
Feature Interaction Faults Revisited: An Exploratory Study

Brady J. Garvin and Myra B. Cohen
University of Nebraska-Lincoln

Department of Computer Science and Engineering
Lincoln, NE 68588-0115
{bgarvin,myra}@cse.unl.edu

Abstract—While a large body of research is dedicated to
testing for feature interactions in configurable software, there
has been little work that examines what constitutes such a
fault at the code level. In consequence, we do not know how
prevalent real interaction faults are in practice, what a typical
interaction fault looks like in code, how to seed interaction
faults, or whether current interaction testing techniques are
effective at finding the faults they aim to detect.

We make a first step in this direction, by deriving a whitebox
criterion for an interaction fault. Armed with this criterion,
we perform an exploratory study on hundreds of faults from
the field in two open source systems. We find that only three
of the 28 which appear to be interaction faults are in fact
due to features’ interactions. We investigate the remaining 25
and find that, although they could have been detected without
interaction testing, varying the system configuration amplifies
the fault-finding power of a test suite, making these faults easier
to expose. Thus, we characterize the benefits of interaction
testing in regards to both interaction and non-interaction faults.
We end with a discussion of several mutations that can be
used to mimic interaction faults based on the faults we see in
practice.

Keywords-Interaction Testing, Configurable Software, Muta-
tion Testing

I. INTRODUCTION

Configurable software systems, software systems with fea-
tures that can be enabled or disabled, constitute an important
class of software, one that is becoming more prominent. The
software testing literature has paid special attention to con-
figurable systems because, in addition to the kinds of faults
present in other systems, they may contain faults caused
by interactions of features [1]–[3]. These faults are termed
feature interaction faults, or just interaction faults when the
meaning is clear from context. Interaction faults can only
be exposed under some combinations of system features
[1]–[3] and the space of possible configurations is usually
too large to exhaust (for instance, in GCC, the optimizer
alone has roughly 1061 configurations [4]). Consequently,
the research community has invested considerable effort in
devising effective, but inexpensive testing methods [1]–[3],
[5] with the most prominent being combinatorial interaction
testing (CIT) [6], [7]. There is a growing body of empirical
work on CIT with new methods and techniques to improve
and extend interaction testing appearing rapidly.

Despite the extensive literature, the community still lacks
a whitebox understanding of interaction faults. Researchers
currently distinguish interaction faults from other kinds
according to their blackbox behavior under a test suite [1]–
[3], [5]. But test suites are rarely complete in practice, and
such classifications are at best heuristic.

The lack of an exact distinction makes some fundamental
questions about interaction faults difficult to answer. We
do not know, for instance, how prevalent interaction faults
are compared with other types, nor do we know if they
are typically more severe or benign. While we can report
the general fault-finding effectiveness of interaction testing
techniques like CIT, we cannot know if the faults uncovered
by these methods are the faults that are actually targeted.
Neither can we seed interaction faults for experimentation;
without such a definition it is unclear what mutations to use.

However, there is research that provides a good basis for
a suitable whitebox view. In the work on feature interactions
(originally developed for applications in the telecommuni-
cations field), researchers propose behavioral models for
features and then apply model checking to detect system
property violations [8]–[10]. And recent work by Reisner et
al. [11] provides an analysis that links feature combinations
to the structural coverage those combinations can add to a
test suite.

We build on these results, working towards a theory of
feature interaction faults for configurable software. First, we
present a blackbox definition for interaction faults that is
consistent with the literature. We then derive a necessary
and sufficient whitebox criterion, where the condition is
expressed in terms of code regions much like those identified
in [11]. Then, in an exploratory study on hundreds faults
from two open source systems we identify 28 that appear
to be interaction faults at the blackbox level, and we check
them against our criterion. Most do not match, and we shed
some light on why they nonetheless seem to be sensitive
to the system configuration as well as why techniques such
as CIT might prove useful for finding them. We end with
a discussion of the mutations that, applied according to
our whitebox criterion, give a mutation strategy for seeding
interaction faults.

The primary contributions of this paper are:
1) Necessary and sufficient whitebox conditions for the

existence of an interaction fault.
2) An analysis of the distribution of interaction faults in

two open source systems.
3) A better understanding of the benefit of interaction

testing techniques for configurable software.
4) A mutation strategy for seeding interaction faults.

The remainder of this paper is laid out as follows: In
the next section we present some background and related
work. Section III follows with our blackbox definition and
whitebox criterion, while Sections IV and V detail our
exploratory study and its results. We conclude and present
future work in Section VI.

II. BACKGROUND AND RELATED WORK

Our work extends the earlier research on testing config-
urable systems, drawing on the interaction testing literature
especially [1]–[3], [11]. Because one of our goals is a strat-
egy for seeding interaction faults, we also give background
on mutation testing.

Throughout this paper, we will use the term failure, to
represent any externally visible departure from a system’s
required functional behavior that is caused by the software.
By fault (or sometimes bug), we mean a property of the
system’s implementation that makes such a failure possible.
These are narrower meanings than are sometimes used in
the dependability community (see [12] for more details).

A. Configurable Software Systems

Configurable systems, systems in which features can
be enabled or disabled, constitute a broad class, ranging
from user-configurable products like web browsers to highly
managed systems like software product lines [4], [13]. While
they may be configurable at both the hardware and software
level, we will restrict ourselves to configurable software.
Configurable systems are organized into features, which Pohl
et al. [13] defines as “end-user visible characteristics of a
system.” In this work, we view a configuration as a selection
of features; it determines the presence or absence of every
feature that could appear in a system instantiation. Not all
configurations are valid; most systems mandate at least one
common feature, and other limitations, such as the mutual
exclusion of two features, are frequent [4]. Thus, we say
that configurations are subject to feature constraints.

