
Budgeted Testing Through an Algorithmic Lens

Myra B. Cohen
Department of Computer
Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE, 68588-0115 USA

myra@cse.unl.edu

A. Pavan
Department of Computer

Science
Iowa State University
Ames, IA, 50011 USA

pavan@cs.iastate.edu

N. V. Vinodchandran
Department of Computer
Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE, 68588-0115 USA

vinod@cse.unl.edu

ABSTRACT
Automated testing has been a focus of research for a long
time. As such, we tend to think about this in a coverage
centric manner. Testing budgets have also driven research
such as prioritization and test selection, but as a secondary
concern. As our systems get larger, are more dynamic, and
impact more people with each change, we argue that we
should switch from a coverage centric view to a budgeted
testing centric view. Researchers in other fields have de-
signed approximation algorithms for such budgeted scenar-
ios and these are often simple to implement and run. In
this paper we present an exemplar study on combinatorial
interaction testing (CIT) to show that a budgeted greedy
algorithm, when adapted to our problem for various bud-
gets, does almost as well coverage-wise as a state of the art
greedy CIT algorithm, better in some cases than a state of
the art simulated annealing, and always improves over ran-
dom. This suggests that we might benefit from switching
our focus in large systems, from coverage to budgets.

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation;

Keywords
Software Testing, Algorithms, Combinatorial Testing

1. INTRODUCTION
Over the years research on automated testing has taken a

front and center position in the software engineering commu-
nity. Techniques have been built to generate faster, smaller,
more efficient test suites that can be both generated and
run with little intervention. Many of these techniques focus
on how much we have covered (code, products, methods,
events, requirements). Yet significant challenges remain and
no end is in sight. First, our systems have become highly-
configurable allowing users to customize individual instances

of the program while retaining a core set of functionality.
The configuration spaces in these systems have been shown
to be larger than can ever be exhaustively tested [4].

Second, many of our systems are interactive, using an
event-driven paradigm, where tests are (unbounded) sequences,
and systematic coverage is a challenge due the the explosion
in their numbers [10]. Third, new testing paradigms have
led to the notion of continuous test integration [5] or nightly
builds [6] where software is evolving quickly and must be
re-tested in short time sprints. This leads to a tightly con-
strained test environment where exact time allotments may
be unknown. Last, we are moving to cloud-based comput-
ing, or software services where a change leading to a regres-
sion fault can impact the entire user base at once, creating
additional testing risk.

As our regression cycles shorten, our configuration spaces
increase, our testing sequences lengthen and our risk in-
creases, we argue that our focus should be on a budgeted
testing problem, rather than on a coverage testing problem.
In systems testing we already utilize many sampling algo-
rithms, such as combinatorial interaction testing (CIT) [3],
i.e. cover all pairs or t-sets using a minimal number of tests.
Yet even using these techniques, we have a need for prior-
itization techniques to run the most important tests first.
We ponder instead, what happens if we formulate this as
a budget problem and ask, “What is our coverage under a
budget of N tests/configurations/event sequences/..?”

Recent work by Arcuri et al. [2] has started in this di-
rection. They evaluate the effectiveness of CIT versus ran-
dom testing and suggest that random testing stands a good
probability of finding the types of faults (interaction faults)
discovered by this technique. While researchers in CIT con-
tinue to build new (efficient) algorithms for making samples
smaller [9], or for solving practical problems such as scaling
to ultra-large size programs [8], and handling constraints
(dependencies between inputs of the system) efficiently [4],
they are unable to answer the question “What is the best
technique to use if I will run out of time” or “How much cov-
erage am I guaranteed to obtain given a particular algorithm
and a time budget”. We believe that formulating this as a
budgeted problem, and viewing this under an algorithmic
lens may benefit testing in new ways.

In this paper we present a first step at budgeted test-
ing for CIT, where budget rather than coverage drives our
algorithmic choice. We describe a simple budgeted greedy
algorithm with a provable coverage guarantee where an ex-
plicit set of configurations to choose from are given (we call
this Explicit BCA). Since in practice the search space is

too large, we apply this algorithm on a random subset of
configurations, adapting it to work only on a tiny part of
the search space (For MySQL which has over 100 million
configurations, it randomly selects only 1000). This means
that we can provably work with only a small part of the con-
figuration space and still achieve coverage within a known
percent of the maximal coverage for a given budget. In a
feasibility study we implement and test this on two com-
monly used highly configurable systems and show that our
algorithm can cover close to that of a state of the art greedy
algorithm and outperforms simulated annealing. In all cases,
it performs significantly better than random and in practice
it appears to do much better than the theoretical bound.

