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ABSTRACT
The increasing complexity of configurable software systems
has created a need for more intelligent sampling mechanisms
to detect and characterize failure-inducing dependencies be-
tween configurations. Prior work – in idealized environments
– has shown that test schedules based on a mathematical
object, called a covering array, in combination with classi-
fication techniques, can meet this need. Applying this ap-
proach in practice, however, is tricky because testing time
and resource availability are unpredictable, and because fail-
ure characteristics can change from release to release. With
current approaches developers must set a key covering array
parameter (its strength) based on estimated release times
and failure characterizations. This will influence the out-
come of their results.

In this paper we propose a new approach that incremen-
tally builds covering array schedules. This approach begins
at a low strength, and then iteratively increases strength as
resources allow. At each stage previously tested configura-
tions are reused, thus avoiding duplication of work. With
the incremental approach developers need never commit to
a specific covering array strength. Instead, by using progres-
sively stronger covering array schedules, failures due to few
configuration dependencies can be found and classified as
soon and as cheaply as possibly. Additionally, it eliminates
the risks of committing to overly strong test schedules.

We evaluate this new approach through a case study on
three consecutive releases of MySQL, an open source database.
Our results suggest that our approach is as good or better
than previous approaches, costing less in most cases, and al-
lowing greater flexibility in environments with unpredictable
development constraints.
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1. INTRODUCTION
As software systems grow in complexity, so too grows

the difficulty of testing them. Systems are no longer de-
ployed as a single program, but as entire ecosystems of
inter-dependent software entities. Each of these entities
brings with it individual features, flaws, performance pro-
files and configuration parameters, all of which together im-
pact the overall system behavior. Understanding this web of
inter-dependencies rests, in part, on effective software test-
ing since these dependencies are often uncovered through the
discovery of subtle interaction failures; failures due to spe-
cific combinations of features. Ironically, the same complex-
ity that makes testing so important, leads to a combinato-
rial explosion of system configurations [5, 16]. Exhaustively
testing every possible configuration, is difficult, if not impos-
sible. Consider for instance, MySQL [13] the experimental
subject of this paper; which has over 72,000,000 configu-
rations in just the small slice of its configuration space we
examine in this paper. The full configuration space is much
larger. Confounding this issue is the fact that modern soft-
ware systems often evolve rapidly and that the amount of
time and hardware resources available to the testing process
are often constrained and time-varying [9]. Therefore, test-
ing processes must be fast and efficient if the information
they provide is to be useful.

Historically, techniques for testing systems with large con-
figuration spaces include: testing just (a potentially small set
of) default configurations, randomly choosing some subset
of configurations for testing, or choosing test configurations
based on developer intuition and experience. While all of
these methods can find flaws in a software system, they have
several drawbacks. First, they cover a limited, perhaps bi-
ased, sub-space of configurations. Furthermore, unless the
test configurations are updated over time, testing will con-
tinue in already debugged configurations while leaving large
sections of the configuration space unexplored. To improve
this, several researchers have studied configuration sampling
strategies based on computing mathematical objects called
covering arrays [1, 6, 10]. This approach generates a test
schedule that satisfies specific coverage metrics, that of test-
ing all t-way combinations of the configuration options.

In previous work, Yilmaz et al. [16] extended this ap-
proach and integrated it into the Skoll system [12], which
is a distributed continuous quality assurance (DCQA) envi-
ronment that allows for highly parallel execution of QA pro-
cesses. In that work covering arrays were used to generate
test schedules. Those schedules were then executed in par-
allel across a grid of computers, the results were returned to



central servers where uncovered failures were automatically
classified to help developers find their underlying causes.
Their results suggested that the covering array test sched-
ules produced better classification models than equivalently-
sized random samples and that the process scaled reasonably
well to large configuration spaces.

This extension, while promising, still has some limitations.
First, covering arrays depend on developer insight to select
the key sampling parameters. In order to reliably classify
failures that are caused by t configuration options, samples
must, at a minimum, test all t-way combinations of these
options. This means the tester must know a priori what
strength—size of t—to use. If they set t too large, resources
will be wasted or the process may not complete before the
next release; while selecting t to be too small, may result
in poor classification and require repeating the process with
a higher strength for t. Since systems often have multiple
failures with different causes, either—or even both—of these
situations is virtually guaranteed.

Second, developers must choose how many covering arrays
to generate at each level of t. A t-way covering array, by
design, computes a sparse sample of a configuration space.
These samples have the property that they can detect in-
teractions between any t options. They cannot be relied on,
however, to correctly characterize which specific options and
settings are actually interacting (because of ambiguities in
the sparse data). As a result classification techniques can
mistake coincidental relationships for actual failure causes.
In addition, problems involving more than t options can
be incorrectly classified; as can non-deterministic failures,
which, in turn, misdirects debugging attempts, wasting de-
veloper time and effort. Although not widely discussed in
the research literature, a common way to limit these prob-
lems is to run multiple different covering arrays, hoping that
the differences in the specific configurations tested can dis-
ambiguate actual from accidental relationships.

Third, because it is not generally possible to use an ar-
bitrary initial portion of a t−way covering array to reliably
classify failures caused by fewer than t options, developers
should ideally run the covering array as a unit, waiting until
all tests have been run before classification can start. In this
situation, there is no way to ensure that failures are found
and classified as early as possible. All told this approach can
run more tests than necessary, mis-correlate failures with
configuration parameters, duplicate work, and suffer delays
in reporting classification information.