A feature model is a formal description of a system’s
features and the constraints that govern them [13]. Con-
sequently, we can categorize a configuration as occurring
at compile time (where the selection can usually be antici-
pated) or at runtime (possibly by end users, in which case
configurations are harder to anticipate). Beside differences
in who makes the configuration decisions, the time of
configuration also changes how the system is analyzed. For
example the work of Liebig et al. focuses specifically on

software configured by preprocessor directives [14], whereas
the techniques presented by Nita et al. concentrate only on
runtime options [15].

A configuration parameter is an input—either to the build
process or to the software system itself—whose purpose is to
control whether one or more segments of code are reachable.
It may be that some combinations of configuration inputs
are illegal; for instance, they may lead to a failed compile,
or they may be impossible to specify. It may also be that
some combinations are equivalent, resulting in the same set
of enabled features.

We also use the notion of a staged configuration in this
work, where configuration choices are divided into stages
[16]. Each stage’s choices yield a more restrictive feature
model, called a specialization, which is input to the next.
For example, if we must decide on one of three alternatives,
A, B, and C, the first configuration stage might eliminate
C but defer the choice of A or B to a later stage.

B. Interaction Testing

In Figure 1 we show a snippet of code in which config-
uration parameters control which code is reachable based
on a series of #ifdef statements. The important piece to
note is that certain lines of code are reachable when single
features are turned on or off while still other lines require
more than one feature setting.

int main(){
Data*data=readData();
#ifdef FEATURE_A
data=foo(data);

#else
#ifdef FEATURE_B
data=bar(data);

#endif
#endif
#ifdef FEATURE_B
data=bar(data);

#endif
baz(data);
#ifdef FEATURE_A
data=foo(data);

#endif
return 0;

}

// Line 2: Always reachable

// Line 4: Reachable if FEATURE_A
// is defined

// Line 7: Reachable if FEATURE_A
// is not defined, but
// FEATURE_B is

// Line 11: Reachable if FEATURE_B
// is defined

// Line 13: Always reachable

// Line 15: Reachable if FEATURE_A
// is defined

// Line 17: Always reachable

Figure 1. Identifying Feature Code

Research has shown that there are often specific combi-
nations of parameter values that lead to faults in software
[1]–[3]. For instance, in Figure 1 it is possible that the
return value from the call to foo on Line 4, violates some
assumption in the input space of bar on line 11 and causes
an exception to occur. This data flow occurs only when both
FEATURE_A and FEATURE_B are included in the program,
but not when either one of them occurs on its own.

Some of the earliest work on interactions appears in the
literature for telecommunications systems, where the possi-
bility of such faults is called the feature interaction problem

2

[8], [9], [17]. Features such as call waiting may fail
when combined with other features like international
calling. In much of the research on feature interac-
tions, models are built, often as state machines, and model
checking is performed to verify if specific behaviors can be
violated under the combination of specific features.

Out of this work grew much of the research on combi-
natorial interaction testing (CIT), which samples different
combinations of parameter values for testing [6], [7]. The
original work on interaction testing defined interactions as
combinations of input parameters (rather than configuration
parameters) where each full input is a test case. More
recent work has expanded the study of interactions to the
configuration level [1]–[3], [5], [10].

Interaction testing is typically a system-level,
specification-based testing technique, so we usually
examine variability from this view. Hence, we would
model the presence of FEATURE_A and the presence of
FEATURE_B as configuration parameters and describe their
possible values as the set {true, false}.

When testing the software, we would run a set of system
tests under different configuration parameter settings, such
as (true, false) or (true, true). If we find that a fault appears
only when both parameters take on the value true, we would
call this an interaction fault—its presence depends on more
than one option. Interaction faults are a special case of
configuration-dependent faults, which appear under some,
but not all configurations. For instance if there is a fault in
the unit for FEATURE_A, it will only appear in the subset
of configurations where FEATURE_A is set to true.

Empirical evidence shows that the blackbox behavior of
interaction faults arises in many systems [1]–[3]. There has
also been work to find the distribution on the number of
configuration parameters required to detect interaction faults
[2]. The count is generally small.

Yet there is a disconnect between the code and the
interaction itself. The work of Reisner et al. [11] presents
one definition of a feature interaction, but they restrict their
work to interactions that can be expressed as structural
coverage—that is, in terms of control flow. In the code of
Figure 1 we must also minimally consider the data flow
because it is the change of data that forces the fault in
FEATURE_B. We set out to learn whether this is enough;
we aim to understand what makes an interaction from a
code-centric view.

C. Mutation Testing

Mutation testing creates perturbations of a program that
mimic faults a programmer might introduce. Testing is then
used to detect (or “kill”) these faults with the number
detected used as a measure of the quality of the testing
technique or test suite [18], [19]. Mutation can also be a
method for automatically seeding faults for experimentation;

Andrews et al. show that mutation faults are representative
in certain respects [20].

There has been work on mutations specifically designed
for integration testing [18], where the set of mutations
focuses on unit interfaces in order to change the data that
flows between sets of units. But because units may not map
directly to features, or may be part of common code, this
work is not specific to configurations or feature interactions.

III. TOWARDS A THEORY OF INTERACTION FAULTS

In this section we begin with a definition for an inter-
action fault and then present the necessary criterion for its
existence. Intuitively, the essential point for an interaction
fault is that it must involve more than one feature. If we are
to give a formal definition, we must decide what involvement
of a feature means. We will base our decision on dependence
(in the probabilistic sense) and use staged configuration [16]
as the framework for presenting our model. We also assume
that we have a mapping between features and code.

