
Easing the Generation of Predictive Human
Performance Models from Legacy Systems

Amanda Swearngin

Myra B. Cohen

Dept. of Computer Science & Engineering

University of Nebraska-Lincoln

Lincoln, NE 68588-0115

{aswearng,myra}@cse.unl.edu

Bonnie E. John

Rachel K. E. Bellamy

IBM T. J. Watson Research Center

19 Skyline Drive

Hawthorne, NY 10532

{bejohn,rachel}@us.ibm.com

ABSTRACT

With the rise of tools for predictive human performance

modeling in HCI comes a need to model legacy

applications. Models of legacy systems are used to compare

products to competitors, or new proposed design ideas to

the existing version of an application. We present

CogTool-Helper, an exemplar of a tool that results from

joining this HCI need to research in automatic GUI testing

from the Software Engineering testing community.

CogTool-Helper uses automatic UI-model extraction and

test case generation to automatically create CogTool

storyboards and models and infer methods to accomplish

tasks beyond what the UI designer has specified. A design

walkthrough with experienced CogTool users reveal that

CogTool-Helper resonates with a “pain point” of real-world

modeling and provide suggestions for future work.

Author Keywords

Predictive human performance modeling; automatic GUI

testing.

ACM Classification Keywords

H5.2. [Information Interfaces and Presentation]: User

Interfaces; D.2.5 [Software Engineering]: Testing and

Debugging

General Terms

Human factors.

INTRODUCTION

When a UI designer sets out to design a new product or the

next version of a product, the process often starts with an

analysis of existing systems, i.e., competitors’ products

and/or the current version. Customer complaints and help-

desk logs often provide clues about deficiencies in the

current version and unfavorable comparisons to

competitors, but may not provide a direct connection

between the complaints and the UI design, so additional

data collection or analysis must be done to figure out

exactly how to respond. For example, Bellamy et al. [2]

reports that in one design situation, employees trying out a

new internal portal commented that it was “considerably

slower” than the old system, and that in another situation

the “customers requested that we show them that our tool

… was as efficient as another product.” Predictive human

performance modeling could be used to diagnose such

issues (and indeed, was used in the work of Bellamy et al.

[2]), but that means that modeling is being done on both

existing legacy systems, and on proposed design ideas.

Application of human-performance modeling in HCI was

originally conceived as an aid to design. “Design is where

the action is in the human-computer interface. It is during

design that there are enough degrees of freedom to make a

difference. An applied psychology brought to bear at some

other point is destined to be half crippled in its impact.” [3,

p.11] But in practice, we see modeling done at least as often

on legacy systems as on proposed designs, i.e., as an

analysis of existing problems to inspire design or to serve as

a benchmark against which a new design is compared (e.g.,

five examples in Bellamy et al. [2], others in the work of

Gray et al., Knight et al. and Monkiewicz [5,9,15]).

When modeling human performance on a legacy system,

that system is usually redescribed in a representation

dictated by the human modeling framework, that is, it is re-

implemented in some text-based description language, as a

storyboard, or in a different computational language. At

worst, this means reimplementing an entire existing system;

at best it is a time-consuming process of capturing screens

and drawing hotspots on top of widgets to make a

storyboard [7]. Either way, it is a burden to analysts

because it is perceived as extra work — the software

already exists, why can’t it be used? One approach to solve

this problem is VisMap [17]. VisMap uses image

processing to “see” the screen of an existing UI and pass

that information to a human performance model, and

simulate motor movements (clicks, key presses, etc.) by

manipulating the event queue at the operating system level.

However the VisMap approach does not address another

issue, the need to describe the tasks to be modeled.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI’12, May 5–10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

When modeling, especially with GOMS or Keystroke-

Level Model (KLM) [3], the models must be given the

knowledge of how to do tasks (either through

programming, as in GLEAN (GOMS Language Evaluation

and Analysis, [8]), or by demonstration as in CogTool [7]).

Therefore, the analyst only obtains predictions of

performance for those methods of doing a task for which

s/he has explicitly encoded the task knowledge. But in

complex systems, there may be many ways to accomplish a

task (e.g., using menus, using toolbars, using keyboard

shortcuts, and any combination of these methods), and

analyzing all of them using current ‘by hand’ modeling

methods may be intractable.

The limitations of current predictive modeling tools that we

have presented here have an analogy in an orthogonal and

unconnected domain of research; that of software testing of

graphical user interfaces (GUIs) [13,14,19,20].

Traditionally, system testers examined their applications

that were to be tested, and then created manual use cases to

exercise what they believed to be the important behavior

[10,19]. But this approach has been shown to miss faults in

the application and to be time consuming to implement. In

recent years, there has been a drive towards developing

techniques and tools for automating both UI-model

extraction [13] and test case generation [20]. The GUI

widgets and/or buttons are represented as events either in

the form of a finite state machine or a graph, and this

abstraction is then used to perform test case generation by

traversing states or nodes in the graph. Once the test cases

have been generated, other tools automatically replay these

on the actual application. This process automation allows a

larger set of test cases to be generated and run, and a

broader range of behaviors to be tested than was possible

using the manual approach. Research has also shown that

automated GUI test case generation can improve fault

detection [20].

