
Directed Test Suite Augmentation:
Techniques and Tradeoffs

Zhihong Xu†, Yunho Kim∗, Moonzoo Kim∗, Gregg Rothermel†, Myra B. Cohen†

†Department of Computer Science and Engineering
University of Nebraska - Lincoln
{zxu,grother,myra}@cse.unl.edu

∗Computer Science Department
Korea Advanced Institute of Science and Technology

kimyunho@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

ABSTRACT
Test suite augmentation techniques are used in regression testing
to identify code elements affected by changes and to generate test
cases to cover those elements. Our preliminary work suggests that
several factors influence the cost and effectiveness of testsuite aug-
mentation techniques. These include the order in which affected
elements are considered while generating test cases, the manner in
which existing regression test cases and newly generated test cases
are used, and the algorithm used to generate test cases. In this work,
we present the results of an empirical study examining thesefac-
tors, considering two test case generation algorithms (concolic and
genetic). The results of our experiment show that the primary fac-
tor affecting augmentation is the test case generation algorithm uti-
lized; this affects both cost and effectiveness. The mannerin which
existing and newly generated test cases are utilized also has a sub-
stantial effect on efficiency but a lesser effect on effectiveness. The
order in which affected elements are considered turns out tohave
relatively few effects when using concolic test case generation, but
more substantial effects when using genetic test case generation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Software engineers use regression testing to validate software as

it evolves. To do this cost-effectively, they often begin byrunning
existing test cases. Existing test cases, however, may not be ade-
quate to validate the code or system behaviors that are present in a
new version of a system.Test suite augmentation techniques(e.g.,
[2, 32, 42]) address this problem, by identifying where new test
cases are needed and then creating them.

Despite the need for test suite augmentation, most researchon re-
gression testing has focused on using existing test cases. There has
been research on approaches foridentifying affected elements(code
components potentially affected by changes) [2, 5, 20, 30, 32], but
these approaches leave the task of generating new test casesto en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18,November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

gineers. There has been research on automatically generating test
cases given pre-supplied coverage goals (e.g., [13, 29, 34,37]), but
this research has not attempted to integrate the test case generation
task with reuse of existing test cases for augmentation.

In principle, any test case generation technique could be used
to generate test cases for a modified program. We believe, how-
ever, that test case generation techniques that leverage existing test
cases hold the greatest promise where test suite augmentation is
concerned. This is because existing test cases provide a rich source
of data on potential inputs and code reachability, and existing test
cases are naturally available as a starting point in the regression
testing context. Further, recent research on test case generation has
resulted in techniques that rely on dynamic test execution,and such
techniques can naturally leverage existing test cases.

In prior work [42] we developed adirected test suite augmen-
tation technique. The technique begins by using a regression test
selection algorithm [31] to identify code affected by changes and
existing test cases relevant to testing that code. The technique then
uses the identified test cases to seed a concolic test case generation
approach [34] to create test cases that execute the affectedcode.
A case study shows that the approach improves both the efficiency
of the technique and its ability to cover affected elements.Further
work [41] examined a similar approach to augmentation usinga
genetic algorithm for test case generation.

While these initial results are encouraging, our attempts to cre-
ate augmentation techniques suggest that several factors can po-
tentially influence the cost and effectiveness of those techniques.
Three factors in particular appear to be: (1) the order in which af-
fected elements are considered while generating test cases, (2) the
manner in which existing and newly generated test cases are used,
and (3) the algorithm used to generate test cases.

To create effective test suite augmentation techniques we need to
understand the influence of the foregoing factors. Based on such
an understanding, we should be better able to create augmentation
techniques that leverage test cases in a cost-effective manner. We
have therefore designed and conducted a controlled experiment in-
vestigating these factors in the context of test suite augmentation.
Our experiment considers concolic and genetic test case generation
algorithms, two different orderings of affected elements,and two
different manners of using existing test cases. We considereach
relevant combination on these on four object programs, measuring
the effectiveness of the approaches in terms of code coverage, and
their costs in terms of the time required to perform augmentation.

The results of our experiment show that among the factors that
we consider, the primary factor affecting augmentation is the algo-
rithm utilized to generate test cases; this affects both augmentation
cost and effectiveness. The manner in which existing and newly
generated test cases are utilized also has a substantial effect on ef-



ficiency but a lesser effect on effectiveness. The order in which
affected elements are considered turns out to have relatively few
effects when using concolic test case generation, but more substan-
tial effects when using genetic test case generation.

This work makes several contributions. (1) We provide a new
formalized algorithm for performing augmentation using various
test case generation algorithms and various settings of potentially
influential factors. (2) We report results on the first controlled ex-
periment considering test suite augmentation, and the firstsuch ex-
periment to compare different test case generation techniques in
the augmentation context (genetic and concolic). (3) Our results
provide additional evidence that directed test suite augmentation
techniques can be effective. (4) Our results reveal factorsthat re-
searchers and experimentalists should consider when attempting to
create and study directed test suite augmentation techniques.

2. BACKGROUND

2.1 Test Suite Augmentation
Let P be a program, letP ′ be a modified version ofP , and

let T be a test suite forP . Regression testing is concerned with
validatingP ′. To facilitate this, engineers often begin by reusingT ,
and a wide variety of approaches have been developed for rendering
such reuse more cost-effective via regression test (RTS) (e.g., [28,
31]) and test case prioritization (e.g., [15, 23, 38]).

Test suite augmentationtechniques, in contrast, are not concerned
with reuse ofT . Rather, they are concerned with the tasks of
(1) identifying affected elements(portions ofP ′ or its specifica-
tion for which new test cases are needed), and then (2)creating or
guiding the creation of test cases that exercise these elements.

Various algorithms have been proposed for identifying affected
elements in software systems following changes. Some of these [6]
operate on levels above the code such as on models or specifica-
tions, but most operate at the level of code, and in this paperwe
focus on these. Code level techniques [5, 20, 30] use variousanal-
yses, such as slicing on program dependence graphs, to select ex-
isting test cases that should be re-executed, while also identifying
portions of the code that are related to changes and should betested.
However, these approaches do not provide methods for generating
actual test cases to cover the identified code.

Four recent papers [2, 29, 32, 42] specifically address test suite
augmentation. Two of these [2, 32] present an approach that com-
bines dependence analysis and symbolic execution to identify chains
of data and control dependencies that, if tested, are likelyto exer-
cise the effects of changes. A potential advantage of this approach
is a fine-grained identification of affected elements; however, the
papers present no specific algorithms for generating test cases. A
third paper [29] presents an approach to program differencing using
symbolic execution that can be used to identify affected elements
more precisely than [2, 32], and yields constraints that canbe input
to a solver to generate test cases for those requirements. However,
this approach is not integrated with reuse of existing test cases.

As mentioned in Section 1, the test suite augmentation approach
that we presented in [42] integrates an RTS technique [31] with an
adaptation of the concolic test case generation approach presented
in [34]. This approach leverages test resources and data obtained
from prior testing sessions to perform both the identification of cov-
erage requirements and the generation of test cases to coverthese.
The augmentation approach presented in [41] operates similarly,
but uses a genetic algorithm to generate test cases. Case studies of
the approaches shows that both can be effective and efficient. Both
of these studies, however, are small, and neither study compares

multiple augmentation approaches. Further, while [41] describes
potentially influencing factors it investigates only one.