Consider a two-stage configuration where we require
every decision during the first stage to be of the form
“feature X will be present” or “feature Y will be absent”.
This gives us a partial configuration:

Definition III.1 (Partial Configuration). For every feature, a
partial configuration specifies one of three possibilities: that
the feature is present, that it is absent, or that its presence
is left undetermined.

Note that the constraints of the feature model may allow
us to deduce the state of features not determined by the
partial configuration. For instance, if feature X requires fea-
ture Z, and the partial configuration indicates the presence
of X , it does not matter whether Z is declared present
or undetermined. Z could be also specified as absent, but
then the staged configuration could not continue because all
instantiations would be ruled out. Let us assume that such
contradictions are disallowed.

We will define the size of this partial configuration as:

Definition III.2 (Size of a Partial Configuration). The size
of a partial configuration is the number of features whose
presence or absence it explicitly determines.

Before the first stage occurs we know nothing about
the system instantiation apart from the requirements of
the feature model. We can represent this knowledge by
computing the system’s configuration space, the set of all
configurations that could be instantiated. Then, given the
partial configuration, we can compute the maximal subset of
the configuration space where the choices made in the first
stage are honored. We say that these configurations extend
the partial configuration. Because there are only two stages,
the second stage must choose an element of this subset to
instantiate.

3

Now suppose that the system contains a fault, visible
under some configurations but not others. We call such
a fault configuration-dependent, as a consequence of this
definition:

Definition III.3 (Configuration-Dependent Fault). Given a
test suite, a fault that it exposes under some configurations
but not others is termed configuration-dependent with re-
spect to that test suite [1]. If a test suite is not specified, it is
understood to be the perfect test suite, which will reveal the
fault under every configuration where doing so is possible.

In earlier work by Qu et al. [1] configuration dependence
of individual test cases within a test suite is differentiated
from configuration dependence for the full test suite. We do
not make this distinction.

Next, consider the case where the fault is detectable
in any extension of the partial configuration. We cannot
conclude that the second-stage choices never affect the
fault’s visibility—it might be that some of them matter when
the features are divided among stages differently—but we
can conclude that the decisions in the first stage are enough
to make them irrelevant. In that case, we would label the
partial configuration as sufficient for exposing the fault:

Definition III.4 (Sufficiency of a Partial Configuration). A
partial configuration is sufficient for exposing a fault if and
only if for every full configuration that extends it there is a
fault-exposing test case.

There will typically be many partial configurations that
are sufficient; for every sufficient partial configuration that
does not determine the presence or absence of a feature X ,
a partial configuration identical except for its ruling on X
will also be sufficient. However, we are only interested in
minimum sufficient partial configurations, because for any
fault contained within a single feature—which should not
be an interaction fault according to the intuition presented
earlier—there is a size-one partial configuration sufficient
for exposing it. A natural step then is to use the size of
the minimum sufficient partial configurations to distinguish
interaction and non-interaction faults. Accordingly, we in-
troduce the following two definitions:

Definition III.5 (t-way Fault). A fault is a t-way fault if
there is a partial configuration of size t that is sufficient for
exposing the fault, but none of size t− 1.

Definition III.6 (Interaction Fault). A fault is a interaction
fault if it is a t-way fault where t is at least two.

At first glance this last definition looks much like a
characterization of integration faults, faults that require the
integration of two or more units before they can be exposed.
It differs in two main ways. First, units partition code,
whereas features do not necessarily: code that connects
features X and Y cannot be said to belong to either, and if

void foo(){
if(FEATURE_A){
bar();

}
}
void baz(){
if(FEATURE_B){
quux();

}
}
void main(){
foo();
baz();

}

// r1; {c1,c2,c3,c4}
// r2; {c3,c4}

// r1; {c1,c2,c3,c4}
// r3; {c2,c4}

// r1; {c1,c2,c3,c4}
// r1; {c1,c2,c3,c4}

c1 = {FEATURE_A← false, FEATURE_B← false}
c2 = {FEATURE_A← false, FEATURE_B← true}
c3 = {FEATURE_A← true, FEATURE_B← false}
c4 = {FEATURE_A← true, FEATURE_B← true}

Figure 2. Simple Example Configurable System where Instructions are
Labeled with the Region they belong to and the Configurations that Make
them Reachable

that same code could also connect X and Z, then it is not
even possible for us to give a unique set of owners. Second,
units can be tested individually, while features might be
implemented as conditionals scattered across many functions
and unable to stand on their own.

Nonetheless, there is some mapping between features and
the implementation, which we can use to guide our search
for interaction faults or as an aid in seeding them. We begin
by recalling the definition of a basic block:

Definition III.7 (Basic Block). A basic block is a maximal
sequence of statements that has one entry point, one exit
point, and no internal branching.

Grouping basic blocks according to their configuration de-
pendence results in a set of variability regions:

Definition III.8 (Variability Region). A variability region is
a maximal set of basic blocks such that if one of the basic
block is executable under a given configuration, the other
blocks are can be executed under the same configuration,
though possibly by different non-configuration inputs.

Note that basic blocks that are interrupted by compile-
time configuration guards, like #ifdefs, must be subdi-
vided so that compile-time and runtime variability are on
equal footing.