In this paper, we bridge the gap between these two domains

of research and leverage the advances in GUI automated

testing to facilitate cognitive predictive modeling. As an

exemplar, we present CogTool-Helper (Figure 1), an

automated design and task generator for CogTool.

CogTool-Helper can (1) automatically create a CogTool

design storyboard from an existing application; (2)

represent methods to accomplish tasks on the design (either

through demonstration, by defining a task in an XML

format used by software testers, or eventually automatic test

case generation); and (3) uncover implicit methods that

exist on the design that perform the same tasks in

alternative ways. We believe that using such GUI testing

tools as input to predictive modeling tools will improve

both efficiency and effectiveness of the current predictive

modeling process.

The rest of the paper is laid out as follows. In the next

section we explain the contributing technologies. We follow

this with an overview of our tool and then describe each

aspect of CogTool-Helper in detail. We present a design

walkthrough of CogTool-Helper, then discuss the potential

benefits of this approach, and conclude with a roadmap for

future work.

CONTRIBUTING TECHNOLOGIES

CogTool

CogTool [7] is a tool that enables UI designers to create

valid KLMs by describing their design in a storyboard and

demonstrating tasks on that design. In CogTool’s

Figure 1. CogTool-Helper

storyboard, each design can contain one or more devices

(e.g., keyboard, touchscreen, microphone), each state of the

UI is represented as a frame, each actionable interface item

is represented as a widget with position, size, label, and

type (e.g., link, button) and each action on a widget or

device (e.g., mouse click, keys typed on the keyboard) is

represented as a transition between frames.

To build a KLM, the designer creates a storyboard with the

widgets required to do the task, walks through the task on

that storyboard by selecting a start frame and performing

the appropriate actions on that frame. CogTool records

these actions, automatically inserts additional KLM

operators based on prior research (e.g., eye-movements,

thinking time), and follows the pre-defined transition to the

next frame in the storyboard. The designer continues to

walk through the steps in the task until it is complete and

the entire KLM is built. When the analyst hits the

“Compute” button, CogTool runs a computational model

(implemented in ACT-R [1]) of what a user would see,

think and do, producing a quantitative estimate of skilled

execution time and a timeline visualization of what the

underlying cognitive model was doing at each moment to

produce that estimate. A designer can create multiple

different UI storyboards, walk through the same task on

each storyboard, and then compare predictions of skilled

execution time for each. The designer can also analyze

many different tasks and alternative methods for doing

these tasks to explore the efficiency of different UIs for

different tasks and methods.

Recent research has added CogTool-Explorer [18] to

CogTool’s capabilities, so it can now also predict novice

exploration behavior using an underlying model of

information foraging [16]. CogTool-Explorer uses the same

form of a storyboard described above. While KLMs require

only the widgets used along a correct path in the task

(because skilled users know where these widgets reside and

are not confused by widgets irrelevant to the task at hand),

CogTool-Explorer requires all widgets to be represented

because it models the time it takes a novice to visually

search through the widgets and the confusion imposed

when widgets irrelevant to the task have labels that seem

similar to the task goal. Complicated UIs, therefore, require

substantial effort on the UI designer’s part to represent each

and every menu item, button, pull-down list, etc. to make a

storyboard complete enough to predict novice exploration.

GUI Testing Tools

There have been many approaches to automated GUI

testing. One class of tools uses capture/replay, that provides

the user with the ability to demonstrate a test case (capture),

during which a script is recorded that can then be re-run

(replayed) on the given application. While replay is fully

automated, capture is a manual process — it requires that

the tester decides what to test and then demonstrates those

tasks on the application. Although this simplifies the testing

process to a great degree, the number of tests that can be

created and run, as well as the range of behaviors that can

be tested is limited by the need for human effort.

In the work of Memon et al., a set of techniques and tools

has been developed to automate the entire testing process,

including the generation of tests [11,13,14,20]. We utilize

their techniques and tools for CogTool-Helper. In their

testing approach, the buttons, widgets and menus on the

user interface are modeled as events in the form of a graph.

Nodes are events, and edges are relationships between

events indicating which events may follow other events.

In a single run of the application, called “ripping” [13], a

depth first traversal of the interface is executed, opening all

menus, windows and reachable widgets and buttons. The

output of ripping is a directed graph called an event flow

graph (EFG) that describes both the event relationships and

types. Suppose an edit menu has a choice called “cut”. The

event, cut, will have an edge from the event, edit, indicating

that cut can follow edit, and a test case may be generated

that executes first edit followed by cut. The EFG for an

application can be traversed to automatically generate test

cases of a specified length and satisfying specific event

coverage criteria [20].