2. AN ALGORITHMIC FRAMEWORK FOR
BUDGETED CIT

We begin by defining the CIT coverage problem and then
view this from the alternative budgeted perspective. Let
〈f1, · · · , fk〉 be k-factors, so that fi can take a value from
an alphabet Σi of size vi. A test is a k-tuple 〈a1, · · · , ak〉
such that each ai ∈ Σi. A t-set is a set of size t where each
element of the set is a tuple of the form 〈i, αi〉 such that
1 ≤ i ≤ k and αi ∈ Σi. Given a test T = 〈a1, · · · , ak〉 and a
t-set c, we say that T covers c if for every 〈i, αi〉 in c, ai = αi.
A t-wise covering array, denoted as CA(t, k, v1, · · · , vk), is a
set of tests such that every t-set is covered by some test from
CA(t, k, v1, · · · , vk). The size of the covering array is the
cardinality of the set CA(t, k, v1, · · · , vk). The parameter t
tells us how strongly to test the combinations of settings. If
t = 2 we call this pairwise CIT. The covering array problem
is to find a t-wise covering array of smallest size.

In the budgeted version of the covering array problem we
are given a budget B with a number of tests (or configura-
tions) that we can run. For a collection of tests T , we say
that T covers a t-set c, if there exist some test in T that cov-
ers c. Given T , let Cov(T) be the number of t-sets it covers.
We define the Budgeted Covering Array Problem (in
short BCA problem).

Definition 1 (BCA Problem). Given a budget B, com-
pute a set of tests T so that |T | = B and Cov(T) is maxi-
mum.

An algorithm for the BCA problem is of practical inter-
est, however, this problem is unlikely to have a guaranteed
efficient algorithm. Hence designing an efficient algorithm
with provable approximation guarantee will be of practical
significance. An immediate question is: what is the cov-
erage of a random set of B tests? Using the probabilistic
method [1] the following can be shown.

Theorem 2. Let T be a set of B tests chosen uniformly
at random. Then with probability > (1 − δ), Cov(T) ≥
δ(vt

vt−1
)B.

One of the challenges in designing approximation algo-
rithm for the BCA problem is that the search space of all
possible tests is Πk

i=1vi which is exponential in k even if
|vi| = 2 for all i. We formulate the following Explicit
BCA problem for which we give an efficient algorithm with
a provable approximation guarantee.

Definition 3 (Explicit BCA Problem). Given a col-
lection T of tests, and a budget B. Find a subset S∗ ⊆ T

of size B so that Cov(S∗) is maximum. That is, we want to
compute S∗ so that:

S∗ = arg max
S⊆T

Cov(S)

Definition 4. An algorithm A is an c (for c < 1) ap-
proximation algorithm for a maximization problem if for any
instance x of the problem, A(x) outputs a solution whose
value is at least c times the value of the best solution.

Theorem 5. Algorithm 1 is an efficient (1−1/e) approx-
imation algorithm for the Explicit BCA Problem. Here e
is the base to natural logarithm.

For this algorithm, the approximation is always within a
constant of (1 − 1/e) = 63.2% regardless of the coverage
criteria. This algorithm gets an initial set of test T and a
budget B as input, and greedily selects tests from the set T .

Algorithm 1: Greedy Explicit BCA

1 Input: Set of tests T and budget a B
2 S = φ;
3 For i = 1 to B
4 Find T ∈ T so that Cov(S ∪ {T})− Cov(S) is

maximum;
5 S = S ∪ {T};
6 Output S.

The proof that Algorithm 1 is a (1− 1/e) approximation
algorithm follows from the theory of sub-modular function
optimization [7] and we omit the details here. Note that the
run time of this algorithm is proportional to the product of
size of the initial test T and the budget B.

We propose the following approach for designing an effi-
cient approximation algorithm for the BCA problem: first
produce a set of tests T and run the above approximation
algorithm for Explicit BCA with T as input. This raises
an important question regarding the choice of initial test set
T . Notice that choosing T to be the set of all possible tests
(exponentially many) will give a solution to the BCA prob-
lem. However this takes exponential time. This leads to the
following definition.

Definition 6. Given a budget B and a set of tests T
is B-maximal if the optimum value of the Explicit BCA
problem with budget B and test set T as input is same as the
optimum value of the BCA problem with budget B as input.

Designing an efficient algorithm to construct a B-maximal
test set of small size (polynomial in k and vt) is a significant
future direction to explore. Such an algorithm will yield
an efficient solution to the BCA problem with a provable
guarantee on the quality of solution. We provide a prelimi-
nary evidence that the proposed direction to solve the BCA
problem will be fruitful, however, in this paper. An intu-
itive choice for a B-maximal set is a random test of size
which with a high probability is a covering array. The fol-
lowing theorem gives a bound on this number [1]. Here
v = max{v1, · · · , vk}.