Take Figure 2 as an example. Like the previous example,
the system has two features, FEATURE_A and FEATURE_B,
and no restrictions on how those features can be combined.
Thus, there are four configurations, enumerated as c1, . . . , c4
at the bottom of the figure. Ignoring the callees, which we
elide, each line lies in exactly one basic block and is labeled
with the set of configurations under which some input can
reach it. Lines labeled with the same set constitute one of
the variability regions r1 through r3.

4

While the feature flags themselves are referenced in the
example code, a configuration might influence reachability
less directly, in which case labeling blocks becomes a
more difficult task. But in systems where configurations
are evaluated at runtime, we can approximate the labels
by marking configuration parameters as symbolic and then
executing a test suite, following the strategy presented by
Reisner et al. [11].

Then, given a partial configuration, we can determine
the corresponding specialization of the code, in which
some variability regions may be guaranteed reachable or
unreachable. For instance, given FEATURE_A← true, the
regions r1 and r2 merge and are assured reachability. On the
other hand, r3 is still optional. With a different assignment,
FEATURE_B← false, r1 is reachable, the reachability of
r2 is unknown, and r3 becomes dead code.

If the system in Figure 2 contains an interaction fault, an
assignment to FEATURE_A alone cannot force the fault to
be detectable, nor can a lone assignment to FEATURE_B.
Therefore, in both cases the visibility of the fault must
depend on code whose presence could still be in question—
code outside of r1 ∪ r2 on one hand and external to r1 ∪ r3
on the other.

We must take some care, however, because we cannot
conclude that the fault’s visibility is always dependent on
this code. For the moment we will note the regions that
were made reachable and unreachable and add a caveat to
our conclusions. Thus, we associate the pair (r1 ∪ r2,∅)
with FEATURE_A ← true and the pair (r1, r3) with
FEATURE_B ← false. (r1, r3), for instance, means that
code outside of r1 ∪ r3 can alter the visibility of the fault
when r1 is known to be reachable and r3 is known to be
unreachable. A similar argument for the remaining size-
one partial configurations, FEATURE_A ← false and
FEATURE_B ← true, produces (r1, r2) and (r1 ∪ r3,∅),
respectively. We call these pairs non-interaction pairs:

Definition III.9 (Non-interaction Pair). A non-interaction
pair for a fault is a pair of sets of basic blocks (R1, R2)
such that, if the reachability of R1 and the unreachability
of R2 guarantee the existence of a fault-exposing input, the
fault is at most 1-way, and therefore not an interaction fault.

For each size-one partial configuration we can compute
a non-interaction pair by finding the set of configurations
extending the partial configuration. In the first coordinate
we take the union of all variability regions whose labels
are supersets of this set; in the second we have the union
of all variability regions whose labels’ complements are
supersets—just as in the example. We say such a non-
interaction pair is induced by the partial configuration.

As another example, suppose that we are analyzing a fault
in Figure 3 triggered by foo2() but masked by quux2().
The assignment FEATURE_A ← true gives us the set
{c3, c4} as possibilities. That set is a subset of the labels for

void main2(){
if(FEATURE_A){
foo2();

}
if(FEATURE_B){
bar2();
if(FEATURE_A){
baz2();

}else{
quux2();

}
}
xyzzy2();

}

// r4; {c1,c2,c3,c4}
// r5; {c3,c4}

// r4; {c1,c2,c3,c4}
// r6; {c2,c4}
// r6; {c2,c4}
// r7; {c4}

// r8; {c2}

// r4; {c1,c2,c3,c4}

c1 = {FEATURE_A← false, FEATURE_B← false}
c2 = {FEATURE_A← false, FEATURE_B← true}
c3 = {FEATURE_A← true, FEATURE_B← false}
c4 = {FEATURE_A← true, FEATURE_B← true}

Figure 3. More Complicated Example Configurable System where Instruc-
tions are Labeled with the Region they belong to and the Configurations
that Make them Reachable

r4 and r5, and a subset of the complement of the label for
r8. Thus FEATURE_A← true induces the non-interaction
pair (r4 ∪ r5, r8). foo2() is in r5, and quux2 is in r8,
so we can guarantee the reachability of the former and
simultaneously the unreachability of the latter. Thus, the
fault is not an interaction fault.

Clearly, non-interaction pairs are useful only if we can
determine how the reachability of basic blocks affects
fault detectability. Therefore, we define an analog to non-
interaction pairs:

Definition III.10 (Critical Pair). A pair of sets of basic
blocks (S1, S2) is critical to a fault if and only knowing
the elements of S1 to be reachable and the elements of
S2 to be unreachable guarantees the existence of a fault-
exposing input, apart from any other knowledge of the
system configuration.

In other words, a critical pair (S1, S2) and a non-
interaction region (R1, R2) where S1 ⊆ R1 and S2 ⊆ R2

is enough to show that a fault is not an interaction fault. In
fact, we can extend this claim to necessary and sufficient
condition for an interaction fault:

Theorem III.11 (Necessary and Sufficient Condition for
an Interaction Fault). A fault is an interaction fault if and
only if there is no critical pair (S1, S2) and size-one partial
configuration P such that P induces the non-interaction pair
(R1, R2) with S1 ⊆ R1 and S2 ⊆ R2.

Proof: To show necessity, suppose that we have a t-
way interaction fault (with t ≥ 2) and also S1, S2, and P
meeting the criterion above. Because t − 1 is at least one
and necessarily less than the number of features, we can
choose a partial configuration P ′ that extends P and also
determines the presence or absence of exactly t−1 features.
Any configuration that extends P ′ also extends P , and we

5

know that under such a configuration the basic blocks in R1

are reachable while those in R2 are not; the reachability of
S1 and the unreachability of S2 follow immediately. But then
we are guaranteed the existence of a fault-exposing test case,
so that P ′ is a size t− 1 partial configuration sufficient for
exposing the fault, a contradiction. Therefore, no interaction
fault can violate this condition; it is necessary.

