Trans. Software Eng., vol. 2, no. 1, pp. 1-9, 1976.

[2] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks, “Software
Architecture Themes in JPL’s Mission Data System,” Proc. IEEE
Aerospace Conf., Mar. 2000.

[3] D. Kuhn, D.R. Wallace, and A.M. Gallo, “Software Fault
Interactions and Implications for Software Testing,” IEEE Trans.
Software Eng., vol. 30, no. 6, pp. 418-421, June 2004.

[4] C. Yilmaz, M.B. Cohen, and A. Porter, “Covering Arrays for
Efficient Fault Characterization in Complex Configuration
Spaces,” IEEE Trans. Software Eng., vol. 31, no. 1, pp. 20-34, Jan.
2006.

[5] Nokia Corporation, “Nokia Mobile Phone Line,” http://
www.nokiausa.com/phones, 2007.

[6] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, “The
AETG System: An Approach to Testing Based on Combinatorial
Design,” IEEE Trans. Software Eng., vol. 23, no. 7, pp. 437-444, July
1997.

[7] R. Brownlie, J. Prowse, and M.S. Phadke, “Robust Testing of
AT&T PMX/StarMAIL Using OATS,” AT&T Technical J., vol. 71,
no. 3, pp. 41-47, 1992.

[8] R.C. Bryce, C.J. Colbourn, and M.B. Cohen, “A Framework of
Greedy Methods for Constructing Interaction Test Suites,” Proc.
27th Int’l Conf. Software Eng., pp. 146-155, May 2005.

[9] M.B. Cohen, C.J. Colbourn, P.B. Gibbons, and W.B. Mugridge,
“Constructing Test Suites for Interaction Testing,” Proc. 25th Int’l
Conf. Software Eng., pp. 38-48, May 2003.

[10] J. Czerwonka, “Pairwise Testing in Real World,” Proc. 24th Pacific
Northwest Software Quality Conf., pp. 419-430, Oct. 2006.

[11] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mallows, and A.
Iannino, “Applying Design of Experiments to Software Testing,”
Proc. 19th Int’l Conf. Software Eng., pp. 205-215, 1997.

[12] C. Lott, A. Jain, and S. Dalal, “Modeling Requirements for
Combinatorial Software Testing,” Proc. First Int’l Workshop
Advances in Model-Based Testing, pp. 1-7, May 2005.

[13] C.J. Colbourn, M.B. Cohen, and R.C. Turban, “A Deterministic
Density Algorithm for Pairwise Interaction Coverage,” Proc.
IASTED Int’l Conf. Software Eng., pp. 345-352, Feb. 2004.

[14] A. Hartman and L. Raskin, “Problems and Algorithms for
Covering Arrays,” Discrete Math., vol. 284, pp. 149-156, 2004.

[15] B. Hnich, S. Prestwich, E. Selensky, and B. Smith, “Constraint
Models for the Covering Test Problem,” Constraints, vol. 11,
pp. 199-219, 2006.

[16] K. Nurmela, “Upper Bounds for Covering Arrays by Tabu
Search,” Discrete Applied Math., vol. 138, nos. 1-2, pp. 143-152, 2004.

[17] K.C. Tai and Y. Lei, “A Test Generation Strategy for Pairwise
Testing,” IEEE Trans. Software Eng., vol. 28, no. 1, pp. 109-111, Jan.
2002.

[18] Y. Tung and W.S. Aldiwan, “Automating Test Case Generation for
the New Generation Mission Software System,” Proc. IEEE
Aerospace Conf., pp. 431-437, 2000.

[19] A.W. Williams and R.L. Probert, “A Measure for Component
Interaction Test Coverage,” Proc. ACS/IEEE Int’l Conf. Computer
Systems and Applications, pp. 301-311, Oct. 2001.

[20] G. Sherwood, “Testcover.com,” http://testcover.com/pub/
constex.php, 2006.

[21] IBM alphaWorks, “IBM Intelligent Test Case Handler,” http://
www.alphaworks.ibm.com/tech/whitch, 2005.

[22] R.C. Bryce and C.J. Colbourn, “Prioritized Interaction Testing for
Pair-Wise Coverage with Seeding and Constraints,” J. Information
and Software Technology, vol. 48, no. 10, pp. 960-970, 2006.

[23] M.B. Cohen, M.B. Dwyer, and J. Shi, “Interaction Testing of
Highly-Configurable Systems in the Presence of Constraints,”
Proc. Int’l Symp. Software Testing and Analysis, pp. 129-139, July
2007.

[24] M.B. Cohen, M.B. Dwyer, and J. Shi, “Exploiting Constraint
Solving History to Construct Interaction Test Suites,” Proc. Testing:
Academic and Industrial Conf.—Practice and Research Techniques,
pp. 121-130, Sept. 2007.

[25] M.B. Cohen, M.B. Dwyer, and J. Shi, “Coverage and Adequacy in
Software Product Line Testing,” Proc. ISSTA Workshop Role of
Software Architecture for Testing and Analysis, pp. 53-63, July 2006.

[26] R. Mandl, “Orthogonal Latin Squares: An Application of Experi-
ment Design to Compiler Testing,” Comm. ACM, vol. 28, no. 10,
pp. 1054-1058, Oct. 1985.