Test cases are stored as XML and can then be automatically

replayed on the GUI (and or manually edited by the tester

and then replayed). The GUI Testing Framework,

GUITAR, [11], consists of a set of open source tools,

available for a variety of UI platforms such as Java,

OpenOffice, Web Applications, Android and the iPhone. It

includes a ripper, a replayer and test case generator.

Other techniques for generating GUI tests include

representing them as finite state machines [11] or by using

visual elements such as buttons and widgets to describe a

test case [4]. Although we have selected a single technique

in which to base CogTool-Helper, we believe that other

methods for automated testing of GUIs may also benefit

predictive human performance modeling and will examine

some of these as future work.

COGTOOL-HELPER

Overview of CogTool-Helper

CogTool-Helper is a standalone Java application (Figure 1)

built on top of the existing test case replayer, GUITAR

[11]. For our prototype, we have incorporated two versions

of GUITAR, one that works on OpenOffice applications

and one that works on Java Swing applications. The UI

designer need not have access to source code to analyze an

application because GUITAR uses Java Accessibility API

[6] to interact with the widgets on the UI.

CogTool-Helper consists of two main phases, Task

Construction and Design Construction as illustrated in

Figure 2 and presented in detail below. The output of this

process is an XML file representing a complete CogTool

model that can then be imported into CogTool for design

and task analysis.

Operation and Implementation details

(1) Setup

When CogTool-Helper is launched, the designer selects a

legacy application to be analyzed. In Figure 1, the

OpenOffice text editor (swriter.exe) has been selected. The

designer must also choose a location to store the output of

CogTool-Helper (c:\...\CogToolHelper_Results in Figure

1). CogTool-Helper then creates a connection to the

application and the designer is ready to specify the tasks.

 (2) Task Construction

In the Task Construction phase, the UI designer defines one

or more tasks and creates one or more methods to achieve

each task. As shown in Figure 2, there are two different

ways to achieve this goal, Import Task, where the designer

loads in previously defined tasks and methods, or Capture

Task, where the designer demonstrates methods on the

application being analyzed and CogTool-Helper captures

their actions.

Each method is stored in CogTool Helper as a GUI test

case in the GUITAR format. This allows for scripting and

automatic generation of methods, and makes for easy

integration with the test case replayer.

As an example, consider using OpenOffice Writer to enter

text, center it on the page, and make it bold (Enter, Center,

and Bold Text). A UI designer has entered two methods for

doing this task in CogTool-Helper (Figure 1), one method

using all menu commands and the other using all toolbar

buttons. These demonstrations create two test cases in the

GUITAR representation. A test case is a series of Steps

containing the Window that is being accessed and the button

or widget (Component) on which some Action such as a

click is performed. For example, clicking the Select All

toolbar button is represented as follows.

 <Step>

 <Window>

 Untitled 2 - OpenOffice.org Writer_49

 </Window>

 <Component>Select All_44</Component>

 <Action>

 edu.umd.cs.guitar.event.OOActionHandler

 </Action>

 <WindowFlag>windowFlag</WindowFlag>

 </Step>

Different methods to achieve the same effect result in

different GUITAR test cases. For instance, when using the

menus instead of the toolbars, selecting all text takes two

steps, an action handler event to click on the Edit menu and

then one to click on the Select All menu item.

 <Step>

 <Window>

 Untitled 2 - OpenOffice.org Writer_49

 </Window>

 <Component>Edit_34</Component>

 <Action>

 edu.umd.cs.guitar.event.OOActionHandler

 </Action>

 <WindowFlag>windowFlag</WindowFlag>

 </Step>

 <Step>

 <Window>

 Untitled 2 - OpenOffice.org Writer_49

 </Window>

 <Component>Select All_36</Component>

 <Action>

 edu.umd.cs.guitar.event.OOActionHandler

 </Action>

 <WindowFlag>windowFlag</WindowFlag>

 </Step>

Tasks can be scripted by hand or through an automated test

case generator, and then loaded into CogTool-Helper with

the “Import Task” button in Figure 1, but CogTool-Helper

also allows designers to demonstrate methods using the

capture task feature.

To capture a new method for a task, the designer provides

names for the task and method in the appropriate text fields

(Figure 1). Next, the designer clicks “Start”
1
, and CogTool-

Helper launches the legacy application. The designer then

demonstrates the task on the legacy application, while

CogTool-Helper captures the user’s actions and converts

them to the test case format. The designer clicks “Stop”

when s/he has completed the task; recording stops and the

method is saved.

In Figure 1, we see CogTool-Helper with two tasks defined.

The first task, Enter, Center and Bold Text, has two

methods: “Use Menus”, and “Use ToolBar”. The second

task, Insert Hyperlink has only one method, “Use Toolbar”.

The first task has been imported from a file, but is

indistinguishable from the other task that was captured by

the designer. Once the designer has created and saved all of

the tasks to be analyzed by CogTool, s/he will click the

“Start Analysis” button, which begins the second phase of

CogTool-Helper, Design Construction.