For showing sufficiency, we will demonstrate that the
condition cannot hold for a non-interaction fault. By Def-
inition III.6, we know that for every t ≥ 2 there is a
partial configuration of size t − 1 sufficient for exposing
the fault, which means that there must be a sufficient partial
configuration P of size zero or one. Let (S1, S2) = (R1, R2)
be the non-interaction pair induced by P . We have S1 ⊆ R1

and S2 ⊆ R2 by construction, and the sufficiency of P
implies that (S1, S2) is a critical pair. Consequently, the
condition cannot apply to non-interaction faults, meaning
that it is a sufficient criterion for interaction faults.

We recognize that the identification of critical pairs is not
a trivial task. However, to demonstrate a non-interaction fault
it is enough to find a one suitable critical pair, and it need
not be minimal. With knowledge of the code change that
constituted the fault, we can often identify all statements
that might divert execution from indicted code, as well as
statements that could alter the data it depends on. Then,
between the fault and the point of failure we can collect
the statements that might derail a failure. The faulty code
and the point of failure then become S1, while the other
statements we identified become S2. As long as we err
towards over-approximation, the result will be a critical pair.
And if the over-approximation doesn’t include too many
variability regions, the critical pair may be small enough
to complete the argument.

On the other hand, to show that a fault is an interaction
fault we can find statements whose execution is necessary for
the failure, and possibly statements whose non-execution is
necessary—statements that are guaranteed to mask the fault.
Apart from code in the commonality, any critical pair must
mention such statements in its reachable and unreachable
sets, respectively. Consequently, we may be able to show
that every critical pair’s sets cannot be enclosed by the sets
of a non-interaction pair, even though we cannot enumerate
the critical pairs.

In our exploratory study we used both of these strategies
to apply our definition to faults from the field.

IV. EXPLORATORY STUDY

Our study’s research question aims to find out what por-
tion of configuration-dependent faults are interaction faults
according to our whitebox criterion in Theorem III.11:
RQ: How well do configuration-dependent faults in the
field match our criterion for an interaction fault?

To answer this question we identify faults that are
configuration-dependent and have been fixed. Based on the

fix, we bound the minimum size of a sufficient partial
configuration. In addition, we analyze the code to determine
if it matches the sufficiency criterion and learn about the
types of mutations that would represent interaction faults.
This study does not use an automated implementation of our
criterion, but rather, a detailed manual analysis. We leave the
development of a fully automated analysis as future work.

A. Objects of Analysis

We selected two open source highly configurable software
systems for study: GCC and Firefox. Both are widely used,
have publicly available bug databases with good documen-
tation of the test cases and configurations that provoke each
failure, and make commits and developer comments publicly
available. They have different architectures, which allows us
to draw slightly broader conclusions. For instance, features
and units are aligned in GCC, while in Firefox features are
implemented as conditionals scattered across many units.

GCC,1 is a compilation framework with front-ends for
a variety of languages and back-ends for a variety of
platforms. The study covers version 4.4.0, which exceeds
23 million lines of code. Importantly, GCC features line up
closely with compiler passes and therefore with functions.

In constructing GCC’s feature model, we restricted our-
selves to the compiler’s command-line options, grouping
features according the GCC manual. This led to 168 features,
most of which are binary (see our associated website2).

Firefox,3 is a leading web browser managed by the Mozilla
Corporation. It is written in C, C++, and JavaScript, along
with several other domain-specific languages, and the latest
version contains more than 17 million lines of code. We
considered every version of Firefox in the Mozilla bug
tracker, but, because of that choice, many test cases had to
be run manually. To save on human effort, we toggled only
the features that the bug reports mentioned as significant
when we checked for configuration dependence. Therefore,
we did not have a ’global’ configuration model, though we
did restrict ourselves to the options on Firefox’s about:config
page. The full list can be found on our website.

B. Method

To answer our research question we developed a set of
qualitative metrics and then summarized them quantitatively.
We categorized the underlying fault by asking four ques-
tions: (1) Could the fault have been caught by applying unit
testing to individual features?; (2) Could the fault have been
detected by precondition checks on functions/methods?; (3)
Is the fault due to too much or too little information flowing
between different features?; and (4) Would the wrong behav-
ior have been correct for a different system configuration?
Once we understood the fault well enough to answer these

1http://gcc.gnu.org/bugzilla/
2http://www.cse.unl.edu/∼myra/artifacts/issre2011/
3https://bugzilla.mozilla.org/

6

Table I
SUMMARY OF STUDIED FAULTS

GCC version 4.4.0
Total Run on Config. Dep. Fixed

our system
360 137 31 17
Firefox (all versions)
Total Fixed Config. Dep. Run on

our system
118 116 11 11

questions, we put the fault into one of four categories, which
were synthesized from the data, and applied our whitebox
criterion. We then compiled mutation descriptions for the
true interaction faults.
Selecting Faults for Study. For GCC, we collected all 360
reports from the public bug database that affect compilation
or debugging for C, C++, and Fortran programs and are also
tagged with “known to fail” on at least one of the versions in
the 4.4.0–4.4.2 range (many of the reports not tagged with
4.4.0 were still reproducible under that version). Then we
chose an appropriate subset for the experiments, excluding
reports that (1) were still incomplete, (2) required a non-
default bootstrap, (3) described a fault that was fixed before
the public release, or (4) could not be reproduced on our
system. 137 remained. We ran each on our system, varying
every configuration input individually; if some single change
to a configuration parameter masked the fault, we marked the
fault as configuration-dependent. 31 were so marked. There
were only fixes on file for 17 of them, so we discarded the
rest. Table I summarizes this data.