This paper addresses these limitations by redesigning the
underlying covering array technique. An early prototype
of this approach was described in [8]. This paper extends
that initial effort with improved algorithms, weakened as-
sumptions, and much more thorough empirical evaluation.
The redesigned approach is incremental. It begins with low
strength covering arrays and failure classification to pro-
vide early results to developers. It then uses incrementally
stronger covering arrays as results and resources indicate.
A central tactic of this approach is to lower the cost of in-
cremental execution by carefully reusing results from ear-
lier test runs. It thereby efficiently increases covering array
strength as far as time and resources allow. We call the new
approach: incremental covering array failure characteriza-
tion. We have applied our incremental approach across a
large configuration space (∼ 72M configurations) of the open
source data base, MySQL [13], and evaluated it across three

Number Config Result
o1 o2 o3

1. * 0 0 0 FAIL
2. 0 0 1 FAIL
3. 0 0 2 FAIL
4. 0 1 0 PASS
5. * 0 1 1 PASS
6. * 0 1 2 PASS
7. 1 0 0 PASS
8. * 1 0 1 PASS
9. * 1 0 2 PASS
10.* 1 1 0 PASS
11. 1 1 1 PASS
12. 1 1 2 PASS

Table 1: An exhaustive schedule
consecutive releases, each with varying characteristics. For
this data, we then show that, without compromising effec-
tiveness, our technique is in the worst—but quite unlikely—
case less than 5% more expensive than the traditional ap-
proach, while, in other more likely cases, it reduces effort
by as much as 27%. We also show that this technique can
produce accurate and actionable debugging information far
earlier than traditional techniques.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews the mathematical tools and process we
used; Section 3 provides a field study of about 50 MySQL
releases that motivates our process. Section 4 describes the
revised covering array algorithm and the incremental strat-
egy; Section 5 describes our empirical evaluations; Section 6
compares incremental covering arrays to other scheduling
policies; and Section 7 presents concluding remarks and pos-
sible directions for future work.

2. BACKGROUND
In this section we provide some background on our tech-

niques. We first explain how failure characterization works
and then describe the basis for determining which configu-
rations to test: covering arrays. Finally we present Skoll,
the distributed quality assurance environment in which we
execute our large scale test processes.

2.1 Failure Characterization
Failure characterization aims to provide developers with

compact and accurate descriptions of failing configuration
subspaces. This section details both the process and how
we evaluate its performance. Table 1 depicts the results of
exhaustively testing a system with three configuration op-
tions (o1, o2, and o3), where the first two options are bi-
nary (0, 1) and the third is ternary (0,1,2). There are no
constraints among the options, so there are 12 valid con-
figurations. Each configuration has an outcome indicating
whether it PASSed or FAILed. To automatically determine
the likely cause of the three failures we feed the data to
a classification tree analysis technique. This produces the
classification tree shown in Figure 1 and indicates that the
failures appear whenever o1 == 0 and o2 == 0.

Classification trees use a recursive partitioning approach
to build a tree-structured model [15] that correlates a config-
uration’s test result (e.g., passing or failing) with the settings
of its options. Thus, each node denotes an option, each edge
represents an option setting, and each leaf represents a test
outcome or set of outcomes (if there are, for example, dif-
ferent failure types). In this work we use covering array test
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Figure 1: An example classification tree

schedules (described next) to generate data for classification
and then use a more comprehensive data-set to evaluate the
resulting classification models.

2.2 Covering Arrays
While the model in Figure 1 explains the failures in the

underlying dataset, it does so at the cost of gathering ex-
haustive testing data. We can, however, obtain the same
model using only a subset of the exhaustive data (the starred
configurations in Table 1). This reduced schedule is only
one-half of the size of the exhaustive one. We selected these
configurations because they constitute a 2-way covering ar-
ray (CA) [1, 2] of the configuration space; i.e., all pair-wise
combinations of configuration option settings appear in at
least one of the starred configurations. t-way covering arrays
“cover” all possible combinations of option settings between
any t options in the configuration space. Importantly, they
do this while also limiting the total number of configurations
tested. The approach takes k configuration options (or fac-
tors) each with vi settings (or values), and produces an N×k
array over the values of vi in the corresponding columns.
The resulting covering array CA(N ; t, k, (v1v2...vk)) has N
configurations with the property that every N × t sub-array
contains all ordered subsets of size t from each of the vi’s
at least once. The parameter t, the covering array strength,
corresponds to the number of options whose combinations of
option settings must be covered. For instance if we set t = 2
we would need to cover all combinations of option settings
for every pair of options; if we set t = 3 we would need to
cover all possible combinations of option settings for every
trio of options. The starred configurations in Table 1 can
be written as a CA(6; 2, 3, (2, 2, 3)) or more compactly as a
CA(6; 2, 2231), which uses a shorthand notation, where the
superscript represents the number of times a particular v is
repeated: We drop the k, since it is implicit in this notation.

Theoretically, covering arrays can have an arbitrarily large
number of rows (configurations), N , but there are a num-
ber of heuristic algorithms for constructing minimally-sized
covering arrays [1, 2, 14]. While most of these algorithms
provide some way to construct a covering array on top of
already seeded test cases (a requirement for our incremental
approach) not all provide the ability to handle inter-option
dependencies or constraints. The subject studied in our case
study has some constraints that we must consider, so we
are limited to tools that incorporate this functionality. In
recent work [4] Cohen et al. extended two algorithms for
constructing covering arrays for this purpose. The first is
a meta-heuristic search technique, simulated annealing [2].
The second is a greedy algorithm based on the automatic
efficient test case generator (AETG) [1]. In general the sim-
ulated annealing algorithm produces smaller test suites, but
as discussed in [4] the current constraint version does not
yet scale well. It suffers from extremely long run times at

higher strengths. Consequently, in this paper we use simu-
lated annealing when possible (for t = 2 and 3), and switch
to the greedy algorithm for t ≥ 4.

2.3 Skoll
Skoll [12] is a process and infrastructure that simplifies

executing QA tasks across a grid of computing resources.
It uses an intelligent steering agent (ISA) to plan and dis-
tribute the QA process. Skoll efficiently leverages computing
resources by dividing global QA processes into multiple sub-
tasks which can then be distributed to client machines and
executed. The results, when returned, are fused together
to complete the overall QA process. Skoll maintains a for-
mal model of the QA processes’ configuration space that
captures configuration options and their settings as well as
constraints (refer to [12] for further details).

In this paper, we create covering arrays for a configuration
model and use Skoll to distribute and test individual config-
urations. For a given configuration, the client configures and
compiles the source code, runs tests, and sends the results
back to the Skoll database. We then merge the results and
build classification trees to characterize failures.