(3) Design Construction

The goal of the design construction phase is to generate all

the information needed by CogTool to model a UI design

and tasks performed on it and represent this information in

1
 Figure 1 shows “Redo” instead of “Start” because the

button’s label changes after a method has been

demonstrated.

Figure 2. CogTool-Helper’s process & relationship to CogTool.

XML so it can be imported into CogTool. There are three

key components that contribute to this phase of CogTool-

Helper: Menu Extraction, Task Replay and Method

Inference.

Menu Extraction. CogTool-Helper captures simple widgets,

(e.g., buttons) as they appear during replay, but for menus

and pull-down lists it extracts them during the menu

extraction process (analogous to GUI ripping). It

systematically opens all menus, pull-down lists, dialog

boxes, and any other elements that are not initially visible

within the root window of the application, via a depth first

traversal. CogTool-Helper’s menu extraction records the

size, position, label and type of these widgets in CogTool

XML format. This set of widgets will be used in the next

process, task replay, so appropriate widgets can be added to

the frames in the CogTool design.

Menu extraction can take a considerable amount of time for

complex interfaces, even with it opening hierarchical menus

as fast as possible, so it is shown to the designer as

feedback that CogTool-Helper is working. The experience

is much like watching a player piano produce music.

Task Replay. During task replay, a CogTool design that

supports all tasks specified by the designer during task

construction is created incrementally (Figure 3). Each

method of each task is automatically performed on the

interface using the GUITAR replayer, which treats each

method as a test case and performs each step in turn on the

UI. We have modified GUITAR to capture the UI

information that CogTool needs and translate the test case

into a CogTool design. As with menu extraction, the task

replay process takes time and it is shown to the designer.

But instead of opening all menus, dialog boxes, etc, task

replay performs just those actions recorded in this method

for accomplishing this task.

Before each method is performed, CogTool-Helper re-

launches the application. If this is the first method being

analyzed, CogTool-Helper starts with Build Frame, which

constructs the XML for the initial CogTool frame. Build

Frame begins by capturing a full screen image of the

current desktop. This image data is placed in the

background slot of CogTool’s XML for this frame. Because

all the background images are full screen, and the

background image sets the size of a frame in CogTool, all

frames are the same size and scale; keeping all frames at the

same scale is important for CogTool’s human performance

model to make accurate predictions of the duration of

mouse movements.

CogTool-Helper then determines which windows are

visible at this point in the task from the GUITAR test case.

If a window is modal, CogTool-Helper will include only the

widgets in the active modal window on this frame because a

user, and therefore the CogTool model, can only interact

with the modal window at this point in the task. If the

window is modeless, CogTool-Helper includes widgets

from all open windows because a user (and the CogTool

model) could interact with any one of them.

To get the widgets in a frame, CogTool-Helper traverses the

accessibility trees provided by the application for each

window, collecting every object corresponding to a

CogTool widget (e.g., buttons, links, text boxes). For each

widget, CogTool-Helper extracts the position of its upper

left corner, its height and width, its label and type, and

creates a new widget in CogTool XML format. CogTool-

Helper maps each type of accessibility object to the

corresponding CogTool widget. For some CogTool widget

types, we also capture additional information, such as the

toggle state for a toggle button. A frame created by

CogTool-Helper for OpenOffice Writer, with its first

widget (the Select All toolbar button), is encoded as

follows.

<design name='OpenOffice.org Writer'>

 <device>mouse</device>

 <device>keyboard</device>

 <frame name='Frame 002'>

 <backgroundImageData>…</backgroundImageData>

 <topLeftOrigin y='11' x='11'/>

 <widget w-is-selected='false'

 w-is-standard='true'

 name='SelectAll_button_1'

 shape='rectangle'

 w-is-toggleable='false'

 type='button'>

 <displayLabel>Select All</displayLabel>

 <extent height='27' y='82'

 width='25' x='1020'>

 </extent>

 </widget>

After the frame has been built, CogTool-Helper proceeds to

the next phase of Task Replay, Perform Action. Perform

Action looks at the action at this point in the test case and

begins to create the CogTool XML representation for a

transition. This step in the test case says which widget is the

source of the transition and what type of transition it is (e.g,

mouse click, keystrokes on the keyboard), but not what

state it transitions to. Perform Action performs the action,

creating a new current state, which is passed to the Capture

State process.

The state of the application consists of all information that

can be obtained through all widgets on the interface. It

consists of attributes such as text in the document, the

current font, the current font size, and the current selection

Figure 3. Task Replay Process

state of a toggle button. GUITAR captures state information

for comparison with a pre-defined oracle when used as an

automatic GUI tester. We have modified GUITAR to

capture some extra details for our purpose.