Extracting bugs from the Firefox database proved more
difficult. The Firefox developers use it to track not only
bugs, but also other tasks like routine maintenance (bug
#598795, for instance), and publicity events (such as bug
#262292). After some trial and error, we decided to focus
on bugs marked as regressions and priority 1 (the highest
priority), as these were almost always reports of functional
failures. We included bugs from all versions of Firefox,
in order to have a sufficient pool—118 reports. We then
removed two unfixed bugs and read each report looking for
mention of configuration dependence. 11 remained, all of
which we manually reproduced on our system, varying the
mentioned configuration parameters one by one to determine
if we could mask the fault. All 11 were confirmed to be
configuration-dependent.
Detailed Analysis Once we obtained a set of configuration-
dependent faults for each subject, we manually examined
the commits that fixed each of the faults, along with the
developer comments on the issue trackers. When necessary,
we also observed the faults in a debugger. After each
inspection, we wrote a detailed description of the fault; these
descriptions are cataloged on our website, along with links
to the diffs for the relevant commits.

As a check of validity, we provided another researcher
who was neither involved in this project nor aware of our

Table II
CONFIG. DEPENDENT FAULTS: DETAILED DATA

Sys. Bug # Parameters Category Interaction
Fault?

GCC 39794 14 II Y
40087 3 I Y
40321 5 IV N
40389 2 IV N
41016 1 IV N
41094 1 IV N
41183 4 IV N
41403 3 IV N
41643 4 I Y
41843 1 IV N
41917 2 IV N
42049 6 IV N
42231 6 IV N
42542 4 IV N
42614 3 III N
42667 2 IV N
43024 4 IV N

Firefox 306208 1 IV N
337871 1 IV N
344189 1 IV N
403040 1 III N
413437 1 III N
414836 1 III N
442970 1 III N
479994 1 IV N
529667 1 IV N
403854 1 IV N
423960 1 III N

objective a random ordering of the 28 reports and asked him
to independently do the same analysis on as many faults as
he had time for. In total we checked 25 of the 28 faults
(including all of those deemed interaction faults).

C. Threats to Validity

The first threat to this work is that we only studied two
open source subjects. We did select systems from popular
application classes and with very different characteristics
and architectures, but we may have missed important phe-
nomena. Another threat is the possibility of human error
because the study involved a manual analysis in unfamiliar
code. In addition, one of the humans doing the analysis
was an author. Although our conclusions were verified by
another researcher, there may still be mistakes or unintended
bias. We have therefore provided a detailed description of
each fault analysis on our website, along with links to
the issue tracker artifacts, so that other researchers can
verify our results. Finally, the mechanism for checking
configuration-dependence may be a threat: in GCC we only
toggled one feature at a time, and in Firefox we relied on
reporter or developer comments. Therefore, we may have
underestimated the population of configuration-dependent
faults in both subjects.

V. RESULTS

In this section we answer our research question and
discuss observations obtained from the faults in this study.

7

A. Configuration Dependent Failures
Table II presents the results for the 28 faults that we

determined to be configuration-dependent. The first column
gives the software system, and the next shows the report’s
number in the corresponding issue tracker. The column
labeled Parameters gives the number of configuration pa-
rameters that we could toggle to mask the fault—for GCC
and Firefox configuration parameters are generally in one-to-
one correspondence with features. For instance, bug #41183
in GCC 4.4.0 requires four specific feature settings in order
for the fault to appear under the given test case.

A “1” in the parameters column is some evidence that a
fault is not an interaction fault; however, we did not test the
entire configuration space, so it is not proof. One half (14
of 28) fit into this category. For the bugs that seem to need
at least two features enabled, we see the values range from
two up to 14 with an average of 4.4 (or 3.7 if we remove the
outlier of 14). And the median count is four, so assuming the
availability of test cases like those reported, we can expect
testing techniques that target interactions of four or fewer
features to capture a large number of these problems. On
the other hand, we did see four faults (roughly 14%) that
need five or more features under these test cases.

The last two columns present the category of fault, which
we describe next, and whether or not we would label this
as a true interaction fault based on the definitions from
Section III. After manually analyzing each of the faults
we derived four categories that apply to all: two for the
interaction faults and two for the non-interaction faults. They
are as follows:

I. Violation of one feature’s assumption by another.
This is what we expected to see for most of the inter-
action faults: an exchange of information, about which
features made inconsistent assumptions. A tester could
target such faults with an analysis to identify informa-
tion flow between features.

II. Features fail to exchange enough information. In
contrast to the previous category, we also found a fault
where intended information exchange was missing,
something that would be difficult to identify by a
whitebox analysis.

III. The wrong features are enabled or they are enabled
at the wrong time. Although we knew that such faults
could exist, this was not a category we expected to
see so frequently. Here, the code implementing the
features is correct, but the translation from config-
uration parameters to a configuration was incorrect.
We also include faults that caused unintended runtime
reconfigurations, and one case (GCC bug #42614)
where the correct optional code is enabled but then
called at the wrong time.

IV. Fault in optional feature. In the final category we
collected all of the faults that were contained in
functions implementing a single optional feature.