Theorem 7. If we randomly choose N tests where N ≥
vt(ln 1/δ + t ln vk), then with probability ≥ 1 − δ, the tests
forms a covering array.

Based on the above theorem, a heuristic for BCA (called
GreedyBCA) is as follows: given a budget B, pick a ran-
dom test set T of size N and run Algorithm 1 with T and B
as input. In the next section we perform a feasibility study
of this Greedy BCA.

3. FEASIBILITY STUDY
We set out to ask questions about whether the proposed

greedy budgeted covering array algorithm (GreedyBCA) is
potentially useful in practice. We ask two research questions.

RQ1: Does GreedyBCA produce coverage within the
expected threshold?

RQ2: How does GreedyBCA compare with existing
CIT algorithms for different budgets?

Study Setup. We selected two applications that have
been widely used in testing studies for configurable soft-
ware and that have slightly different characteristics, MySQL
and GCC. The first application, MySQL, a configurable
database application, has been studied in a nightly build
environment [6]. The second application, GCC, a popu-
lar open source compiler, has been used in multiple studies
on configurability. The exhaustive configuration space for
MySql is 141, 557, 760 and it is in the order of 1061 for
GCC [4]. For this study we ignore the model constraints
and leave their incorporation for future work.

The CIT models and other information about these are
shown in Table 1. The second column provides the details
of the model. We use a common shortcut where xy means
there are y factors with x values. For instance, GCC has
189 binary and 10 ternary options, while MySql has only
23 factors, of which 18 are binary, three are ternary, one has
four values and one five values.

Table 1: Characteristics of Subjects. xy means y
factors have x values. PrCount is the count of pairs
to be covered. Size is the initial random test set.

Subject Model PrCount Size

MySql 218334151 1388 1000

GCC 2189310 82809 360

We first calculated the size of the initial random set used
in Algorithm 1. The size of the initial random set is obtained
based on Theorem 7. For MySql, the maximum alphabet
size v is 5. To make the error very small we set δ as 1/230.
Then ln 1/δ is approximately 21, and t ln vk = 2 × ln 115
(for t = 2) whose value approximately equals 10. Thus
ln 1/δ + t ln vk ∼ 31 and vt = 25, and hence the initial ran-
dom set of size 1000 is a generous random sample to make
sure that we have a covering array to start with. Similar
calculations yield 360 as a choice for the size of the initial
test set for GCC. Note that while GCC is the larger model
(199 configurable options versus 23), since MySql has a
higher maximum v the initial random set to choose from is
larger in MySql. We then ran GreedyBCA as well as
a budgeted version of two existing algorithms (AETG and
Simulated Annealing that were used in [4]). We also collect
the first budget rows from our random sample for compar-
ison. We used budgets of 10 (approximately half the size
of a full covering array), the average size of 10 independent
runs of the simulated annealing algorithm, and the average
size of 10 runs of the AETG algorithm. These are 20 and

RAND.10 SA.10 AE.10 BCA.10 RAND.20 AE.20 BCA.20 RAND.25 BCA.25

80
85

90
95

10
0

Technique

P
er

ce
nt

 P
ai

rs
 C

ov
er

ed

Figure 1: MySQL: Budgeted coverage

RAND.10 SA.10 AE.10 BCA.10 RAND.16 AE.16 BCA.16 RAND.25 BCA.25

92
94

96
98

10
0

Technique

P
er

ce
nt

 P
ai

rs
 C

ov
er

ed

Figure 2: GCC: Budgeted coverage

25 respectively for MySQL and 16 and 25 for GCC. We
measure the pairwise coverage of the resulting test suites for
each budget. For the CIT algorithms we count the coverage
for the first N rows, where N is our budget. All experiments
were run 10 times.

The results are shown in Table 2 and boxplots (Figures 1
and 2). In the table we show the number of missing pairs for
each budget. We use RAND-N, SA-N, AE-N and BCA-N
to represent the random, simulated annealing, AETG and
GreedyBCA with a budget of N. In the boxplots we show
the percent coverage on the y-axis. In GCC there are more
pairs to be covered so the percentage differences are on a
smaller scale, but the relative results are similar.

The simulated annealing (SA) performs worse than the
budgeted version of AETG, but both outperform random.
Our algorithm performs better than SA and is very compet-
itive with AETG. A possible intuitive explanation is that
(and is similar to results from prioritization of CIT) greedy
algorithms pack more pairs into the test suite early and then
exhibit a long tail, while simulated annealing works on the
entire set of configurations at once. We note that our cov-
erage of our base algorithm is within 1 − 1/e which is ap-
proximately 63.2% of the maximum coverage for our budget.
We don’t have the ground truth for small budgets to empir-
ically evaluate this. For the larger budgets our algorithm
achieves 100 percent coverage in some runs (for example in
MySql). This illustrates that the practical performance is
much better than the guaranteed 63.2%.