3. FIELD STUDY
We conducted a field study using Skoll to run a continuous

build, integration and test (CBIT) process for the MySQL
database project based on covering array test schedules. We
applied the traditional approach from [16] to process a par-
tial configuration space of MySQL, with over 72,000,000
unique configurations. Given the large size of the config-
uration space, exhaustive testing was not possible. Exhaus-
tively testing even this limited configuration space would re-
quire approximately 217,645,056 machine-hours! Thus, we
opted to use a covering array approach. During this study,
we uncovered several limitations of the traditional covering
array test schedule technique, motivating the need for our
incremental approach. In this section we describe our expe-
riences and highlight each of the limitations we faced.

3.1 Our MySQL CBIT Process
MySQL is an open-source, multi-threaded, SQL database

management system (DBMS) [13]. Initially released 12 years
ago, its various components contain 2+ million lines of code.
It has been downloaded 10+ million times and is available for
use on over 20 platforms. MySQL has a significant number
of test cases (including both installation tests and generic
SQL tests), and MySQL enjoys a large developer community
that actively updates and tests the system.
Configuration Model. MySQL runs on a myriad of hard-
ware architectures and operating system combinations and
allows extensive customization of functionality. This is sup-
ported through the use of configuration options. For ex-
ample, MySQL can be compiled with support for differing
character sets and back-end storage engines. In this paper
we consider only partial, but still large, subset of MySQL’s
configuration options.
Continuous Build, Integration and Test. Our Skoll-
based MySQL CBIT process builds and integrates a MySQL
instance and then executes a standard battery of 772 tests
against the resulting executables. Multiple configurations
are tested in parallel using a grid of computing resources
primarily located at the University of Maryland. Because
our approach shares CBIT effort across a large grid, many



more system configurations can be tested than is possible
with MySQL’s limited in-house testing resources.

3.2 Problems Encountered
Our initial implementation of this process used a tradi-

tional covering array test schedule to define the configura-
tions to be tested whenever new code was checked into the
main developer repository. With this method we first deter-
mined the desired strength of the covering array test sched-
ule (i.e., t=2,3, etc.) and then ran the schedule generated
for this strength. Once the covering array test schedule was
finished we classified the failures. Applying this approach
to the live MySQL development process however, we very
quickly ran into problems. Specifically, the standard cov-
ering array approach required us to make several problem-
atic decisions/assumptions. Each such decision forced us to
statically fix something that varied in reality; and each such
mismatch implied unnecessary costs and/or reductions in
effectiveness. We describe these in detail below.
Variability of Test Time and Resources. The time
needed to test one MySQL version in one configuration varies
depending on the features and failure rates of the configura-
tion. Successful test runs on limited feature sets (which skip
some inapplicable tests) complete in as little as 45 minutes.
Other test runs, exercising larger feature sets and possibly
failing on several timeout values, take upwards of 4 hours
to execute, with the average being about 3 hours across all
configurations. Thus, for a given amount of testing time, it
was impossible to know how many configurations might be
tested. This hindered our ability to choose a strength of t
that would fit into a given period of time.

Second, and more importantly, the time available to test
a given system version varies considerably. During a six
month period, we saw versions that were current for a few
minutes; some for a few days and others for more than a
month. In fact, the total time available for testing a version
is not known until the next source change is committed. As a
result, we often selected the wrong value of t and committed
to test schedules that were far too large or too small for a
particular release period.

Third, because some of our resources are volunteered or
shared, the number and capacities of test resources could
not be known a priori. Again our test planning was affected
because we never knew how many CPUs would be available
for testing and for how long we could use them.
Variability Caused by Non-Deterministic Failures.
During testing we uncovered several non-deterministic fail-
ures; i.e., they failed during some test runs but not others.
As we discussed in [16] this can cause misleading classifica-
tions and wasted developer effort. This is problematic for
the traditional process, because it only runs a single covering
array test schedule at the chosen strength.
Variability of Failure Characteristics. Finally, the char-
acteristics of failures can change from version to version.
For instance, in one random sample involving 14 versions
checked in over about 2-3 weeks, we saw a variety of failures
whose root causes involved anywhere from 1 to 5 configura-
tion options. In many cases, the patterns and their distri-
butions changed across releases. For example, in one release
we observed failures caused by 1 to 4 options, distributed re-
spectively as: 24%, 38%, 34%, and 2% of the total failures.
In another release we documented failures caused by 1,2,3
or 5 options, distributed respectively as follows: 5%, 48%,

45%,0% and 2%. Therefore, it was once again impossible for
us to choose, a priori, the optimal covering array strength
for testing.

3.3 Further Problem Analysis
Traditional covering arrays force developers to commit

to a particular test schedule without knowing whether it
has the right sampling characteristics and without knowing
whether they can finish it before the next version arrives.
And as mentioned earlier in Section 1, choosing incorrectly
can have severe consequences. For example, when a ver-
sion has simple failures but large test schedules are used,
then testing will require much more work than necessary.
If the test schedule, however, is too large to finish before
the next version arrives, then failure characterization per-
formance may be negatively affected. Also, if failures are
complex, but the test schedule is too small, failure charac-
terization will suffer and the process will need to be repeated
at a higher strength.
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Figure 2: Lifetime of 50 releases of MySQL
Since the update frequency for specific MySQL versions

can vary (sometimes multiple times a day, sometimes ev-
ery few days), testing results have varying useful lifetimes.
The variance in the lifetime of MySQL releases was a major
motivating factor for our approach. We examined histori-
cal build data from the MySQL database project. Figure
2 shows a graph of the lifetime in hours (on a log10 scale)
for 50 consecutive builds between March 2007 and January
2008. We can see a range of lifetimes ranging from less than
one hour to a maximum of about 2,000 hours. Clearly the
ability to test such systems and our failure characterization
techniques will depend on this variance. The differences in
lifetimes have multiple causes. Sometimes geographically-
distributed developers happen to check in code at nearly
identical times. Sometimes a check-in is so obviously flawed
that it is pulled quickly. Sometimes the mix of development
activities can vary. That is sometimes developers are more
focused on cleaning up existing bugs, while at other times
they are more focused on adding new features (which tend
to arrive at a slower pace). It is clear that we cannot always
predict ahead of time, what time frames are available for
testing, or what the complexity of failures will be.