Table III
CATEGORIZATION OF FAULTS

No. Category Subject Count
I Violating feature assumption GCC 2

Firefox 0
II Features fail to exchange info GCC 1

Firefox 0
III Wrong features enabled GCC 1

Firefox 5
IV Fault in optional feature GCC 13

Firefox 6

Table III summarizes the categorization by system. We
see that out of the 17 GCC faults examined, only three are
true interaction faults (category I or II): two of type I and
one of type II. The rest were either faults contained and
triggered entirely in optional features (category IV) or, in
just one case, due to incorrect configuration-realizing code
(category III).

Interestingly, while the majority of GCC configuration-
dependent faults were actually non-interaction faults (13),
many required a large set of features to be exposed by the
given test case—bugs #42049 and #42231 for instance each
need six features. We will discuss this phenomenon more in
the next section.

None of the faults in Firefox fit our definition of an inter-
action fault. While all appear to be configuration-dependent,
almost half were due to the application entering an incorrect
configuration (5 of 11). And like GCC, the majority (6
of 11) were faults in an optional feature. While GCC
and Firefox have different distributions of configuration-
dependent faults, in both cases most fell into category IV,
and less than a quarter belonged to other categories.

We summarize our answer to our research question as fol-
lows. We found that only about 10% of the faults appearing
to be configuration-dependent are actually interaction faults,
based on our earlier definition and criterion. Most were
actually faults contained within a single optional feature
(where t = 1) and in theory they could have been caught by
more intensive feature testing. After that, many were due to
incorrectly instantiating the intended configuration. But we
do see some real interaction faults for GCC and believe that
this is some evidence in support of interaction testing.

B. Mutation Categories

We next discuss some mutation categories for the three
faults that fall into the first two categories—the interaction
faults. More detail is on our website.
GCC Bug #41643. In the simplest GCC interaction fault,
an if that should have tested a condition in the form
(!foo||!bar) was wrongly implemented so that it only
checked !foo. Although the change is a simple first-order
mutation, it occurred in optional code, and the predicate
could only be falsified by statements in code for different

8

features. The mutated statement, a use, and one of its defs
were in the reachable blocks of every critical pair.

The general mutation suggested is to identify a viable
def/use pair that is not contained by any non-interaction
pair’s reachable set, and then to apply a normal mutation
to either the def or the use.
GCC Bug #39794. As with bug #41643, the mutation
corresponding to GCC Bug #39794 is semantically a guard
condition changed to true or false. The fix is actually
somewhat more complicated because the GCC developers
had to move one definition (which represents the canoni-
calized expression for a memory address) earlier and then
change a function signature in order to reference the correct
values in the guard.

The effects of this mutation are similar to the effects of
#41643, but the reasons for it being an interaction fault are
different. Although the if’s use is in code for an optional
feature (a dead store elimination pass), it can draw on a
wide variety of defs, not all of which are in optional code.
The fault is only an interaction fault because the subsequent
assignment almost always leads to equivalent gen and kill
sets and therefore the same ultimate outcome. We identified
at least twelve features that would disturb the inputs to the
dead store elimination pass enough to mask the fault.
GCC Bug #40087. The most complicated of the three bugs
was #40087, which was arguably several faults caused by a
single misunderstanding. In five places, and in four different
ways, the mutation altered a guard, affecting the value
escaping a function in optional code; at the same time, all of
the code that could use the def was governed by a different
set of features.

The unique aspect of #40087 is in how the guards
changed. At two points the correct condition to test is
false. It might be better to classify those mutations sepa-
rately, as introducing a definition. For this kind of mutation
to yield an interaction fault, the location of the injected
definition and the locations where it could be read must
not be within the reachable set of any non-interaction pair.
Summary. We observe that most of the mutations are simple
guard mutations that impact a def/use pair between variabil-
ity regions. Therefore, an analysis to identify non-interaction
pairs, an analysis that finds def/use pairs, an analysis that
identifies associated guards, and an inventory of branch
condition mutations may be enough to mimic these faults.
We propose such a tool for future work.

C. Discussion and Observations

Only three of the faults in Table II proved to be interaction
faults according to our definition. The remainder could be
detected at the function level, at the feature level, or with
1-way CIT, provided that we had a suitable set of test cases.
Though surprising, this distribution still argues for the use
of CIT or other configuration-aware testing techniques, as
noted in the observations that follow.

Interaction Testing Improves Feature-Level Testing. Al-
though many faults were contained in a single feature, and
could have been detected by better feature-level testing, the
test cases that would find these faults were often not obvious.

For example, GCC bug #41843 fails because common
code mistakenly declares two structures equivalent when
one’s fields are a subset of the other’s. At the system level,
we would have to have arranged for these structures to be
compared against each other by the faulty function and in
the right order—an unlikely event if we did not have reason
to suspect this particular bug. But when GCC performs
structure-peeling optimizations (which create versions of a
structure with fields removed), a fault-triggering situation
becomes more plausible.

This points to an interesting observation: although interac-
tion testing may not be necessary for finding such faults, the
variation of enabled features generates a broader set of inputs
for the feature, exercising behaviors that may otherwise go
untested.
Configuration-Realizing Code Needs to be Tested. A large
number of the faults found in Firefox fell into Category
III, which we describe as the wrong configurations enabled.
This was unexpected, but it may be because Firefox’s
features do not line up well with units, so the configuration-
realizing branches must appear in many places, and are
therefore harder to test. The prevalence of the category
points out the need to test the configuration manipulation
code more carefully. Although the faults of this type were
not interaction faults, they may be hard to detect without a
technique like CIT that samples the configuration space.
Some Interaction Faults are due to Missing Information
Flow. At the start of this study we expected that we would
be able to develop a static analysis to pinpoint potential
interaction faults. However, as we examined the real data we
came across category II, where the problem is nonexistent
data flow or missing control flow between features. Without
an oracle that describes the intended information exchange,
this type of interaction fault is only detectable by combining
black- and whitebox techniques.
Overall Observations. We now summarize our overall ob-
servations:
• Better feature-level testing and tests of the

configuration-realizing code are important.
• Some interaction faults do exist in the field, so tech-

niques that find them and mutations that represent
them are still necessary. Because we observe a case
where a whitebox analysis based on identifying data
and control flow would miss the interaction fault, a
system-specification-based technique such as CIT may
be a good fit.