2.2 Test Case Generation
While in practice test cases are often generated manually, there

has been a great deal of research on techniques for automatedtest
case generation. For example, there has been work on generating
test cases from specifications, from formal models and by random
or quasi-random selection of inputs (e.g., [8, 24, 27, 36]).

In this work we focus on code-based test case generation tech-
niques, many of which have been investigated in prior work. Among
these, several techniques (e.g., [9, 12, 19]) use symbolic execution
to find the constraints, in terms of input variables, that must be sat-
isfied in order to execute a target path, and attempt to solve this
system of constraints to obtain a test case for that path.

While the foregoing test case generation techniques are static,
other techniques make use of dynamic information. Execution-
oriented techniques [22] incorporate dynamic execution informa-
tion into the search for inputs, using function minimization to solve
subgoals that contribute toward an intended coverage goal.Goal-
oriented techniques [17] also use function minimization tosolve
subgoals leading toward an intended coverage goal; however, they
focus on the final goal rather than on a specific path, concentrating
on executions that can be determined through analysis to possibly
influence progress toward that goal.

Several test case generation techniques use evolutionary or search-
based approaches (e.g., [4, 13, 26, 37]) such as genetic algorithms,
tabu search, and simulated annealing to generate test cases. Other
work [7, 10, 18, 33, 34] combines concrete and symbolic test ex-
ecution to generate test inputs. This second approach is known
asconcolic testingor dynamic symbolic execution, and has proven
useful for generating test cases for C and Java programs. Theap-
proach has been extended to generate test data for database appli-
cations [16] and for Web applications using PHP [3, 40].

3. AUGMENTATION TECHNIQUES
We now describe the augmentation techniques that we consider.

3.1 Augmentation Basics
3.1.1 Coverage Criterion

We are interested in code-based augmentation techniques, and
these typically involve specific code coverage criteria. Inthis work,
we focus on code coverage at the level ofbranches; that is, out-
comes of predicate statements. While stronger than statement cov-
erage, branch coverage is more tractable than criteria suchas path
coverage, and more likely to scale to larger systems.

3.1.2 Identifying Affected Elements
As noted in Section 1, test suite augmentation consists of two

tasks, identifying affected elements and creating test cases that ex-
ercise these elements. In this work the factors we are studying con-
cern the second of these tasks; thus, we choose a typical and prac-
tical approach for performing the first. Given programP and its
test suiteT , and modified versionP ′ of P , to identify affected ele-
ments inP ′ we execute the test cases inT onP ′ and measure their
branch coverage. Any branch inP ′ that is not covered is an affected
element. This approach corresponds to the common “retest-all” re-
gression testing process in which existing test cases are executed
onP ′ first, and then, augmentation is performed where needed.

3.1.3 Ordering Affected Elements
Our augmentation techniques operate on lists of affected ele-

ments, and we believe that the order in which these elements are



considered can affect the techniques. In this work, we investigate
the use of a depth-first order of affected elements.

The depth-first order (DFO) of nodes in a graph is the reverse
of the order in which nodes are last visited in a preorder traversal
of the graph [1]. In dataflow analysis, DFO causes nodes that are
“earlier” in control flow to be considered prior to those thatfollow
them, and can speed up the convergence of an analysis. We con-
jecture that by considering affected elements in this order, we may
be able to speed up the process of generating test cases, because
test cases generated for elements earlier in flow may incidentally
cover elements occurring later in flow, obviating the need tocon-
sider those later elements again.

In our case we construct the DFO in terms of branches, and on a
program’s interprocedural control flow graph (ICFG). We first build
the ICFG, then we traverse the ICFG recording the branches that we
visit (both forward and while backtracking). This recordedinfor-
mation lets us calculate the reverse of the order in which branches
are last visited. Finally, we filter out branches that were not desig-
nated as affected to obtain our ordered list of affected elements.

3.1.4 Main Augmentation Algorithm
Algorithm 1 controls the augmentation process, beginning with

an initial set of existing test cases,TC, an ordered set of affected
elements (target branches),Baffini

, and an iteration limitniter.
The algorithm assignsBaffini

to Baff (line 1), which henceforth
contains a set of affected elements still needing to be covered. The
main loop (lines 3-16) continues until we can no longer increase
coverage (which may result due to reaching the iteration limit in
the test case generation routines). Within this loop, for each branch
bt ∈ Baff , if bt is not covered we call a test case generation algo-
rithm to generate test cases (line 7). If the algorithm successfully
generates and returns new test cases this means that at leastsome
new coverage has been achieved in the program (althoughbt may
or may not have been covered in the process).

Input: set of existing test casesTC, ordered set of affected
elementsBaffini

, and an iteration limitniter

Output: TC augmented with new test cases

1 Baff = Baffini

2 NewCoverage=true;
3 while NewCoverage do
4 NewCoverage=false
5 foreach bt ∈ Baff do
6 if NotCoveredthen
7 NewTests =AUGMENT(TC,Baff , bt, niter)
8 if NewTests !=Empty then
9 NewCoverage=true

10 end
11 if UseNew then
12 TC=NewTests ∪ TC
13 end
14 end
15 end
16 end

Algorithm 1: Main Augmentation Algorithm

To accommodate our other factor of concern — the manner in
which existing and new test cases are used — we allow for the
possibility of adding the newly generated test cases back into our
set of available test cases. If the boolean flagUseNew is set to
true, this causes the algorithm to combine the newly generated test
cases with the original test cases (lines 11-12), and then this newly
formedTC is used for the next iteration of our algorithm.

We next describe two different test case generation algorithms
that can be invoked at line 7 to generate new test cases.

3.2 Genetic Test Suite Augmentation
Genetic algorithms for structural test case generation begin with

an initial (often randomly generated) test data populationand evolve
the population toward targets that can be blocks, branches or paths
in a program [25, 35, 39]. To apply such an algorithm to a pro-
gram, the test inputs must be represented in the form of a chro-
mosome, and a fitness function must be provided that defines how
well a chromosome satisfies the intended goal. The algorithmpro-
ceeds iteratively by evaluating all chromosomes in the population
and then selecting a subset of the fittest to mate. These are com-
bined in a crossover stage where information from one half ofthe
chromosomes is exchanged with information from the other half to
generate a new population. A small percentage of chromosomes in
the new population are mutated to add diversity back into thepop-
ulation. This concludes a single generation of the algorithm. The
process is repeated until a stopping criterion has been met.

Algorithm 2 describes the genetic algorithm used in our exper-
iment. The algorithm accepts four parameters: a set of test cases
TC, a set of affected elementsBaff , an uncovered target branch
bt, and an iteration limitniter. The algorithm returns a set of new
test casesNTC, consisting of all test cases generated that covered
any previously uncovered branches inP .