The purpose of capturing the state is to determine whether

CogTool-Helper needs to build a new frame for this state,

or whether it should link to an existing frame. CogTool-

Helper keeps a list of all states that have been encountered

while building the design, each of which is linked to a

particular frame. If the current state is not in the list,

CogTool-Helper places it in the list, maps it to an empty

frame, and sets the target of the transition to the empty

frame. If it is in the list, CogTool-Helper sets the target of

the transition Perform Action has just created to the frame

associated with the current state. The transition associated

with the Select All button in Frame 002 shown above, is

encoded as follows, just before the end of the widget

definition.

 <transition durationInSecs='0.0'

destinationFrameName='Frame 003'>

 <action>

 <mouseAction button='left' action='downUp'>

 </mouseAction>

 </action>

 </transition>

</widget>

Next, if the state was not new, CogTool-Helper repeats

Perform Action for the current step in the test case. If the

state was new, CogTool-Helper goes back to Build Frame

to fill in the empty frame.

Once there are no steps left in the test case, CogTool-

Helper has finished representing this method in CogTool

XML and returns the set of states and frames that have been

defined so far. These will be the input to the next method if

there are any left to process. CogTool-Helper proceeds in

the same way for every method of every task. Once all tasks

are complete, the CogTool XML contains all the

information for a complete CogTool design storyboard,

with all frames, widgets and transitions.

The last part of the Task Replay process (Figure 3) is

building CogTool scripts, i.e., representations of the

demonstrated steps in each method in CogTool XML form.

Scripts include the mouse and keyboard actions assembled

by CogTool-Helper, to which CogTool will add

psychologically valid “undemonstrated steps”, like eye

movements and thinking time, when it builds the ACT-R

cognitive model. For each action in a method, CogTool-

Helper creates a demonstration step in the script, with the

widget on which the action was performed and the type of

action (e.g., mouse click, mouse double-click, keyboard

action). In the following step, the left mouse button is

clicked on the Select All button.

<demonstrationStep>

 <actionStep

 targetWidgetName='SelectAll_button_1'>

 <mouseAction button='left'

 action='downUp'>

 </mouseAction>

 </actionStep>

</demonstrationStep>

After all tasks provided by the designer are scripted, Task

Replay completes and the next phase of Design

Construction, Method Inference, begins.

Method Inference. There may be alternative methods

possible in the design that were not explicitly specified by

the UI designer. CogTool-Helper uncovers these alternative

methods and creates scripts for them so the UI designer can

determine if their existence is a problem or an opportunity

for the end user. This would be intractable if the UI

designer had to manually create scripts for every possible

path in the design. The method inference process generates

all possible alternative methods.

Figure 4 is a schematic of the frames in the Enter, Center

and Bold Text task in our example of CogTool-Helper. In

Frame 3, “CHI2012” has been typed into a document in

OpenOfficeWriter and is selected. The two paths shown on

the left (red dotted line and black solid line) represent the

two methods for centering and bolding the text that were

created by the designer using CogTool-Helper. But there is

nothing preventing an end user from taking different paths

through the design. The right side of this figure shows two

such paths (thin gray line and thick blue line), where the

model will switch from using the toolbar buttons to using

the menus (or visa versa) to accomplish the task. We call

these Inferred Methods. The last part of the Design

Construction phase is to calculate and create all of the

possible inferred methods for a task.

To compute these methods, we extract the portion of the

Figure 4. Example of Inferred Methods.

design corresponding to a single task, and then build a

directed graph where the nodes are the frames and the edges

are the transitions. The graph is a multigraph because two

nodes can be connected by more than one edge.

We use a depth first search algorithm to traverse this graph

from the start to end node, storing each transition that we

visit along the way. Once we reach the final node (the end

state), we check to see if the path we have currently

followed is in the set of paths we already have. If it is not,

then we save this path as an inferred method, and create a

CogTool method script for it.

Once we have created all of the inferred methods, CogTool-

Helper has finished and we can import and analyze the

CogTool Designs that we have created.

Importing Designs/Tasks from CogTool-Helper

Once CogTool-Helper is finished, the designer can launch

CogTool in either MacOS or Windows and import their

designs and tasks from the XML file. We have added an

option to CogTool that will automatically construct and run

the ACT-R model and calculate predictions for each task

upon loading. This way, the designer can open the XML

file and immediately compare each method of each task for

performance.

Figure 5 shows the imported design, tasks, methods, and

predictions. Notice that the “Enter, Center, and Bold Text”

task includes six inferred methods.

Figure 6 shows the completed CogTool design storyboard.

The frames used in the “Enter, Center, and Bold Text” task

run down the left side. The frames for the “Insert

Hyperlink” task run down the right side and share no

frames with the other task except the first. A portion of the

second frame in the storyboard (insert) shows part of the

menu structure and toolbar widgets constructed by

CogTool-Helper. The Format menu is expanded (occluding

other widgets) and the Alignment item is selected, revealing

the Centered item used in the Use Menus method.

Testing and Technical Limitations

CogTool-Helper currently works in two GUI environments.