The next analysis we performed was to understand what
would happen if we always chose to run the lowest strength
covering array test schedule first. For instance, if we always
select t = 2, then we can increase our test strength if ad-
ditional time is left. In this approach it might seem that
we can reuse some of the already tested t-way test schedule.
But in fact, if we use the traditional approach and build a
new t + 1 covering array test schedule there may be little
or no overlap between the old and the new test schedules.
In fact, for our system we would have had to re-do almost
all of the work from the prior test schedule. Most of the
algorithms for building covering array test schedules make
some random decisions in the array construction, meaning
that each time the algorithm is run a different array is gen-
erated. Even in algorithms that use determinism there is no
guarantee that a t+1-way array will have any resemblance to
a t-way array. Although, one can use techniques presented
– called seeding – to build upon lower strength arrays (and
this will be leveraged in our new approach) this is not the
ordinary construction mode for covering arrays.

To test our hypothesis that different strength covering ar-
rays have almost no overlap in tested configurations, we gen-
erated 10 arrays for MySQL at each strength of 2 ≤ t ≤ 5.
We then compared each of the t-way arrays against all of
the t + 1-way arrays providing comparisons between con-
secutive strengths. This gave us 100 data points for each
increment of t. In the analysis we computed the number of
configurations shared between the t-way and each of the 10
t + 1-arrays. We found that there were zero configurations
in common between any of the 10 t and t + 1 arrays in this
data set. Given that there are over 72, 000, 000 possible con-
figurations this is not too surprising. It highlights the fact,
that choosing too low an initial strength causes redundant
work and wasted effort.

Finally, we tried to determine what would happen if we
simply chose the highest strength t we were likely to need
and simply ran them as far as possible to completion. In
this scenario, we would be unlikely to finish many of our test
schedules. As a result characterization of t-way failures may
be impossible because the data set is incomplete. However,
since a t-way covering array is also a t−1-way, for t > 1, we
might still get reasonable characterization performance for
some failures. To better understand this issue, we examined
the 10, 3 and 4 way arrays to see how quickly t − 1-way
combinations are covered when running a t-way covering ar-
ray. We found that we generally needed to run substantially
more configurations of the t-way array to achieve all t − 1-
way coverage than we would have needed by just running
the t− 1-way array initially.

Although the coverage grows quickly there is a long plateau
before the full coverage is achieved. For instance with the
3-way arrays we needed to test 58 configurations on the av-
erage, to achieve 2-way coverage (versus 22 configurations
for an average 2-way covering array). Running the 4-way
arrays, we needed an average of 46.2 configurations to com-
plete 100 percent of the 2-way coverage while we needed
an average of 174.2 configurations to reach 100 percent of
the 3-way coverage (versus 80 for an average 3-way covering
array). The main implication, is that if we are unable to
complete a large portion of a given test schedule, then we
may not be able to classify even the lower strength failures
because our information sample will be incomplete.

4. PROPOSED SOLUTION
From our perspective, the three major limitations of tra-

ditional covering array schedules for failure characterization
are (1) the lack of guidance for selecting an initial interac-
tion level (2) the inability to reuse information from prior
test runs if the initial interaction level proves too low and (3)
that non-deterministic failures can be indistinguishable from
higher-level interaction failures. To address this problem we
have designed and evaluated an incremental process for cre-
ating and using covering array test schedules. With this new
approach, we begin by testing at the lowest strength (i.e.,
t=2), and then successively move to higher strengths. At
each stage, we construct the next higher-strength covering
array so that it incorporates, to the largest extent possible,
the configurations already run in lower-strength covering ar-
rays. Thus, we only need to run the subset of new configu-
rations to cover the current strength. We have designed two
variants of this process: one that creates a single covering
array at each strength and one that creates multiple cover-
ing arrays at each strength (for handling non-deterministic
failures). Developers must choose which variant to apply to
any given system. This process allows classification as early
as possible, and improves testing efficiency. It also allows
us to generate test schedules in environments with unknown
time and hardware resources.

Our key technical conjectures are that we can construct
each covering array using a seed taken from already run
lower strength arrays and that their size will be approxi-
mately that of a traditionally built covering array. Seeding
means that we fix a set of configurations at the start, and
construct the new covering array by filling in the required
t-way interactions not already contained in the seed.

A
22 

rows

C
191 
rows

B
59 

rows

3-way
4-way

2

Figure 3: Seeding to create a covering array

4.1 A Single Array at Each Strength
Figure 3 illustrates this approach in its simplest form. Us-

ing the model in Table 2 (where k = 23, v1..vk = 218334151)),
we start with an initial 2-way array called A, created using
traditional techniques. To later create a 3-way array, A+B,
we will use A as a seed and fill in the remaining rows, B.
Similarly, we can build a 4-way covering array A+B+C using
A+B as a seed.

If our incremental covering arrays are roughly the same
size as traditional ones, then the 2-way array would have
about 22 configurations and the 3-way, 80. We would exe-
cute the 2-way array first and then attempt to classify any
failures involving two options. Because we build the 3-way
covering array using the previous 2-way array as a seed, the
22, 2-way configurations are reused and only about 58 new
ones would have to be run to get complete 3-way coverage.
We would be able to classify all 2-way failures after only
22 configurations and we could still classify all 3-ways after
running only a total of 80 configurations, i.e., it costs us no
more than before to execute the 3-way array, but we get
early classification of the 2-way failures.

A key unanswered question is whether the covering ar-



rays built with seeds will be comparable in size to the tra-
ditionally built ones. Although seeding has been used in
construction of covering arrays, seeds have been small, used
mostly to provide a way to ensure coverage of a default set
of configurations [1]. It has also been used as a construc-
tion technique, for the purpose, of generating small covering
arrays, that in some cases represent previously unknown up-
per bounds [3]. Little is currently known, however, about
the size of covering arrays generated by large seeds. We have
have found heuristically that we can use a seed of approxi-
mately the same size as a t− 1 array to build a t-way array
for our problems. Beyond this our solutions degrade. We
use this heuristic in our case study and leave a generalization
for future work.