Instead of using random test cases to form an initial population,
we take advantage of existing test cases to seed the population. We
run this algorithm for each target branchbt. As the starting pop-
ulation, we select all of the test cases reaching methodmbt , the
method that containsbt; this determines the population size.

Input: a set of test casesTC, a set of affected elements
Baff , an uncovered target branchbt ∈ Baff , and
an iteration limitniter

Output: a set of new test casesNTC

1 TCcur = TC // set of current target test cases
2 NTC = ∅ // set of new test cases generated

3 TCbt = {test cases inTCcur that reach methodmbt , the
method containingbt}

4 Population = TCbt

5 i = 0
6 repeat
7 Population=CalculateFitness(Population)
8 Population=Select(Population)
9 Population=Crossover(Population)

10 Population=Mutate(Population)
11 i = i + 1
12 foreach tc ∈ Population do
13 Execute (tc)
14 if tc covers new branches inBaff then
15 UpdateBaff

16 NTC = NTC ∪ {tc}
17 end
18 end
19 until i ≥ niter or bt is covered;
20 return NTC

Algorithm 2: GENETIC-AUGMENT algorithm

The algorithm repeats for a number of generations (set by the
variableniter) or until bt is covered. The first step (line 7) is to cal-
culate the fitness of all test cases in the population. Since the fitness
of a test case depends on its relationship to the branch we aretrying
to cover, calculating the fitness requires that we run the test case.
(For test cases provided initially we can use coverage information
obtained while performing the prior execution ofTC, which in our
case occurred in conjunction with determining affected elements.)
Next a selection is performed (line 8), which orders and chooses the



best half of the chromosomes to use in the next step. This popula-
tion is divided into two halves (retaining the ranking) and the first
chromosome in the first half is mated with the first chromosome
in the second half and this continues until all have been mated.
Next (line 10) a small percentage of the population is mutated, af-
ter which all test cases in the current population are executed. If
bt is covered or the iteration limit is met we are finished (line 19),
otherwise we iterate.

3.3 Concolic Test Suite Augmentation
Concolic testing (concolic execution) [7, 18, 34] concretely ex-

ecutes a program while carrying along a symbolic state and simul-
taneously performing symbolic execution of the path that isbeing
executed. It then uses the symbolic path constraint gathered along
the way to generate new inputs that will drive the program along a
different path on a subsequent iteration, by negating a predicate in
the path constraint. In this way, concrete execution guidesthe sym-
bolic execution and replaces complex symbolic expressionswith
concrete values when needed to mitigate the incompletenessof the
constraint solvers [34]. Conversely, symbolic execution helps to
generate concrete inputs for the next execution to increasecover-
age in the concrete execution scope.

In the traditional application of concolic testing, test case reuse
is not considered, and the focus of test generation is on pathcov-
erage. First, a random input is applied to the program and theal-
gorithm collects the path condition for this execution. Next, the
algorithm negates the last predicate in this path conditionand ob-
tains a new path condition. Calling a constraint solver on this path
condition yields a new input, and a new iteration then commences,
in which the algorithm again attempts to negate the last predicate.
If the algorithm discovers that a path condition has been encoun-
tered before, it ignores it and negates the second-to-last predicate.
This process continues until no more new path conditions canbe
generated. Ideally, the end result of the process is a set of test cases
that cover all paths.

In this work, we alter the foregoing approach to function in the
context of the main augmentation algorithm presented in Section
3.1.4; this includes leveraging existing test cases and operating on
an ordered list of affected elements, at the level of branch coverage.

We use the following notation:

• CFGP = (NP , EP ) is a control flow graph of a target pro-
gramP whereNP is a set of nodes (statements inP ) and
EP is a set of edges (branches inP ) betweenNP .

• A path conditionpc of a target programP is a conjunction
bi1 ∧ bi2 ∧ ...bin wherebi1 , ...bin are edges inEP and exe-
cuted in order. Note thatn can be larger than|EP |, since one
branch in a loop body ofP may be executed multiple times
(i.e., it is possible thatbik

= bil
for k 6= l).

• DelNeg(pc, j) generates a new path condition from a path
conditionpc by negating a branch occurring at thejth posi-
tion in pc and removing all subsequent branches. For exam-
ple,DelNeg(bi1 ∧ bi2 ∧ bi3 , 2) = bi1 ∧ ¬bi2 .

• b is a paired branch of a branchb (i.e., if b is athen branch,
b is theelse branch).

• LastPos(b, pc) returns a last positionj of a branchbij
in a

path conditionpc whereb = bij
(i.e.,∀j < k ≤ n.bik

6= b).
• Solve(pc) returns a test case satisfying the path conditionpc

if pc is satisfiable; UNSAT otherwise.

Algorithm 3 describes our concolic augmentation algorithm. The
algorithm accepts the same four parameters accepted by the genetic
algorithm, and returns a setNTC of new test cases. Lines 4-23 de-
tail the main procedure of the algorithm.

Input: a set of test casesTC , a set of affected elements
Baff , an uncovered target branchbt ∈ Baff , and
an iteration limitniter

Output: a set of new test casesNTC

1 TCcur = TC // a set of the current target test cases
2 NTC = ∅ // a set of all new test cases generated

3 repeat
4 NTCcur = ∅ // a set of newly generated test cases in

the current execution of line 3 to line 23
5 TCbt

= { all test cases inTCcur that reachbt }

6 if TCbt
= ∅ then

7 return ∅
8 end
9 PCbt

= { path conditions obtained from executing
test cases inTCbt

}
10 foreach pc ∈ PCbt

do
11 foreach i = LastPos(bt, pc) to i − niter+1 do
12 if i > 0 then
13 pc′ = DelNeg(pc, i)
14 tcnew = Solve(pc′)
15 if tcnew 6= UNSAT andtcnew covers

uncovered branches inBaff then
16 UpdateBaff

17 NTCcur = NTCcur ∪ {tcnew}
18 end
19 end
20 end
21 end
22 TCcur = NTCcur

23 NTC = NTC ∪ NTCcur

24 until NTCcur = ∅;
25 return NTC

Algorithm 3: CONCOLIC−AUGMENT algorithm

Initially, the current target test casesTCcur (from which new test
cases are generated) are the old test casesTC (line 1) andNTC

is empty (line 2). The start of the main procedure resets the set of
newly generated test casesNTCcur (line 4) and selects test cases
that can reachbt (the paired branch ofbt) from among the current
target test casesTCcur (line 5). If there are no such test cases, the
algorithm terminates (lines 6-8). If there are such test cases, the
algorithm obtains path conditions by executing the target program
with selected test cases (line 9). From each obtained path condition
pc, the algorithm generatesniter new path conditions as follows.
Suppose the last occurrence ofbt is located in themth branch ofpc.
Then, the algorithm generatesniter new path conditions (lines 11-
19) by negatingbim , bim−1

, ..., bim−niter+1
and removing all fol-

lowing branches inpc, respectively (line 13). If a newly generated
path conditionpc′ has a solutiontcnew (a new test case) (line 14)
andtcnew covers uncovered branches inBaff (line 15), Baff is
updated to reflect the new status of coverage (line 16), andtcnew is
added to the set of newly generated test casesNTCcur (line 17).