Since different application platforms have slightly different

Accessibility APIs, we have to use different versions of the

GUITAR framework for each environment and then

customize the CogTool script creation. To date, our tool

works on applications written in Java and on those that use

the OpenOffice interface. Within OpenOffice, we have

tested CogTool-Helper on each of the applications in the

OpenOffice 3.0 suite including Impress, Calc, Math, Base,

and Draw in addition to Writer, which has provided the

extended example in this paper. Additionally, we have

successfully used CogTool-Helper with LibreOffice 3.4.3,

which is written on top of OpenOffice. For the Java UI, we

have tested TerpWord and TerpSpreadsheet from the

TerpOffice Suite, a set of Office Productivity tools written

at the University of Maryland [12]. CogTool-Helper

requires Java 1.6 and has been tested on a Windows 7

operating system. In the future we will incorporate more

(and mixed) UI platforms into CogTool-Helper and test it

on other operating systems.

The goal of this work is to make the entire process of

creating the models completely automatic, however, there

are two parts of our current implementation that are only

semi-automated. The first part is task definition. The

designer can either demonstrate the task by hand on the

interface (which is automatically captured by CogTool-

Helper), or provide test cases in the GUITAR format, which

at this time would be manual. GUITAR includes a test case

Figure 5. The Imported Design, Tasks and Predictions.

Figure 6. The Imported CogTool Design and One Frame.

generator, but we do not yet have a technique to generate

specific tasks that a user may want to perform. As part of

our future work, we are adding automated task and method

generation. We plan to use an approach based on the AI

planning work of Memon et al. [14].

The “Analyze Tasks” process is entirely automatic. The

designer does not need to interact with the application at all

during this stage. However, once the design is created, the

designer must import this by hand into CogTool (done by a

simple menu action). Automating the connection between

CogTool-Helper and CogTool with the new design

imported is also left as future work.

Although we have been able to create CogTool designs for

all of the systems above, we have also identified a set of

limitations. First we are currently constrained by the

capabilities of the underlying GUITAR testing tools. For

example, the current framework cannot perform tasks

involving keyboard commands, such as Ctrl-C, and it does

not yet support the right-click of the mouse. Second, we

have mapped only a subset of accessibility types to their

appropriate CogTool widgets. These cover the majority of

widgets in the Java and OpenOffice systems, but we have

not attempted to be complete, for instance, we do not yet

handle combo buttons. Future work will be to expand our

set of widget translations. Finally, we have only

implemented the task capture feature for the OpenOffice

applications. We plan to implement this for the Java

applications as well.

As additional future work, we will add the ability for

CogTool-Helper tasks to start in different states of the

application and we will optimize the time it takes to build a

design. We will also support designs where the menu

structure can change dynamically as the application runs,

which may require an alternate technique beyond capturing

the menu only once at the start of our process.

A DESIGN WALKTHROUGH OF COGTOOL-HELPER

To learn whether automated analysis of legacy applications

would be useful to existing CogTool users, and whether

CogTool-Helper in particular would make it easy to do such

analyses, we conducted a design walkthrough of CogTool-

Helper. Four experienced CogTool users took part. Two

were software engineers each with over thirty years of

experience, one was an accessibility researcher with over

twenty years of research and programming experience, and

one was a usability researcher with over forty years of

experience. Each had used CogTool for at least two years

and had used it to create over 20 models of legacy systems

in the past year; three had created over 30 models.

The participants were told that they were going to be shown

a video demonstration of a tool we had designed to make it

easier to create CogTool models of legacy applications.

There was no instruction on CogTool-Helper, treating it as

a walk-up-and-use application.

The design researcher advanced the video to a point before

a user action is necessary (e.g., the first point would be

where the CogTool-Helper GUI appears after launch,

Figure 1 without any text fields filled in) and the participant

was asked what s/he would do next. For certain

interactions, participants were also asked what would

happen next (e.g., after pressing the Create New Task

button). In addition, we stopped the video after each UI

content change and asked participants to describe what they

were now seeing. After viewing the entire process (Figure

2), participants were asked for general feedback. During

each participant session, we recorded audio and captured

the screen.

Feedback

CogTool-Helper was designed to make it easier to create

CogTool models of legacy applications, and our

participants all recognized that indeed this was the case.

One said: “It’s fantastic, I didn’t have to do hardly

anything.” Three of the four participants recognized that

they would be more productive when analyzing legacy

applications if they adopted CogTool-Helper. “Even if it

didn’t do everything, it does enough that I would use it.”

The fourth participant was hesitant about adopting the tool

only because he doubted it could cope with multi-

application tasks, command line applications and

applications as complex as the programming tools he

typically analyzed; when asked to assume it could, he said

he would definitely try it.

Although recognizing the obvious value of CogTool-Helper

to their work, these experienced CogTool users could

anticipate a potential problem with task demonstration.

CogTool-Helper currently requires its user to demonstrate

tasks without error and two participants said it was difficult

to demonstrate the correct task steps on the first try. Their

current procedure for modeling legacy systems is to use

screen capture to make a video of using the legacy system

and extracting screen shots and actions by hand from this

video to put into their CogTool models. Thus, they had

extensive experience attempting to demonstrate tasks on

systems they don’t know well; they knew that errors were

common. One asked: “Does it let you cut out steps?” Both

requested support for editing a demonstrated task beyond

text-editing the GUITAR format; a suggestion to be

considered in a future redesign.