4.2 Multiple Arrays at Each Strength
As mentioned earlier, a single covering array does not al-

ways provide enough information to definitively associate
a failure with any particular t-way configuration option in-
teraction. This is because the failure might be caused by:
(1) an actual t-way interaction, (2) a higher-order interac-
tion that is coincidentally being uncovered, or (3) a non-
deterministic failure of the system that merely happens to
occur on this execution. For example, a given 2-way cover-
ing array might indicate that activating option X and op-
tion Y simultaneously leads to a failure, but in reality the
presence of options X, Y, T, and R might be required to trig-
ger the failure, and this run just happens to exercise that
configuration. Similarly, two covering arrays of any given
strength may not be sufficient to disambiguate a random,
non-deterministic failure from a higher-order failure.

To deal with this situation, testers in practice may elect to
run more than a single covering array test schedule at each
strength, t. Therefore, we have extended our incremental
approach to gather and distribute already tested configura-
tions across multiple seeds when building multiple covering
arrays at higher strengths. A prototype of this idea appears
in earlier work [8], but that algorithm was ad hoc and our
evaluation used a simplified model of the MySQL software
subject to calculate the potential cost savings if an incremen-
tal approach would have been followed. We formalize the
procedure in the following algorithm, and have refined the
configuration model to contain more complex inter-option
dependencies required in actual testing. We then use this
model and our incremental algorithm for failure characteri-
zation in three different releases of a real configurable soft-
ware system in our case study.

4.3 Incremental Covering Array Algorithm
The pseudocode for our algorithm is shown in Algorithm 1.

We begin by allowing users to specify both the starting
strength (t) and the number of arrays to generate at each
strength (replication) (Lines 1 and 2). In this example, we
fix these at 2 and 3 respectively. Next we generate the first
t-way array using the traditional approach (Line 3) and be-
gin constructing arrays iteratively at higher strengths until
we are finished testing (Lines 4-12). Each iteration starts by
using the first t way array, CA t1 as a seed to build the first
t+1 array, CA (t+1)1 (Lines 5-6). For each of the remaining
arrays at strength t, CA t2..CA ti (for loop: Lines 7-11), we
gather all non-seeded configurations from CA (t− 1)i (Line
8) and additional configurations from CA (t + 1)1 (Line 9-
10) to create the seed for CA ti. The seed should match

the size of CA (t− 1). We then build CA ti using this seed
(Line 11). Finally, we increment t (Line 12) and repeat the
outer loop.

Figure 4 depicts an example of this strategy that starts
at t = 2 and creates three arrays at each strength. The
matching letters and arrows show seeding relationships. For
instance, the 2-way array, A, becomes a seed for the first 3-
way array and the configurations from the first 3-way array
labeled as B and C are used as seeds for the second and
third 2-way arrays. We can see that second and third 3-way
arrays have seeded configurations (E,G,F,H) that are taken
from both the 2-way arrays (E,F) and from the first 4-way
array (G,H) - not shown. In the first iteration, when t = 2
we see a special case. Since there is no t− 1-way array, the
seed set is initially empty (Line 8); in this case, all of the
seeded configurations come from the higher strength array
(B and C).

In essence, our algorithm iterates through a process of
building a covering array of strength t + 1, using a strength
t array as a seed; it then uses configurations from both pre-
viously run t − 1-way arrays and from the newly created
t + 1 array to seed the building of the remaining t-way ar-
rays. Thus, after running some or all of the t−way covering
arrays, a large portion of the initial t + 1-way array has
already been run. At this point, t-way failures can be clas-
sified and developers can begin to fix the underlying faults.
Meanwhile, if developers wish to, they can increment t by
1 and repeat the process. Now, a new t + 1-way array will
be constructed using the first t-way array as a seed. Part of
that t+1-way array is combined with the configurations for
the t − 1-way arrays and used as seeds to generate the rest
of the t-way arrays.

1: set t = 2
2: set replication = 3

3: generate base t-way array, CA t1
4: while not finished testing do
5: seed t1 = CA t1
6: generate CA (t + 1)1 from seed t1
7: for i = 2 to replication do
8: get seed ti from CA (t− 1)i

9: while (getSize(seed ti) < Size(CA (t− 1)1) do
10: add configuration from CA (t + 1)1 to seed ti

11: use seed ti to generate CA ti

12: increment t

Algorithm 1: Incremental
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Figure 4: Constructing iterative CAs



5. A CASE STUDY
To determine the feasibility of applying the incremental

approach to failure characterization we applied our tech-
nique to three consecutive releases of MySQL (build 1.2510
– 1.2512). We also applied the traditional covering array
approach at varying strengths of t. Our goal is to compare
the costs and benefits of the modified approach to those
of the traditional covering array approach, which requires
pre-selection of the covering array’s strength, analysis of the
resulting test data after all tests are completed, and, if nec-
essary, repetition of the process with a higher strength cov-
ering array.

5.1 Methodology
Our subject program for these studies is the MySQL client

and server system [13], specifically focusing on 3 later re-
leases of MySQL 5.1 that were not part of the field study
described earlier in Section 3. For this study our configura-
tion space comprises 23 MySQL features (18 binary, 3 with
3 values, 1 with 4 values and 1 with 5 values) There are
several constraints on these options, which give rise to 8 ex-
plicit pair-wise combinations that cannot occur in the model.
The resulting configuration space contains 72,548,352 possi-
ble configurations. Table 2 gives more details of our config-
uration model and its constraints.