We believe that designing an algorithm to construct a B-
maximal set and using such a set as input to the greedy algo-
rithm may also outperform the budgeted version of AETG
and may lead to new practical algorithms. This direction is
future work. We also note that we implemented this version
of GreedyBCA inside of our AETG framework (removing

Table 2: Number of missing pairs for 10 runs of each algorithm
MySQL

No. RAND-10 SA-10 AE-10 BCA-10 RAND-20 AE-20 BCA-20 RAND-25 BCA-25
1 258 168 98 112 53 7 9 25 0
2 166 213 108 119 54 4 9 68 0
3 249 185 105 118 68 7 9 44 2
4 209 184 105 123 107 6 8 44 0
5 247 194 104 116 63 5 8 34 0
6 257 170 105 119 63 6 6 55 0
7 235 184 104 118 74 6 6 32 0
8 224 190 101 121 57 7 7 35 0
9 250 180 103 118 68 8 9 26 0
10 273 202 98 128 68 4 9 36 2
Avg 236.8 187.0 103.1 119.2 67.5 6.0 8.0 39.9 0.4

GCC
No RAND-10 SA-10 AE-10 BCA-10 RAND-16 AE-16 BCA-16 RAND-25 BCA-25
1 5530 2664 2177 2835 1402 131 378 142 6
2 5406 3112 2135 3043 1295 146 351 221 4
3 6457 2913 2105 2932 1441 133 350 255 8
4 6548 3128 2114 3137 1374 128 356 142 4
5 6565 3547 2107 2959 1501 134 329 132 6
6 6610 2706 2087 3103 1515 133 324 122 6
7 6090 2512 2097 2932 1325 129 368 225 11
8 6476 3186 2125 3174 1535 135 375 128 6
9 5987 3385 2142 3028 1202 137 363 140 12
10 6132 3231 2118 3025 1343 140 355 190 7
Avg 6180.1 3038.4 2120.7 3016.8 1393.3 134.6 354.9 169.7 7.0

the AETG logic), hence we know that it runs at least as fast
as AETG. We expect that we can optimize this further.

4. CONCLUSIONS
We have argued for viewing testing as a budgeted problem

rather than a coverage problem, and using an algorithmic
lens to achieve provable guarantees. We presented a sim-
ple budgeted greedy algorithm for CIT and have evaluated
this against two existing CIT algorithms and purely random
selection of tests for various budgets. We have shown that
while the existing greedy algorithm (AETG) provides the
best coverage for smaller budgets, the budgeted greedy al-
gorithm performs much better than the theoretical bound.
We also note that if the budget is large enough, then the sim-
ulated annealing has the highest coverage. In future work
we will formalize this problem further, incorporating con-
straints and fault detection results as well as performing
larger scale empirical studies. We are also exploring ways to
find a more optimal starting set.

5. ACKNOWLEDGMENTS
This work is supported in part by NSF grants CCF-1161767

for the first author, CCF-1421163 for the second author, and
CCF-1422668 for the third author.

6. REFERENCES
[1] N. Alon and J. Spencer. The Probabilistic method.

Wiley-Interscience series in discrete mathematics and
optimization. J. Wiley & sons, New York, Chichester,
Brisbane, 1992.

[2] A. Arcuri and L. Briand. Formal analysis of the
probability of interaction fault detection using random
testing. IEEE Trans. on Soft. Eng., 38(5):1088–1099,
2012.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Trans. on Soft.
Eng., 23(7):437–444, 1997.

[4] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
IEEE Trans. on Soft. Eng., 34(5):633–650, 2008.

[5] S. Elbaum, G. Rothermel, and J. Penix. Techniques
for improving regression testing in continuous
integration development environments. In ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 235–245, 2014.

[6] S. Fouché, M. B. Cohen, and A. Porter. Incremental
covering array failure characterization in large
configuration spaces. In Intl. Symp. on Soft. Test. and
Analysis, pages 177–187, July 2009.

[7] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis
of approximations for maximizing submodular set
functions - I. Math. Program., 14(1):265–294, 1978.

[8] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. l.
Traon. Automated and scalable t-wise test case
generation strategies for software product lines. In
Intl. Conf. on Soft. Test., Verif. and Valid., pages
459–468, 2010.

[9] A. Rodriguez-Cristerna and J. Torres-Jimenez. A
simulated annealing with variable neighborhood
search approach to construct mixed covering arrays.
Electronic Notes in Discrete Mathematics, 39:249 –
256, 2012.

[10] X. Yuan, M. Cohen, and A. Memon. GUI interaction
testing: Incorporating event context. IEEE Trans. on
Soft. Eng., 37(4):559 –574, 2011.