Note that the iteration limitniter parameter is a “tuning” param-
eter that determines how far back in a path condition the augmen-
tation approach will go, and in turn can affect both the efficiency
and the effectiveness of the approach.

4. EMPIRICAL STUDY
Our goal is to investigate the two augmentation techniques con-

sidered, focusing on the factors we have discussed. We thus pose
the following research questions.



RQ1: How does the order of consideration of affected elements
affect augmentation techniques?

RQ2: How does the use of existing and newly generated test cases
affect augmentation techniques?

RQ3: How do genetic and concolic test case generation tech-
niques differ in the augmentation context?

4.1 Objects of Analysis
To facilitate technique comparisons, programs must be suitable

for use by both implementations. Also, programs must be provided
with test suites that need to be augmented. To select appropriate ob-
jects we examined C programs available in the SIR repository[14].
We selected four programs (see Table 1), each of which is avail-
able with a large “universe” of test cases, representing test cases
that could have been created by engineers in practice for these pro-
grams to achieve requirements and code coverage [21].

The object programs that we selected do not have actual sequen-
tial versions that can be used to model situations in which evolution
renders augmentation necessary. We were able, however, to define
a process by which a large number of test suites that need augment-
ing, and that possess a wide range of sizes and levels of coverage
adequacy, could be created for the given object program versions.
This lets us model a situation where the given versions have evolved
rendering prior test suites inadequate, and require augmentation.

To create such test suites we did the following. First, for each
object programP we used a greedy algorithm to sampleP ’s as-
sociated test universeU , to create test suites that were capable
of covering all the branches coverable by test cases inU . Next,
we measured the minimum sizeTmin and maximum sizeTmax

for these suites. We then randomly chose a numbern such that
Tmin ≤ n ≤ Tmax, and randomly selectedn test cases fromU
to create a test suite,A. We measured the coverage achieved by
A on P , and if A was coverage-adequate forP we discarded it.
We repeated this step until 100 non-coverage-adequate testsuites
had been created. Statistics on the sizes and coverages of these test
suites are given in Table 2.

4.2 Variables and Measures

4.2.1 Independent Variables
Our experiment manipulated three independent variables:

IV1: Order in which affected elements are considered. As
orders of affected elements, we use the depth-first order de-
scribed in Section 3.2, and a baseline approach that orders
affected elements randomly.

IV2: Manner in which existing and new test cases are reused.
We consider two approaches to reusing test cases; namely,
the approach in which a test case generation algorithm at-
tempts to utilize only existing test cases, and the approachin
which it uses existing along with newly generated test cases.

IV3: Test case generation technique. We consider two test
case generation techniques; namely, the genetic and concolic
techniques described in Sections 3.2 and 3.3, respectively.

4.2.2 Dependent Variables and Measures
We wish to measure both the effectiveness and the cost of aug-

mentation techniques under each combination of potentially affect-
ing factors. To do this we selected two variables and measures.

DV1: Effectiveness in terms of coverage. The test case augmen-
tation techniques that we consider are intended to work with
existing test suites to achieve higher levels of coverage ina

Table 1: Experiment Objects
Program Functions LOC Branches Test Cases
printtok1 21 402 174 3052
printtok2 20 483 186 3080
replace 21 516 206 3174
tcas 8 138 76 1608

Table 2: Branch Coverage and Sizes of Initial Test Suites
Program Branch Coverage Test Suite Size

Avg Min Max Avg Min Max
printtok1 141.1 122 155 21.8 18 25
printtok2 164.2 147 176 23.1 17 29
replace 171.7 141 181 23.1 19 28
tcas 61.7 44 69 13.0 11 15

modified programP ′. To measure the effectiveness of our
techniques, we track the number of branches inP ′ that can
be covered by each augmented test suite.

DV2: Cost in terms of time. To track the cost of augmentation,
for each application of an augmentation technique we mea-
sure the wall clock time required to apply the technique.

4.3 Experiment Setup
Several steps had to be followed to establish the experimentsetup

needed to conduct our experiment.

4.3.1 Extended Programs
To implement our concolic test case generation technique we

created a tool based on CREST [11]. CREST transforms a pro-
gram’s source code into an “extended” version in which each orig-
inal conditional statement with a compound Boolean condition is
transformed into multiple conditional statements with atomic con-
ditions without Boolean connectives (i.e.,if(b1 && b2) f() is
transformed intoif(b1) { if(b2) f()}). To facilitate fair
comparisons between concolic and genetic algorithms, however,
we cannot apply the former to extended programs and the latter to
non-extended programs. We thus opted to create extended versions
of all four programs, and apply both algorithms to those versions.

4.3.2 Iteration Limits
Genetic algorithms iteratively generate test cases, and anitera-

tion limit governs the stopping point for this activity. Similarly, the
concolic approach that we use employs an iteration limit that gov-
erns the maximum number of path conditions that should be solved
to generate useful test cases.

These iteration limits can affect both the effectiveness and the
cost of the algorithms. Thus, we cannot run experiments withjust
one iteration limit per approach, because this would resultin a case
where our comparisons might reflect iteration limits ratherthan dif-
ferences in techniques. For this reason, we chose multiple iteration
limits for each test case generation approach, using 1-3-5-7-9 for
concolic, and 5-10-15-20-25 for genetic. (The different numbers
are due to the different meanings of iterations across the two algo-
rithms, as explained in Sections 3.2 and 3.3.)

4.3.3 Technique Tuning
Genetic algorithms must be tuned to the object programs on

which they are to be run. This does not present a problem in a
test suite augmentation setting, because tuning can be performed
on early system versions, and then the resulting tuned algorithms
can be utilized on subsequent versions. For this study, we tuned
our genetic algorithms by applying them directly to the extended
object programs absent any existing suites.



4.4 Experiment Operation
Given our independent variables, an individual augmentation tech-

nique consists of a triple, (G,A,M), where G is one of the two test
case generation techniques (Genetic or Concolic), A is one of two
affected element orders (Random or Depth-first), and M is oneof
the two test case reuse approaches (Old test cases or New+oldtest
cases). An individualaugmentation technique applicationconsists
of an augmentation technique applied at an iteration limit L, where
L is one of our five values.

Our experiment thus employs eight augmentation techniquesand
40 augmentation technique applications. Each of these is applied to
each of our four object programs for each of the 100 test suites that
we created for that program. This results in 16,000 augmentation
technique applications, for each of which we collect our dependent
variables to obtain the data sets needed for our analysis.

Our experiments were run on a Linux box with an Intel Core2duo
E8400 at 3.6GHz and with 16GB RAM, running Fedora 9 as an OS.