We tested these configurations using 50 nodes of our Skoll
Quality Assurance Cluster. Each node runs Red Hat 3.4.4-
2 on a 2.8 GHz Pentium 4 with 1GB of memory. During
testing, the configuration model, individual test plans and
all results were stored in the Skoll Cluster Database Server,
running MySQL 5.0.27. For these 3 releases, we tested a
total of 5994 compilable, valid configurations, running 772
developer-supplied regression tests on each. Each test was
designed to emit an error message in the case of failure, and
we captured and recorded all results. All told this testing
took 2 machine years to complete and included over 4.6 mil-
lion individual test executions. These results form the basis
for our analysis in this paper.
Covering Arrays. Using the configuration model previ-
ously described, we executed both the traditional and incre-
mental covering array algorithms, We created 3 incremental
covering arrays for each value of t from 2 through 4, and
a single incremental 5-way covering array (this was needed
to generate the incremental 4-way arrays). Specifically we
computed a CA(N ; t, 218334151) for each value of t. For
comparison purposes, we generated three traditional cover-
ing arrays for each value of t, 2 through 4. Since our algo-
rithms make some random decisions in generation, the sizes
of final arrays vary.

Figure 5 compares the number of configurations at each
array strength, the number reused in the incremental ap-
proach, and the total number of configurations in each spe-
cific test schedule. The left part of this figure shows the
traditional approach while the right side shows the incre-
mental approach. Each of the incremental parts is labeled
with a letter to show how the final arrays are generated.
The numbers of “new” test cases that must be run at each
strength is given below the arrays. As can be seen if we use
the incremental approach, starting at 2-way and successively
increasing to 4-way for this model, then we need to run 834
configurations (68 2-way + 180 3-way + 586 4-way). This
compares favorably with using a traditional 4-way covering
array where we need to run 832 configurations. It is also

Compile Time Options
Binary Options (Enabled/NULL)
assembler, local-infile, thread-safe-client,
archive-storage-engine, big-tables, blackhole-storage-engine,
client-ldflags, csv-storage-engine, example-storage-engine,
fast-mutexes, federated-storage-engine, libedit,
mysqld-ldflags, ndbcluster, pic, readline, config-ssl, zlib-dir
Non-binary Options Values
extra-charsets –with-extra-charsets=all,

–with-extra-charsets=complex,
NULL

innodb –with-innodb,–without-innodb,
NULL

Run Time Options
transaction-isolation READ-UNCOMMITTED,

READ-COMMITTED,
REPEATABLE-READ,
SERIALIZABLE, NULL

innodb flush log 0,1,2, NULL
sql-mode ANSI,TRADITIONAL,

STRICT ALL TABLES
Constraints
innodb –without-innodb
requires:
transaction-isolation NULL
and:
innodb flush log NULL
libedit Enabled
cannot occur with
readline Enabled

Table 2: MySQL configuration options

considerably more efficient (27%) than using the traditional
approach starting at t = 2, then running t = 3 and then
t = 4. Under this scenario, we would run 1136 configura-
tions.
Process. For each release we run traditional test schedules
in two different ways. First we run a schedule that uses
a single strength t. This mimics the traditional approach
where we must select a priori which strength t to use. Sec-
ond we run traditional schedules that begin at a specified t,
incrementing to higher strengths as time allows. This mim-
ics a situation in which developers complete a low strength
test schedule, but find they still have more time available
for testing. For the incremental approach we start at t = 2,
incrementing as we go until we run out of time.

For both techniques, we run two variants. The first one
uses a single array at every given strength. The second uses
3 arrays at every strength. For the incremental approach
this corresponds to Figure 3 and Figure 5, respectively. We
run the test schedule in the order that completes specific
covering arrays the fastest. For instance, if we examine Fig-
ure 5 we would first run A, followed by B followed by E
followed by C and then F and D.

We ran all of the possible schedules to completion. For
our analysis however, we limit the data to the part of the
schedule that could have been run during the actual lifetime
of the release. We compute this by using an average cost
of 3 hours to test each configuration, and by assuming a
computing grid containing 50 nodes.
Metrics. We use all of the covering arrays from the full
traditional approach (3 at each strength of t, from t = 2
to t = 4) as a baseline for our classification and call this
our oracle. It is the best we could have done using the tra-
ditional approach. We note that most of our F-measures
(the weighted harmonic mean of precision and recall in the
classifications) were very close to 1.0 for this data mean-
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Figure 5: Comparison of covering array schedules

ing that the classifications appear to accurately predict test
outcomes.

We took several steps to simplify the data analysis. First,
we computed 105 equivalence classes of failure patterns across
all of the tests and releases. We formed these equivalence
classes by grouping all test cases whose outcomes matched
exactly across all configurations in the oracle data set. Next
we restricted our analysis to a single representative from
each equivalence class. This is appropriate because each of
these test cases in a given equivalence class will yield the
same classification tree.

For each generated classification tree we computed a char-
acterization number. This is the length of the longest path
in the classification tree ending at a leaf labeled, “fail”. It
reflects that the tree’s characterization that the failure is

caused by a certain number of configuration options.
We note that 36 of 105 test cases could not be classified in

terms of MySQL’s configuration options. These test cases
are given a characterization number of “0”. For this exper-
iment, this situation occurs in two cases. One is when we
don’t observe at least one pass and at least one failure for
a given test case. For example, some tests failed every time
they ran (because tests can skip certain configurations these
don’t all map to a single equivalence class). A classification
tree for this data, of course, would not associate the fail-
ure with any particular option. The other situation occurs
when the test failed in less than 1% of the configurations
making up the oracle data. We established this cutoff both
to simplify analysis and because such rarely occurring fail-
ures are easily confounded with transient failures and are
often not related to configuration options. Figure 6 shows
the characterization numbers for the 105 patterns. The y-
axis represents the characterization number.