[27] J.D. McGregor, “Testing a Software Product Line,” technical
report, Software Eng. Inst., Carnegie Mellon Univ., Dec. 2001.

[28] A. Hartman, “Software and Hardware Testing Using Combina-
torial Covering Suites,” Proc. Graph Theory, Combinatorics and
Algorithms: Interdisciplinary Applications, pp. 266-327, 2005.

[29] M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,” J. ACM, vol. 7, no. 3, pp. 201-215, 1960.

[30] J.P. Marques-Silva and K.A. Sakallah, “GRASP: A Search Algo-
rithm for Propositional Satisfiability,” IEEE Trans. Computers,
vol. 48, no. 5, pp. 506-521, May 1999.

[31] T. Walsh, “SAT v CSP,” Proc. Int’l Conf. Principles and Practice of
Constraint Programming, vol. 1894, pp. 441-456, Sept. 2000.

[32] N. Eén and N. Sörrenson, MiniSAT-C v1.14.1, http://
www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
MiniSat.html, 2007.

[33] G.J. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279-295, May 1997.

[34] Free Software Foundation, “GNU 4.1.1 manpages,” http://
gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/, 2005.

[35] Apache Software Foundation, “Apache HTTP sever,” http://
httpd.apache.org/docs/2.2/mod/quickreference.html, 2007.

[36] Mozilla Organization, “Bugzilla,” http://www.bugzilla.org/
docs/tip/html/, 2007.

[37] G.J. Holzmann, “On-the-Fly, LTL Model Checking with SPIN:
Man Pages,” http://spinroot.com/spin/Man/index.html, 2006.

[38] C. Tinelli, “A DPLL-Based Calculus for Ground Satisfiability
Modulo Theories,” Proc. Eighth European Conf. Logics in Artificial
Intelligence, G. Ianni and S. Flesca, eds., pp. 308-319, 2002.

[39] M. Harman, “The Current State and Future of Search Based
Software Engineering,” Proc. Future of Software Eng., pp. 342-357,
2007.

[40] B. Korel, “Automated Software Test Data Generation,” IEEE
Trans. Software Eng., vol. 16, no. 8, pp. 870-879, Aug. 1990.

[41] P. McMinn, “Search-Based Software Test Data Generation: A
Survey,” J. Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105-156, 2004.

[42] R. Pargas, M.J. Harrold, and R. Peck, “Test-Data Generation Using
Genetic Algorithms,” J. Software Testing, Verification and Reliability,
vol. 9, no. 3, pp. 263-282, 1999.

[43] Z. Li, M. Harman, and R.M. Hierons, “Search Algorithms for
Regression Test Case Prioritization,” IEEE Trans. Software Eng.,
vol. 33, no. 4, pp. 225-237, Apr. 2007.

[44] M.B. Cohen, C.J. Colbourn, and A.C.H. Ling, “Augmenting
Simulated Annealing to Build Interaction Test Suites,” Proc. 14th
IEEE Int’l Symp. Software Reliability Eng., pp. 394-405, Nov. 2003.

[45] S. Yoo and M. Harman, “Pareto Efficient Multi-Objective Test
Case Selection,” Proc. Int’l Symp. Software Testing and Analysis,
pp. 140-150, July 2007.

Myra B. Cohen received the BS degree from
the School of Agriculture and Life Sciences,
Cornell University, the MS degree in computer
science from the University of Vermont, and the
PhD degree in computer science from the
University of Auckland, Auckland, New Zealand.
She is an assistant professor in the Department
of Computer Science and Engineering at the
University of Nebraska-Lincoln, where she is a
member of the Laboratory for Empirically based

Software Quality Research and Development (ESQuaReD). She is a
recipient of a US National Science Foundation Faculty Early CAREER
Development Award. Her research interests include testing of config-
urable software systems, combinatorial interaction testing, and search-
based software engineering. She is a member of the IEEE and the ACM.

COHEN ET AL.: CONSTRUCTING INTERACTION TEST SUITES FOR HIGHLY-CONFIGURABLE SYSTEMS IN THE PRESENCE OF... 649

Matthew B. Dwyer received the BS degree in
electrical engineering from the University of
Rochester in 1985, the MS degree in computer
science from the University of Massachusetts at
Boston in 1990, and the PhD degree from the
University of Massachusetts at Amherst in 1995.
He is the Henson Professor of Software En-
gineering in the Department of Computer
Science and Engineering at the University of
Nebraska-Lincoln. He worked for six years as a

senior engineer with Intermetrics Inc., developing compilers and
software for safety-critical embedded systems. His research interests
include software analysis, verification, and testing. He has served as a
program chair for the SPIN Workshop on Model Checking of Software
(2001), the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (2002), the ACM SIGSOFT
Symposium on Foundations of Software Engineering (2004), the ETAPS
Conference on Fundamental Approaches to Software Engineering
(2007), and the International Conference on Software Engineering
(2008). He is a member of the IEEE Computer Society and an ACM
distinguished scientist.

Jiangfan Shi received the BS degree in compu-
ter applications from the North China Institute of
Technology and the MS degree in computer
science from the University of Nebraska at
Omaha. He is currently a PhD student in
computer science at the University of Nebras-
ka-Lincoln, where he is a member of the
Laboratory for Empirically based Software Qual-
ity Research and Development (ESQuaReD).
His research interests include software testing

and verification. He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