4.5 Threats to Validity
The primary threat toexternal validityfor this study involves the

representativeness of our object programs and test suites.We have
examined only four relatively small C programs, and other objects
may exhibit different cost-benefit tradeoffs. Furthermore, our pro-
grams are chosen to allow application of both genetic and concolic
testing, and thus, do not reveal cases in which program charac-
teristics might disable one but not the other of these approaches.
A second threat to external validity pertains to our algorithms; we
have utilized only one variant of a genetic test case generation algo-
rithm, and one variant of a concolic testing algorithm, and we have
applied both to extended versions of the object programs, where
the genetic approach does not require this and might function dif-
ferently on the original source code. Subsequent studies are needed
to determine the extent to which our results generalize.

The primary threat tointernal validity is possible faults in the
implementation of the algorithms and in tools we use to perform
evaluation. We controlled for this threat through extensive func-
tional testing of our tools. A second threat involves inconsistent
decisions and practices in the implementation of the techniques
studied; for example, variation in the efficiency of implementations
of techniques could bias data collected.

Whereconstruct validityis concerned, there are other metrics
that could be pertinent to the effects studied. In particular, our mea-
surements of cost consider only technique run-time, and omit costs
related to the time spent by engineers employing the approaches.
Our time measurements also suffer from the potential biasesde-
tailed under internal validity, given the inherent difficulty of ob-
taining an efficient technique prototype.

5. RESULTS AND ANALYSIS
As an initial overview of the data, Tables 3, 4, 5 and 6 presentthe

average coverage and cost values obtained per program, across all
test suites, for each iteration level, for each combinationof order
of affected elements and test reuse approach. Each table presents
results for concolic and genetic techniques under one combination.

We now present and analyze our data with respect to our three
research questions, in turn.

5.1 RQ1: Order of Affected Elements
Our first research question pertains to the effects of using differ-

ent orders of affected elements; in this case, depth-first order versus
random. Table 7 presents data relevant to this question. Thetable
presents results per program, with coverage results in the left half
and cost results in the right half. Column headers use mnemonics

to indicate techniques: GDO corresponds to (Genetic, DFO, Old),
GDN to (Genetic, DFO, New+old), GRO to (Genetic, Random,
Old), GRN to (Genetic, Random, New+old), CDO to (Concolic,
DFO, Old), CDN to (Concolic, DFO, New+old), CRO to (Con-
colic, Random, Old), and CRN to (Concolic, Random, New+old).
Individual columns correspond to techniques compared, thus, col-
umn 2, with header “GDO vs GRO”, compares (Genetic, DFO,
Old) to (Genetic, Random, Old), In each column, then, the only
source of variance between the techniques compared is the order.

Each entry in the table summarizes the differences observedbe-
tween the two techniques, for each of the five iteration limits, with
“D” indicating that the technique using depth-first order exhibited
the greater mean coverage or cost value, “R” indicating thatthe
technique using random order exhibited the greater mean coverage
or cost value, and “=” indicating that techniques exhibitedequal
mean coverage. For example, fortcas, comparing GDO and
GRO, the table contains “D D = R R”, indicating that at the lowest
two iteration levels depth-first order produced better coverage, at
the third level the orders produced equal coverage, and at the upper
two levels random order produced better coverage.

For each pair of techniques compared, for each iteration limit
L, we applied at-test to the coverage (cost) data obtained across
all test suites augmented, to determine whether there is a statisti-
cally significant difference between the two techniques at iteration
limit L, using α = 0.05 as the confidence level. In the table, bold-
italicized fonts indicate statistically significant differences. For ex-
ample, forprinttok1, comparing GDO and GRO, the only sta-
tistically significant difference between techniques occurred at it-
eration level 15. It is these statistical differences that we focus on
with respect to our research question.

We begin by considering the results for the genetic algorithm.
Where coverage is concerned, no clear advantage resides in either
test case order, and results are relatively similar in the cases where
old or new and old test cases are used. Across all iteration limits
and programs, DFO and Random orders each achieve better results
than the other almost half of the time, but there are only two statis-
tically significant differences between the two orders. These occur
on printtok1 andreplace at the third iteration level, with
DFO exhibiting better results once and Random once.

Where cost results for the genetic algorithm are concerned we
see different trends. First, in the GDO vs GRO column there are 11
cases where order causes statistically significant differences: these
include all results fortcas andprinttok1. In the GDN vs
GRN column there are also 11 cases, again including all casesfor
tcas andprinttok1. In all but one of these cases, Random is
more costly than DFO.

Turning to the concolic approach, where coverage is concerned,
we do see an increase in the number of statistically significant dif-
ferences between techniques, to 15 cases. However, in this case
there is no clear superiority adhering to either of the two test case
orders; each of Random and DFO are superior in several cases,and
there are no apparent patterns involving iteration limits or programs
to indicate factors potentially influencing this.

Finally, considering cost results for concolic, we again see a large
number of statistically significant differences in costs, with 12 in
the CDO vs CRO case and 14 in the CDN vs CRN case. Here,
however, there is no clear advantage adhering to either Random or
DFO orders: each is superior a number of times.

5.2 RQ2: Use of Existing and New Test Cases
Our second research question pertains to the effects of reusing

existing and newly generated test cases. Table 8 presents data rele-
vant to this question. The table format is similar to that of Table 7,



Table 3: Coverage Using DFO Order and Old Test Cases
Coverage Cost

Genetic 5 10 15 20 25 5 10 15 20 25
printtok1 158.04 158.55 158.94 159.22 158.90 51.96 111.36 180.21 238.75 312.82
printtok2 176.97 177.01 177.08 177.09 177.09 36.39 77.13 118.99 166.07 224.83
replace 186.10 187.27 187.48 187.87 188.09 77.96 157.56 237.00 315.19 387.36
tcas 70.72 70.92 70.95 70.89 70.95 3.32 6.46 9.24 12.74 16.14
Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 150.26 155.05 155.83 156.39 156.52 1.16 2.72 4.20 5.61 7.08
printtok2 168.81 172.86 173.29 173.78 174.38 0.19 0.39 0.56 0.76 0.91
replace 180.52 187.58 189.42 189.93 190.17 1.10 3.42 5.85 8.19 10.62
tcas 65.92 67.32 69.03 70.07 70.13 0.06 0.12 0.17 0.23 0.28

Table 4: Coverage Using DFO Order and Old and New Test Cases
Coverage Cost

Genetic 5 10 15 20 25 5 10 15 20 25
printtok1 158.43 158.88 159.10 159.43 159.55 110.63 217.37 336.49 447.89 565.37
printtok2 177.07 177.13 177.09 177.15 177.17 65.66 130.14 189.58 279.77 348.29
replace 187.46 188.18 188.65 188.80 188.81 191.79 380.03 546.47 726.10 946.33
tcas 70.79 70.96 70.95 70.99 70.98 4.75 8.59 12.94 17.08 21.02

Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 150.44 155.27 156.17 156.65 156.81 1.35 3.43 5.45 7.31 9.27
printtok2 169.00 173.14 173.60 174.12 174.77 0.21 0.43 0.64 0.86 1.04
replace 180.69 188.41 189.98 190.51 190.70 1.23 4.21 7.25 10.10 12.88
tcas 66.05 67.78 69.74 70.82 70.88 0.06 0.13 0.19 0.26 0.33