Next for each proposed covering array regime we executed
its test schedule and computed classification trees for each
representative test using all configurations in the schedule.
For each test case and tree we compared its characteriza-
tion number to the corresponding one produced using the
oracle data. For example, if a test case is characterized by
the oracle data as involving 2 configuration options, but is
characterized by another approach as involving only 1 op-
tion, then the characterization numbers do not match. We
used the total number of matching characterization num-
bers across all test cases as a rough figure of merit for a
proposed covering array regime. Intuitively, the more agree-
ment between the more comprehensive oracle data and that
generated by the proposed regime, the better the proposed
regime is. As discussed later, we will also do detailed man-
ual comparisons of the actual failure characterization where
more detail is required.
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Figure 6: Characterization numbers for rel. 1

Threats to Validity. All experiments suffer from threats
to validity. In this study we have used a single software
system, with many native failures, and a large configuration
space. Although MySQL shares some characteristics with
other large configurable systems, the types of failures it ex-
periences may differ. In our experiments we tried to select a
broad configuration sample, but due to the sheer size of the
entire configuration space for the software subject, we were
only able to test a small portion. It is possible that choos-
ing a different configuration space might impact the results
and alter them. For instance, the failures that we are cur-
rently classifying as 2-way failures may indeed have shown
themselves to be higher order failures if a larger configura-
tion space was chosen. We do not believe, however, that



t Num Match Match Configs Run
at t (num) (%) (%)

Oracle
105 1136 100

Traditional Approach
2 1 51 49 22 100
3 1 61 58 80 63
4 1 66 63 271 18
2 3 66 63 66 76
2,3 1 83 79 100 50
Incremental
2,3 1 82 78 81 62
2 3 80 76 68 74

Table 3: Characterization of rel. 1: 159 min. budget

this will change the results of cost comparison which are
independent of the types of failures seen because we have
considered several different scenarios.

5.2 Results
In this section we evaluate our approach on three releases

of MySQL, each of which has a different lifetime. We begin
with release 1.2510 which was current for only 159 minutes.
We then examine release 1.2511 which was current for just
under 2 days. Finally we examine 1.2512 which was current
for about 2 weeks.

5.2.1 Release 1: Lifetime of 159 Minutes
This release, had a short lifetime during which we could

test only 50 configurations. With this we could run 2 com-
plete 2-way arrays, but could not run any complete 3-way
arrays. Table 3 shows the overall classification data for this
build. The rows represent the various schedules tested, while
the columns show the number and percentage of character-
ization numbers that match at each strength as well as the
number of configurations in the schedule and the percentage
run. As can be seen, the traditional approach for a single
strength array performed worse than the incremental ap-
proach for this release. For instance when we run a single
array at t = 2 or t = 3 we see match percentages of 49% and
58% respectively while the incremental arrays for t = 2, 3
matched 78%. The traditional approach that executes both
a 2- and a 3-way array, performed as well as the incremental
approach. Also, using multiple 2-way arrays did as well or
better than using single arrays at higher strength.

Table 4 shows detailed data for this release. In each cell
we show the number of 2-way failures in which the proposed
covering array approach and the oracle data yield identical
classification trees. This information, for example, appears
in the third column of Table 4, the first number is the num-
ber of identical trees and the second – in parentheses – is
the number of matching characterization numbers. In many
instances where the characterization number matched, the
underlying trees were identical, but this was not always the
case. In particular, the traditional, single 4-way array gen-
erated 8 trees with the correct characterization number of
2, but 7 of those trees had incorrect characterizations. This
shows one of the dangers of executing too large a test sched-
ule that can’t be completed in the available time. In this
case only 18% of the test schedule could be completed, re-

t Num Num %
at t Correctly Correctly

Classified Classified
(Characterized)

Oracle
19

Traditional Approach
2 1 1 (2) 11
3 1 10 (10) 53
4 1 1 (8) 5
2 3 8 (9) 42
2,3 1 9 (10) 47
Incremental
2,3 1 14 (14) 74
2 3 13 (13) 68

Table 4: 2-way classification matches for rel. 1

t Num Match Match Confgs Run
at t (num) (%) (%)

Oracle
105 1136 100

Traditional Approach
2 1 51 49 22 100
3 1 101 96 80 100
4 1 104 99 271 100
2 3 96 91 66 100
3 3 104 99 238 100
4 3 105 100 832 96
2,3,4 1 104 99 373 100
3,4 1 105 100 351 100
2,3,4 3 104 99 1136 70
3,4 3 104 99 1070 75
Incremental
2,3,4 1 104 99 272 100
2,3,4 3 103 98 834 96

Table 5: Characterizing rel. 2: 1.9 day budget

sulting in an unbalanced data set from which generalization
was difficult.

5.2.2 Release 2: Lifetime of 1.9 Days
This release lasted about 2 days, therefore we could test

about 800 configurations, which provided us with richer in-
formation. Some schedules still did not finish, but many
fewer than in the previous release. Table 5 presents some
of the classification results. Here the poorest performer was
the traditional, single 2-way array. Most of its difficulties
stem from misclassifying 3-way failures as 2-way. This prob-
lem is greatly curtailed by using multiple traditional 2-way
arrays because the extra data points limit incorrect gen-
eralizations. Alternatively, running one or more 3-way ar-
rays would have also improved performance. Most of the
other schedules performed well as all but one test case has a
characterization number of 3 or less and because there was
enough time to complete at least one full 4-way array. The
incremental approaches were essentially identical to the best
performing traditional approaches. We also note that while
running multiple covering arrays at a given strength does
not greatly improve overall classification accuracy in this re-



t Num Match Match Confgs Run
at t (num) (%) (%)

Oracle
105 1136 100

Traditional Approach
2 1 51 49 22 100
3 1 75 71 80 100
4 1 101 96 271 100
2 3 96 91 66 100
3 3 95 90 238 100
4 3 104 99 832 100
2,3,4 1 101 96 373 100
3,4 1 101 96 351 100
2,3,4 3 105 100 1136 100
3,4 3 104 99 1070 100
Incremental
2,3,4 1 104 99 272 100
2,3,4 3 102 97 834 100

Table 6: Characterizing rel. 3: 2 week budget

t # 2-way 3-way
at t Class. Class. Class. Class.