Inference of alternative methods for the task is a feature that

excited all four participants. “Wow, that’s just impressive,

that’s pretty cool.” Two of the participants who typically

modeled complex applications wondered whether there

would just be too many methods inferred in a complex

application, but then speculated that they might be able to

demo one method and it would help them discover all the

alternatives, and could identify which was the most and

least efficient. “What’s the minimal amount of things I

could have done to do that?” They both considered that this

feature would be very useful in their modeling work.

In our design walkthrough participants were given no

tutorial or other information about how CogTool-Helper

worked. Without such information, the flow of CogTool-

Helper was confusing to them. In particular, all four

expressed surprise when the CogTool-Helper started to do

the ripping/capturing of all the menu items. One of the

participants expected a separation between creation of the

storyboard, which he expected to happen as soon as he had

specified the application to be analyzed, and creation of the

model for the demonstrated tasks. We expect that minimal

instruction, e.g, showing something like the flowchart in

Figure 2 could alleviate this confusion.

There was also confusion about the use of “analyze” and

“analysis” in the CogTool-Helper GUI as this term is also

used to refer to the process of generating human

performance predictions in CogTool. All four participants

were confused, saying things such as: “I don’t know what

start analysis means in this case.” They expected CogTool-

Helper to be more tightly integrated with CogTool. When

asked what would happen when they started the analysis,

one participant said: “It’s going to give me some kind of a

representation of a model based on its interpretation of

what the steps were..., I don’t really know. I don’t know”.

This conceptual confusion cleared once the participants

were told that CogTool-Helper created a CogTool XML file

(again, showing them the flowchart in Figure 2 would have

helped), and all participants suggested not using the term

“analysis” in the CogTool-Helper UI, a suggestion we will

certainly act on in future redesigns.

DISCUSSION AND CONCLUSION

We have presented CogTool-Helper, a tool that extends

CogTool by providing an automated way to capture and

generate design storyboards, tasks and methods for legacy

applications as well as a way to uncover implicit methods

that exist for certain tasks on certain designs. By

automatically creating the CogTool model, CogTool-Helper

allows the analyst to spend their limited time interpreting

the result of the CogTool models instead of grabbing screen

shots, adding overlays to indicate the location and size of

widgets by hand, and typing in widget labels and other text.

By inferring methods, CogTool-Helper aids the analyst to

discover implicit methods for a task of which they may not

have been aware, but may be important for them to

consider. An implicit method may turn out to be the most

efficient, even if not readily discoverable. Knowing this can

provide a basis for a broader analysis.

As we discussed when introducing CogTool above,

obtaining predictions of skilled execution time only

requires a UI designer to represent the widgets on the

correct path in the CogTool storyboard, so CogTool-

Helper’s representation of all widgets on every frame may

seem like overkill for this usability metric. However,

CogTool-Explorer [18] can predict novice exploration

behavior, or the discoverability of how to accomplish a task

on a new UI, using information foraging theory. This

prediction requires a representation of all widgets because a

cluttered screen does distract novice users and CogTool-

Explorer must interact with fully-fleshed out storyboard to

make its predictions of novice errors. Many realistic

applications today are so full of features and widgets that

constructing storyboards by hand for CogTool-Explorer

will be a burden to the UI designer unless something like

CogTool-Helper is also used.

Feedback collected in the design walkthrough of CogTool-

Helper suggested that such a tool would improve the

productivity of analysts by making them more efficient. We

also uncovered specific areas to be examined in future

design work. Of particular note are:

 How should CogTool and CogTool-Helper be

integrated? For example, should CogTool-Helper be

more tightly integrated with CogTool so that it

immediately outputs the analysis results? Or is a loose

integration more appropriate for analysts?

 How should analysts be supported in creating and

editing task demonstrations?

 Can we support model creation for tasks involving use

of multiple applications?

 Can we automatically generate methods for tasks using

AI planning techniques where the analyst need only

specify a task at a high level rather than demonstrate

how to accomplish it?

This paper has focused on testing tools to facilitate creation

of CogTool models of legacy applications. Such models are

used to compare a new design with an existing one.

CogTool modeling is also used during design exploration,

allowing modeling of usability issues prior to coding.

Facilitating creation of such models is another area where

GUI testing technologies may be able to help. In this case,

testing technologies based on computer vision such as [4]

might facilitate creation of human performance models

from hand-drawn user interface sketches.

We have shown how CogTool-Helper bridges the gap

between the domains of software testing and HCI research.