Table 5: Coverage Using Random Order and Old Test Cases
Coverage Cost

Genetic 5 10 15 20 25 5 10 15 20 25
printtok1 158.15 158.40 158.59 158.93 159.18 69.40 147.63 223.41 297.22 395.00
printtok2 176.91 177.00 177.10 177.10 177.04 39.05 81.08 122.22 161.15 218.60
replace 186.22 187.37 187.92 188.12 188.22 79.09 148.94 219.75 303.07 385.72
tcas 70.61 70.82 70.95 70.96 70.98 3.84 7.04 10.63 14.76 18.78

Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 150.23 155.01 155.75 156.16 156.25 1.18 2.80 4.27 5.52 6.86
printtok2 169.02 173.06 173.52 173.95 174.47 0.23 0.42 0.58 0.74 0.91
replace 180.52 187.58 189.42 189.92 190.18 1.06 3.43 5.88 8.19 11.07
tcas 66.32 67.43 68.92 70.01 70.12 0.07 0.12 0.16 0.17 0.22

Table 6: Coverage Using Random Order and Old and New Test Cases
Coverage Cost

Genetic 5 10 15 20 25 5 10 15 20 25
printtok1 158.41 158.95 159.04 159.18 159.66 132.93 253.35 386.91 520.15 665.82
printtok2 177.10 177.18 177.14 177.11 177.11 66.01 123.12 193.22 251.84 324.07
replace 187.58 188.41 188.40 188.81 188.89 171.97 357.44 488.62 686.36 832.12
tcas 70.70 70.95 70.97 70.96 70.97 6.07 11.39 16.24 22.45 29.62

Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 150.41 155.23 156.03 156.39 156.52 1.36 3.52 5.47 7.11 8.94
printtok2 169.24 173.25 173.75 174.20 174.77 0.23 0.48 0.65 0.84 1.04
replace 180.70 188.42 190.00 190.56 190.76 1.22 4.28 7.35 10.29 13.57
tcas 66.45 67.52 69.64 70.79 70.88 0.07 0.13 0.18 0.21 0.26

Table 7: Impact of Order in which Affected Elements are Considered on Coverage and Cost.
Coverage Cost

GDO vs GRO GDN vs GRN CDO vs CRO CDN vs CRN GDO vs GRO GDN vs GRN CDO vs CRO CDN vs CRN
printtok1 R D D D R D R D D R D D D D D D D D D D R R R R R R R R R R R R R D D R R R D D
printtok2 D D R R D R R R D D R R R R R R R R R = R R R D D R D R D D R R R D D R R R D D
replace R RR R R R R D R R = = = D R R R R R R R D D D D D D D D D D R R R R D R R R R
tcas D D = R R D D R D D R R D D D R D D D = R R R R R R R R R R R R D D D R R D D D

Table 8: Impact of Reuse of Existing Test Cases on Coverage and Cost.
Coverage Cost

GDO vs GDN GRO vs GRN CDO vs CDN CRO vs CRN GDO vs GDN GRO vs GRN CDO vs CDN CRO vs CRN
printtok1 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
printtok2 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
replace N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
tcas N N = N N N N N = O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N



but in keeping with the goal of comparing across test case reuse
approaches the differences in terms compared all involve reuse ap-
proaches (Old versus New+old).

We begin by considering the results for the genetic algorithm.
Where coverage is concerned, in all but three cases, the use of new
test cases is superior to reusing only old test cases. There are also
many cases where test case reuse approach has a statistically sig-
nificant effect. These include eight comparisons in the casewhere
DFO is used, and ten in the case where random order is used. Re-
sults vary across programs withreplace exhibiting significant
differences in all cases.

Where cost results for the genetic algorithm are concerned we
see much larger effects: in all cases, the use of new test cases adds
to costs, and the effect of doing so is statistically significant.

Turning to the concolic approach where coverage is concerned,
here we see even stronger evidence that test case reuse approach
matters, with the use of new test cases always more effective, and
in all but three cases statistically significantly so.

Finally, considering cost results for concolic, we note significant
differences in all but one case, again with greater costs adhering to
the use of new test cases.

5.3 RQ3: Test Case Generation Algorithm
Our third research question pertains to the effects of usingdif-

ferent test case generation algorithms, and we begin by comparing
effectiveness. One issue to consider in doing this involvesinherent
differences in the test case generationalgorithms. In Section 4.3
we described the reasoning behind using several iteration limits for
each algorithm: we expect concolic and genetic algorithms to re-
spond differently over different limits, and using different limits
lets us observe techniques independent of the threat to internal va-
lidity that would attend the use of a single iteration limit.

Where comparisons of techniques are concerned, there is no in-
herent relationship between a given iteration limit for concolic and
a given iteration limit for genetic; that is, concolic limits 1, 3, 5, 7,
and 9 do not “correspond” in any way to genetic limits 5, 10, 15,
20, and 25. It follows that we cannot validly compare algorithms
to each other on a per-iteration-limit basis. Instead, for each object
programP , we locate the iteration limitLg at which the genetic al-
gorithm operates most effectively onP , and the iteration limitLc at
which the concolic algorithm operates best onP , and we compare
the algorithms at their respective optimal iteration limits.

Table 9 presents data relevant to RQ3 with respect to algorithm
effectiveness following the analysis procedure just described. The
table provides data for each object program and for each of the four
combinations of affected element ordering and test reuse strate-
gies studied. An individual table entry indicates which technique
achieved higher coverage, and italics indicate cases wherethe dif-
ference was statistically significant.

As the table shows, on every program butreplace, the genetic
algorithm outperforms the concolic algorithm, in each category in
which they were compared. Onreplace the advantage goes to
concolic. All differences were statistically significant.

Turning to efficiency, note that this comparison is complicated
by the inherent differences in our two implementations. In fact,
it is quite difficult to fairly compare our two implementations for
efficiency because they are derived from different sources,they
cannot be said to represent “optimal” implementations of the two
algorithms. Thus we restrict ourselves to observing efficiency dif-
ferences in a qualitative fashion. As data presented in Tables 3-6
shows, costs for the genetic algorithm range from times in the tens
of seconds to times above 500 seconds, while costs for the concolic
algorithm range from times in the tenths of seconds to times near 10

Table 9: Comparison of Coverage: Genetic vs Concolic
Program GDO GDN GRO GRN
Program vs CDO vs CDN vs CRO vs CRN

printtok1 G G G G
printtok2 G G G G
replace C C C C
tcas G G G G

seconds. With our current implementations this representsa very
large difference in favor of the concolic approach.

A further issue involves the effects that increasing iteration lim-
its have on the respective algorithms. Here, as remarked earlier,
increases in limits seem to correspond to roughly similar increases,
proportionally, in costs. This provides some post-hoc justification
for our choice of particular iteration limits, in that they seem some-
what comparable in terms of their effects on relative effort.

6. DISCUSSION AND IMPLICATIONS
We now discuss the results presented in the prior section, and

comment on their implications for research and practice.

Test Case Order
Order of affected elements is not likely to significantly affect algo-
rithm effectiveness because the same elements will ultimately be
considered under any order, and this is what we saw in our study.