(Char.) (Char.)
Num % Num %

Oracle
19 35

Traditional Approach
2 1 1 (2) 5 0 (1) 0
3 1 15 (16) 79 9 (11) 82
4 1 19 (19) 100 34 (34) 97
2 3 16 (17) 84 25 (29) 71
3 3 19 (19) 100 28 (28) 80
4 3 19 (19) 100 35 (35) 100
2,3,4 1 19 (19) 100 34 (34) 97
3,4 1 19 (19) 100 34 (34) 97
2,3,4 3 19 (19) 100 35 (35) 100
3,4 3 19 (19) 100 35 (35) 100
Incremental
2,3,4 1 19 (19) 100 34 (35) 97
2,3,4 3 19 (19) 100 33 (33) 94

Table 7: 2 and 3-way classifications for rel. 3

lease, it did prevent misclassifications of a non-deterministic
failure. In contrast, several of the traditional single array
methods failed to characterize the failure properly because
it didn’t manifest itself enough times in the observed data.

As before, the cost of the incremental approach is equal
to running a fixed traditional 4-way array. The cost of run-
ning the traditional approach incrementally is considerably
higher than the cost of using our incremental approach.

5.2.3 Release 3: Lifetime of 2 weeks
This was our longest running test schedule. Here we were

able to complete all schedules up through 4-way using each of
the methods. The data for this release can be seen in Table
6. This release provides us with a view of the best possible
case for each of the schedules. Once again we see that the
system classified poorly when it used lower strength tradi-
tional schedules. Using multiple arrays at a fixed strength of
2 or 3 was better than using a single one (20-30% improve-
ment). Still all single strength approaches were inferior to
combining multiple strength arrays. Again our incremen-
tal approach is comparable to the traditional approach at
considerably reduced cost.

When we examine the detailed characterization numbers
for all of the 2 and 3 way failures (see Table 7). We see once

again that most of the classifications whose characterization
number matches the oracle also shares the same classifica-
tion tree. In Table 7 we provide the number of matching
characterization numbers in parentheses. As expected, the
greatest variance appears when using a single low strength
array as there is little data from which to generalize failure
characterizations.

6. RELATED WORK
Other techniques have been used to isolate failures in code

for debugging [11, 17]. The bug isolation project, uses code
instrumentation and statistical sampling to achieve failure
characterization [11], while the delta debugging project iso-
lates minimal subsets of tests that cause failures through
successive elimination of the input space [17]. Neither of
these projects address the configuration space directly. Cov-
ering arrays were used for failure characterization in [16],
however this work assumes a priori knowledge about the
types of failures and assumes resources are available to run
the selected strength arrays. Advice is given to practitioners
for selecting the correct strength array to mitigate the issues
we raise. Another type of covering array, called a variable
strength covering array was also used for characterization.
The test schedules generated from these, contain portions
of the configuration space that are tested at a higher t than
other parts, however the different strengths are still decided
statically at the start of testing and do not change.

Covering arrays have been used frequently to reduce the
number of inputs [1, 6, 7] or configurations [10] when testing
a program; however, other than in [16] their primary pur-
pose has been failure detection, not characterization. Con-
struction techniques to build covering arrays [1, 2, 3, 14]
describe seeding of rows of the covering array, but for a dif-
ferent purpose. Seeding has been used either to allow testers
to request a set of default configurations [1] or as the basis
for specialized constructions that generate smaller covering
arrays [3]. The work of Tai et al. [14] uses a construction
method that builds covering arrays by expanding the fac-
tors (i.e., the columns), but the purpose, is to allow for new
factors to be added, not to change the strength.

Our approach is unique in that we use covering arrays for
failure characterization, but do not require developer exper-
tise or a priori knowledge in setting covering array strengths.
Instead we employ an initial lightweight sample and then
incrementally build using seeding as a both a construction
technique, and as a mechanism to reuse information from
already tested configurations.

7. CONCLUSION AND FUTURE WORK
This paper presents an improved algorithm for generat-

ing covering array test schedules that reduces costs and im-
proves flexibility by incrementally constructing and execut-
ing covering arrays and by carefully reusing tests from lower
strength covering arrays to construct higher strength ones.
It also presents a large case study in which we apply this
new algorithm to test a non-trivial open source software
system. Our algorithm successfully addresses several seri-
ous limitations of current techniques. Specifically, develop-
ers must currently select a single strength for the covering
array. In practice, if developers choose too low an initial
strength they will need to start the process from scratch
at a higher strength. If they choose too high a strength,



they waste resources and delay the arrival of lower strength
results. Also, the typical practice of generating a single cov-
ering array at a given strength leads to complications when
non-deterministic failures appear.

Our approach, incremental covering arrays, leverages in-
formation gained in previous test executions to generate fu-
ture test schedules. This allows developers to choose the
lowest practical value for t, usually 2, because there is min-
imal penalty for starting too low. This also allows develop-
ers to move to higher strength covering arrays only if the
results or resource availability warrants them. Finally, run-
ning multiple covering arrays at each strength can better
support identification of non-deterministic faults, while si-
multaneously providing data for higher strength arrays.

To evaluate this algorithm, we performed a case study
in which we compared our new approach, and traditional
covering arrays across a configuration space of >72M con-
figurations of MySQL. For each tested configuration we ran
nearly 800 test cases. Despite the limitations of our case
study, we tentatively conclude that for this data:
• Classification models based on incremental covering array
test schedules were no worse than those based on traditional
covering array test schedules.
• In the worst case, the incremental approach starting at
strength 2 and working up to strength t, was ∼ 5% more ex-
pensive than using fixed strength traditional covering arrays
of strength t.
• Compared to using traditional covering arrays incremen-
tally, which typically involves running multiple covering ar-
rays from scratch, our approach required up to 27% fewer
configurations. It did this with no loss of quality.
• Our incremental approach was able to detect and classify
lower strength faults earlier than traditional fixed strength
arrays because they execute complete lower strength cover-
ing arrays before moving to higher strengths.

Our future work concentrates on validating, as well as
refining and generalizing the incremental covering array ap-
proach. First, we plan to expand our study to monitor the
live MySQL continuous build, integration and test process.
We will examine a broader configuration than we are cur-
rently using and we will replicate this work on additional
large configurable software systems as well. Second we plan
to examine alternative models for distributing seeds which
will allow us to use differing numbers of covering arrays at
each level of t. Finally, we are working on a method for au-
tomatically determining “when” the algorithm should adapt
by moving to higher strength (versus generating more arrays
at the current strength).
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