In doing so, it leverages advances in GUI automated testing

to improve predictive human performance modeling in

service of design. Bridging these two communities also

benefits GUI testing research by highlighting concerns

critical to HCI that are also important but too often ignored

by the software testing community. For example, our user

evaluation revealed the importance of capturing inter-

application interactions, such as copying from one app to

another. GUI testing tools have traditionally focused on

analyzing single applications even though inter-application

interactions are often a source of functional GUI errors.

More generally, we believe that bridging the gap between

HCI and Software Engineering to create cross-cutting tools

will benefit both communities. CogTool-Helper is an

example that shows how a tool for software testing can also

be extended and integrated with usability testing tools. We

believe that there are other such opportunities to integrate

usability tools and methods with the tools and methods used

throughout the software life-cycle and that such tool

integration is key to integrating usability engineering with

software engineering, to the benefit of both.

ACKNOWLEDGMENTS

We would like to thank Peter Santhanam from IBM

Research for pointing out the connection between usability

and functional GUI testing and Atif Memon from the

University of Maryland for providing us with the newest

releases of GUITAR, as well as technical support.

This work is supported in part by IBM, the National

Science Foundation through award CCF-0747009 and

CNS-0855139, and by the Air Force Office of Scientific

Research through award FA9550-10-1-406. Any opinions,

findings, conclusions, or recommendations expressed in this

material are those of the authors and do not necessarily

reflect the position or policy of IBM, NSF or AFOSR.

REFERENCES

1. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., and Qin, Y. (2004) An integrated theory of

the mind. Psychological Review 111, 4, 1036-1060.

2. Bellamy, R., John, B. E., Kogan, S. (2011) Deploying

CogTool: Integrating quantitative usability assessment

into real-world software development. Proceeding of the

33rd International Conference on Software Engineering

(ICSE '11). ACM, New York, NY, USA, 691-700.

3. Card, S. K., Moran, T. P., and Newell, A. 1983. The

Psychology of Human-Computer Interaction. Hillsdale,

NJ: Lawrence Erlbaum Associates.

4. Chang, T., Yeh, T., and Miller, R.C. (2010) GUI testing

using computer vision, Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '10). ACM, New York, NY, USA, 1535-1544.

5. Gray, W. D., John, B. E., & Atwood, M. E. (1993)

Project Ernestine: Validating a GOMS analysis for

predicting and explaining real-world task performance.

Human-Computer Interaction, 8, 237-309.

6. Grechanik, M. Xie, Q. and Fu C. (2009) Creating GUI

testing tools using accessibility technologies, Software

Testing Verification and Validation Workshop, 243-250.

7. John, B. E., Prevas, K., Salvucci, D. D., and Koedinger,

K. 2004. Predictive human performance modeling made

easy. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI '04). ACM,

New York, NY, USA, 455-462.

8. Kieras, D. E. (1999). A Guide to GOMS Model Usability

Evaluation using GOMSL and GLEAN3. University of

Michigan. Available at:

ftp://www.eecs.umich.edu/people/kieras/GOMS/GOMS

L_Guide.pdf

9. Knight, A., Pyrzak, G., and Green, C. 2007. When two

methods are better than one: combining user study with

cognitive modeling. In CHI '07 Extended Abstracts on

Human Factors in Computing Systems (CHI '07). ACM,

New York, NY, USA, 1783-1788.

10. Memon, A.M. (2002), GUI testing: pitfalls and process,

IEEE Computer, 35(8), 87-88.

11. Memon, A.M. (2011) GUITAR- A GUI testing

framework, available at: http://guitar.sourceforge.net.

12. Memon, A.M. (2011) TerpOffice, available at:

http://www.cs.umd.edu/~atif/TerpOffice/

13. Memon, A.M., Banerjee, I and Nagarajan, A. (2003)

GUI Ripping: Reverse engineering of graphical user

interfaces for testing, In Proceedings of The 10th

Working Conference on Reverse Engineering, 260-269.

14. Memon, A.M., Pollack, M.E. and Soffa, M.L. (2001)

Hierarchical GUI test case generation using automated

planning, IEEE Transactions on Software Engineering,

27(2), 144–155.

15. Monkiewicz, J. (1992). CAD's next-generation user

interface. Computer-Aided Engineering, November,

1992, 55-56.

16. Pirolli, P. and Card, S.K. (1999). Information foraging.

Psychological Review, 106, 643–675.

17. St. Amant, R., and Riedl, M. O. (2001). A

perception/action substrate for cognitive modeling in

HCI. International Journal of Human-Computer Studies

55(1), 15-39.

18. Teo, L., John, B. E., and Blackmon, M. H. (2012)

CogTool-Explorer: A Model of Goal-Directed User

Exploration that Considers Information Layout. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '12). ACM, New

York, NY, USA.

19. White L. and Almezen, H. (2000). Generating test cases

for GUI responsibilities using complete interaction

sequences, in International Symposium on Software

Reliability Engineering (ISSRE), 110–121.

20. Yuan, X. and Memon. A.M. (2010). Generating event

sequence-based test cases using GUI runtime state

feedback. IEEE Transactions on Software Engineering,

36(1), 81-95.