Where costs are concerned, in contrast, we do see some differ-
ences. Our results show that DFO can provide savings in costs
when using the genetic algorithm. This can be explained by ob-
serving that with the genetic algorithm, if we work with higher-
level branches first we can incidentally cover additional branches.
Also, test cases that cover branches higher in dependency chains
will have inputs that are close to those used to reach lower branches,
thereby seeding the population with inputs that help the algorithm
cover those more quickly.

With the concolic algorithm, in contrast, cost saving results are
mixed. We suspect this is because test cases generated to cover
bt (lines 11-19 of Algorithm 3) may not cover other uncovered
branches unless these uncovered branches share a common ances-
tor branch in a short distance frombt (less thanniter) in an execu-
tion tree. In such cases, the ordering of affected elements does not
matter in terms of cost.

All things considered, we could argue that DFO has the potential
to be more efficient than random ordering when using genetic algo-
rithms, but the fact that this result occurs only forprinttok1 and
tcas leads us to be cautious about this. Furthermore, there seems
to be no clear benefit to using either order where the concolicap-
proach is concerned. Still, these results do not preclude finding
some other orderings that are more predictably cost-effective.

Test Case Reuse Approach
Our results show that the use of new test cases in addition to exist-
ing test cases almost always significantly increases the cost of test
generation by both techniques. This result can be explainedby the
correlation between technique effort and the number of testcases
used to seed the technique. Having additional test cases impacts
both techniques: it controls the population size in the genetic al-
gorithm, while the concolic technique must consider each test case
supplied to it.

The use of new test cases also significantly increased test gener-
ation technique effectiveness in almost all cases in which the con-
colic approach was used, and in many cases where the genetic ap-
proach was used. This difference in results can be explainedas
follows. With the genetic algorithm, having additional test cases



to work with can increase population diversity and improve the
chances that crossover will generate chromosomes that cover pre-
viously uncovered branches; however, changes due to the increase
might not be substantial when just a few test cases are added to
those that had been used previously. The concolic approach,in
contrast, utilizes each new test case independently and cangain
from each as such.

If these results generalize we have a true cost-benefit tradeoff.
With both techniques there is a potential payoff for incurring the
additional costs involved in reusing test cases, and this effect is
much larger for the concolic technique than for the genetic tech-
nique. Whether any effectiveness gain is worth the additional cost,
however, must be assessed relative to the system being verified.

Test Case Generation Techniques
Concolic and genetic test case generation techniques did perform
statistically significantly differently in our study, withthe genetic
algorithm exhibiting greater effectiveness than the concolic algo-
rithm onprinttok1, printtok2, andtcas, under all com-
binations of other factors. It appears that the genetic algorithm
is more costly (potentially by two orders of magnitude) thanthe
concolic algorithm in doing this, although again this comparison
is complicated by the presence of several potentially confounding
factors. These observations prompt us to explore possible causes
for differences.

Generally speaking, concolic testing can generate test cases ef-
fectively as long as a target program does not contain many com-
plex symbolic expressions, or utilize pointer arithmetic,non-linear
arithmetic, and external library calls on symbolic variables, etc.
This is because new test cases can be generated by the concolic
approach only if a generated path condition can be solved by the
underlying constraint solver.

Genetic algorithms may be more flexible than concolic, in that
the chromosome and fitness can be adapted to many input types
and data structures. The quality of the test cases generatedand the
algorithm cost, however, will be dependent on how well fitness is
defined, and how well the parameters of the algorithm are tuned,
and these will be application specific. For instance, if we set our
mutation rate too high, or if our crossover, selection or fitness are
not carefully designed, then we may fail to converge quicklycaus-
ing longer run times. Similarly, since we must run all of our test
cases to calculate fitness, if we use a population that is too large,
this will negatively impact cost.

In the case of our study, our object programs do not contain com-
plex symbolic expressions, but all of the programs excepttcas
take strings as inputs. Faced with string inputs, genetic algorithms
can easily mutate these, covering additional branches, andthey can
attempt to use quite a few different mutants. Concolic algorithms
cannot as easily address these programs, because they transform
test cases only locally; that is, given a target branchbt and a base
path conditionpc (line 10 of Algorithm 3), the concolic algorithm
transforms a number of branches no greater thanniter .

The inherent differences between concolic and genetic algorithms,
and the observed differences in our study, suggest that augmenta-
tion techniques which combine both approaches, either using both
on a particular target, or differentially applying one or the other de-
pending on characteristics of a target, might be more cost-effective
than approaches that utilize just single techniques.

Iteration Limits
We did not consider iteration limit to be an independent variable;
rather, we blocked our analyses per iteration limit value, since this
is our stopping criterion. We did examine our data, however,to
assess iteration limit effects.

First, there does appear to be an increasing trend in coverage
values as iteration limits increase. Beginning with the genetic al-
gorithm, and considering the 16 cases in which limits increase (i.e.,
four increases per program, progressing from 5 to 10, 10 to 15,
15 to 20, and 20 to 25) coverage values for GDO increase as lim-
its increase in 13 of 16 cases, coverage values for GRO increase
as limits increase in 14 of 16 cases, coverage values for GDN in-
crease as limits increase in 13 of 16 cases, and coverage values for
GRN increase as limits increase in 11 of 16 cases. The coverage
increases, however, are small overall — never more than two —
and only eight are statistically significant, which indicates that our
genetic algorithm is converging.

Iteration trends occur for the concolic algorithm as well, with
values generally increasing by small amounts in all 64 cases. In
this case, 63 of these increases are statistically significant, suggest-
ing that iteration plays a more measurable role for the concolic ap-
proach than for the genetic approach, and that further increases may
provide opportunities to increase effectiveness.

Where algorithm costs are concerned iteration limits have larger
effects. For the genetic algorithm, costs differ across iteration limits
by relatively substantial amounts (i.e., by factors ranging from four
to six from iteration limits 5 to 25). Where the concolic algorithm
is concerned we also see increases in costs as iteration limits in-
crease. The increases are smaller numerically than those observed
with the genetic algorithm, but they are similar in terms of the fac-
tors involved (i.e., they increase by factors ranging from three to
ten from iteration limits 1 to 9).

7. CONCLUSIONS AND FUTURE WORK
In this work we have focused on test suite augmentation, and our

results have several implications for the creation and further study
of augmentation techniques. The results also have implications,
however, for engineers creating initial test suites for programs. This
is because such engineers often begin, at least at the systemtest
level, with black box requirements-based test cases. It haslong
been recommended that such test suites be extended to provide
some level of coverage. The techniques we have presented can
conceivably serve in this context too, working with initialblack-
box test cases and augmenting these.

There are additional factors that influence augmentation that we
have not examined directly in this work. Program characteristics
certainly play a role, because they can impact the ability oftest case
generation techniques to function cost-effectively, as described in
Sections 3.2 and 3.3. Characteristics of existing test suites also
matter. Arguably, larger test suites, or test suites that are more com-
prehensive in the inputs that they provide or the coverage that they
achieve, might be more cost-effective to augment. We attempted
to control for such characteristics in our experiment by using ini-
tial test suites with varying sizes and coverage characteristics, but
a more formal study of this factor could be helpful.