• In light of the low incidence of interaction faults and the
high prevalence of blackbox configuration dependence,
it seems that the real benefit of CIT is its ability to
magnify the fault-finding power of a test suite.

9

VI. CONCLUSIONS

In this work we revisited the notion of a feature interaction
fault, presented a blackbox definition, and gave a necessary
and sufficient whitebox criterion for an interaction fault
to exist. We performed an exploratory study on two open
source systems to understand if real-world faults fall into
our more stringent definition of an interaction fault and to
understand the types of mutations that would mimic these
faults. Of the more than 250 faults that we considered,
28 were deemed configuration-dependent and formed the
basis of our in-depth study. Of these only three were true
interaction faults, while the remainder were faults contained
within code for an optional feature or else faults in the
configuration-realizing code. Although all of these non-
interaction faults could have been found through better
feature-level testing, we observed that testing under different
configurations traverses a richer subset of the system’s
behaviors and may complement feature-level testing.

In future work we plan to build a mutation testing tool
specifically for seeding interaction faults. We also intend to
extend this study to a larger set of subjects and to evaluate
the potential for using configuration testing techniques to
improve feature-level testing in configurable software.

ACKNOWLEDGEMENTS

We would like to thank Wayne Motycka for helping
validate data. This work is supported in part by the National
Science Foundation through award CFDA#47.076 and CCF-
0747009 and by the Air Force Office of Scientific Research
through award FA9550-09-1-0129. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
position or policy of NSF or AFOSR.

REFERENCES

[1] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-
aware regression testing: An empirical study of sampling and
prioritization,” in Intl. Symp. on SW Testing and Analysis, Jul.
2008, pp. 75–85.

[2] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software
fault interactions and implications for software testing,” IEEE
Trans. on SW Eng, vol. 30, no. 6, pp. 418–421, 2004.

[3] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays
for efficient fault characterization in complex configuration
spaces,” IEEE Trans. on SW Eng, vol. 31, no. 1, pp. 20–34,
Jan. 2006.

[4] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing
interaction test suites for highly-configurable systems in the
presence of constraints: A greedy approach,” IEEE Trans. on
SW Eng, vol. 34, no. 5, pp. 633–650, 2008.

[5] B. Robinson and L. White, “Testing of user-configurable
software systems using firewalls,” in Intl. Symp. on SW Rel.
Eng., Nov. 2008, pp. 177–186.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, “The AETG system: an approach to testing based on
combinatorial design,” IEEE Trans. on SW Eng, vol. 23, no. 7,
pp. 437–444, 1997.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz, “Model-based testing in
practice,” in Intl. Conf. on SW Eng., 1999, pp. 285–294.

[8] Y.-J. Lin and M. Jazayeri, “Managing feature interactions in
telecommunications software systems - guest editorial,” IEEE
Trans. on SW Eng, vol. 24, no. 10, pp. 777 –778, Oct. 1998.

[9] S. Nejati, M. Sabetzadeh, M. Chechik, S. Uchitel, and P. Zave,
“Towards compositional synthesis of evolving systems,” in
Intl. Symp. on Found. of SW Eng., 2008, pp. 285–296.

[10] A. Classen, P. Heymans, and P.-Y. Schobbens, “What’s in a
feature: a requirements engineering perspective,” in Theory
and Practice of SW, Intl. Conf. on Fund. Approaches to SW
Eng., 2008, pp. 16–30.

[11] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter,
“Using symbolic evaluation to understand behavior in con-
figurable software systems,” in Intl. Conf. on SW Eng., may
2010, pp. 445–454.

[12] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Trans. Depend. Secur. Comput., vol. 1, pp.
11–33, January 2004.

[13] K. Pohl, G. Böckle, and F. van der Linden, SW Product Line
Engineering. Berlin: Springer, 2005.

[14] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze,
“An analysis of the variability in forty preprocessor-based
software product lines,” in Intl. Conf. on SW Eng., 2010, pp.
105–114.

[15] M. Nita and D. Notkin, “White-box approaches for improved
testing and analysis of configurable software systems,” in SW
Eng. - Comp. Vol, Intl. Conf. on, May 2009, pp. 307 –310.

[16] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged con-
figuration through specialization and multilevel configuration
of feature models,” SW Process: Improvement and Practice,
vol. 10, no. 2, pp. 143–169, 2005.

[17] P. Zave, “Feature interactions and formal specifications in
telecommunications,” Computer, vol. 26, no. 8, pp. 20 –28,
30, Aug. 1993.

[18] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “In-
terface mutation: An approach for integration testing,” IEEE
Trans. on SW Eng, vol. 27, pp. 228–247, March 2001.

[19] P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at
system and functional levels,” in Intl. Workshop on Mutation
Analysis, apr 2010, pp. 110–119.

[20] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using mutation analysis for assessing and comparing testing
coverage criteria,” IEEE Trans. on SW Eng, vol. 32, no. 8,
pp. 608–624, 2006.

10