Acknowledgments
This work was supported in part by NSF under Awards CNS-0454203
and CCF-0747009 and by the AFOSR through award FA9550-09-
1-0129, to the University of Nebraska - Lincoln. Also, this work
was supported in part by the ERC of Excellence Program of Ko-
rea MEST/NRF (Grant 2010-0001727), the ITRC support program
supervised by NIPA (NIPA-2010-(C1090-1031-0001)), and Basic
Science Research Program through the Korea NRF funded by the
MEST (2010-0005498). We thank Yuyang Liu for her valuable in-
put on concolic testing of the object programs.



8. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman.Compilers, Principles,

Techniques, and Tools. Addison-Wesley, Boston, MA, 1986.
[2] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A.Orso,

and M. J. Harrold. Matrix: Maintenance-oriented testing
requirements identifier and examiner. InTest.: Acad. Ind.
Conf. Pract. Res. Techn., pages 137–146, Aug. 2006.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst. Finding bugs in dynamic web applications.
In Proc. Int’l Symp. Softw. Test. and Anal., July 2008.

[4] A. Baresel, D. Binkley, M. Harman, and B. Korel.
Evolutionary testing in the presence of loop-assigned flags: a
testability transformation approach. InProc. Int’l. Symp.
Softw. Test. Anal., pages 108–118, July 2004.

[5] D. Binkley. Semantics guided regression test cost reduction.
IEEE Trans. Softw. Eng., 23(8), Aug. 1997.

[6] S. Bohner and R. Arnold.Software Change Impact Analysis.
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: Automatically generating inputs of death. In
Proc. Conf. Comp. Comm. Sec., pages 322–335, Oct 2006.

[8] T. Y. Chen and R. Merkel. Quasi-random testing.IEEE
Trans. Rel., 56(3):562–568, 2007.

[9] L. Clarke. A system to generate test data and symbolically
execute programs.IEEE Trans. Softw. Eng., 2(3):215–222,
Sept. 1976.

[10] L. Clarke and D. Richardson. Applications of symbolic
evaluation.J. Sys. Softw., 5(1):15–35, Jan. 1985.

[11] CREST - automatic test generation tool for C.
http://code.google.com/p/crest/.

[12] R. DeMillo and A. Offutt. Constraint-based automatic test
data generation.IEEE TSE, 17(9):900–910, Sept. 1991.

[13] E. Díaz, J. Tuya, R. Blanco, and J. Javier Dolado. A tabu
search algorithm for structural software testing.Comp. Op.
Res., 35(10):3052–3072, 2008.

[14] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact.Emp. Softw. Eng.:
Int’l J. , 10(4):405–435, 2005.

[15] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies.IEEE Trans.
Softw. Eng., 28(2):159–182, 2002.

[16] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applications. InProc. Int’l Symp.
Softw. Test. Anal., pages 151–162, July 2007.

[17] R. Ferguson and B. Korel. The chaining approach for
software test data generation.ACM Trans. Softw. Eng. Meth.,
5(1):63–86, Jan. 1996.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InProc. Conf. Prog. Lang. Des.
Impl., pages 213–223, June 2005.

[19] A. Gotlieb, B. Botella, and M. Reuher. Automatic test data
generation using constraint solving techniques. InProc. Int’l.
Symp. Softw. Test. Anal., pages 53–62, Mar. 1998.

[20] R. Gupta, M. Harrold, and M. Soffa. Program slicing-based
regression testing techniques.J. Softw. Test., Verif., Rel.,
6(2):83–111, June 1996.

[21] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. InProc. Int’l. Conf.
Softw. Eng., pages 191–200, May 1994.

[22] B. Korel. Automated software test data generation.IEEE
Trans. Softw. Eng., 16(8):870–897, Aug. 1990.

[23] Z. Li, M. Harman, and R. Hierons. Search algorithms for
regression test case prioritization.IEEE Trans. Softw. Eng.,
33(4):225–237, Apr. 2007.

[24] D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programs. InProc. Int’l. Conf.
Auto. Softw. Eng., Nov. 2001.

[25] P. McMinn. Search-based software test data generation: A
survey.J. Softw. Test. Verif. Reliab., 14(2):105–156, 2004.

[26] C. Michael, G. McGraw, and M. Shatz. Generating software
test data by evolution.IEEE Trans. Softw. Eng.,
27(12):1085–1110, Dec. 2001.

[27] J. Offutt and A. Abdurazik. Generating tests from UML
specifications. InProc. Int’l. Conf. UML, Oct. 1999.

[28] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing
to large software systems. InProc. Int’l. Symp. Found. Softw.
Eng., Nov. 2004.

[29] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păs̆areanu.
Differential symbolic execution. InProc. Int’l. Symp. Found.
Softw. Eng., pages 226–237, Nov. 2008.

[30] G. Rothermel and M. J. Harrold. Selecting tests and
identifying test coverage requirements for modified software.
In Proc. Int’l Symp. Softw. Test. Anal., Aug 1994.

[31] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique.ACM Trans. Softw. Eng. Meth.,
6(2):173–210, Apr. 1997.

[32] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold. Test-suite augmentation for evolving
software. InProc. Int’l Conf. Auto. Softw. Eng., Sept. 2008.

[33] K. Sen and G. Agha. JCUTE: Concolic unit testing and
explicit path model-checking tools. InProc. Int’l Conf.
Comp. Aided Verif., pages 419–423, Aug 2006.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. InProc. Int’l Symp. Found. Softw. Eng.,
pages 263–272, Sept. 2005.

[35] P. Tonella. Evolutionary testing of classes. InIntl. Symp.
Softw. Test. Anal., pages 119–128, 2004.

[36] W. Visser, C. Pasareanu, and S. Khurshid. Test input
generation with Java Pathfinder. InProc. Int’l Symp. Softw.
Test. Anal., pages 97–107, July 2004.

[37] H. Waeselynck, P. Thévenod-Fosse, and
O. Abdellatif-Kaddour. Simulated annealing applied to test
generation: Landscape characterization and stopping criteria.
Emp. Softw. Eng., 12(1):35–63, 2007.

[38] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos.
Time-aware test suite prioritization. InProc. Int’l. Conf.
Softw. Test. Anal., pages 1–12, July 2006.

[39] S. Wappler and F. Lammermann. Using evolutionary
algorithms for the unit testing of object-oriented software. In
Conf. Gen. Evol. Comp., pages 1053–1060, 2005.

[40] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura,
and Z. Su. Dynamic test input generation for web
applications. InProc. Int’l Symp. Softw. Test. Anal., pages
249–260, July 2008.

[41] Z. Xu, M. Cohen, and G. Rothermel. Factors affecting the
use of genetic algorithms in test suite augmentation. InGen.
Evol. Comp. Conf, July 2007.

[42] Z. Xu and G. Rothermel. Directed test suite augmentation. In
Proc. Asia-Pacific Softw. Eng. Conf., Dec. 2009.


