
Using Feature Locality: Can We Leverage History
to Avoid Failures During Reconfiguration?

Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer
Department of Computer Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE, USA

{bgarvin,myra,dwyer}@cse.unl.edu

ABSTRACT
Despite the best efforts of software engineers, faults still es-
cape into deployed software. Developers need time to pre-
pare and distribute fixes, and in the interim deployments
must either tolerate or avoid failures. Self-adaptive systems,
systems that adapt to meet changing requirements in a dy-
namic environment, have a daunting task if their reconfigu-
ration involves adding or removing functional features, be-
cause configurable software is known to suffer from failures
that appear only under certain feature combinations.

Although configuration-dependent failures may be diffi-
cult to provoke, and thus hard to detect in testing, we posit
that they also constitute opportunities for reconfiguration
to increase system reliability. We further conjecture that
the failures that are sensitive to a system configuration de-
pend on similar feature combinations, a phenomenon we call
feature-locality, and that this locality can be combined with
historical data to predict failure-prone configurations. In a
case study on 128 failures reported against released versions
of an open source configurable system, we find evidence to
support our hypothesis. We show that only a small number
of features affect the visibility of these failures, and that over
time we can learn these features to avoid future failures.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Self-adaptive software, highly-configurable systems

1. INTRODUCTION
Self-adaptive systems are growing in interest as an alter-

native architectural model when the goal is to ensure con-
tinuous operation under a variety of environments [3, 5, 6,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASAS’11, September 4, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0853-3/11/09 ...$10.00.

11, 12, 19]. Adaptations force the system to reconfigure in
order to increase reliability or performance and are triggered
whenever environmental conditions necessitate change. The
traditional adaptive feedback loop involves collecting and
analyzing data, deciding what adaptation to use, and then
acting on this decision by reconfiguring the system.

Recent research on self-adaptation and failure avoidance
has developed techniques for preserving functionality in the
face of deployed faults [12, 28, 33]. Work in these two ar-
eas has produced a variety of approaches: exploiting redun-
dancy in the architecture or implementation [3, 5], directly
modifying the source code [25,31], changing the architectural
components or connectors [6, 11, 18], constructing adapters
or wrappers to fix interoperability issues between compo-
nents [12, 29], and transitioning to a set of precomputed
“good” states when a failure is detected [13,33].

While reliability, a concern of self-adaptive systems, mea-
sures the number of failures in a given time period, we might
also focus on individual, discrete failures. A model for single
failures is easier to build, because we need only replay failing
test cases under various configurations. If different failures
occur under similar configurations, then the combined model
for a small number of failures will be a good approximation
of the more general reliability model, and can be learned
relatively quickly.

To explore the viability of this idea, we examine a closely
related area of research, validating highly-configurable sys-
tems—systems with features that can be added and removed
[7]. Such systems may contain faults that cannot be exposed
under every choice of features, and the prohibitive cost of
testing all choices means that these faults stand a higher
chance of eluding testers [27, 32]. These types of systems,
while not necessarily adaptive, have similar characteristics in
that reconfigurations change the way executions occur while
preserving a core set of functionality. For instance, FeatUre-
oriented Self-adaptatION, (FUSION) [14], models adaptive
systems in the same way we model highly-configurable sys-
tems, and it uses the notation of feature models [7] to rep-
resent adaptations. Moreover, in the FUSION case study,
online learning is successful even though it identifies only a
portion of features as relevant to the utility function. Cor-
respondingly, there is some evidence in the software testing
community that failures are dependent on only small com-
binations of features [19,23,24]

In this work, we build on the ideas of Hassan et al. [20] and
Kim et al. [22], and hypothesize that failures have what we
term feature locality, a tendency to depend on similar com-
binations of features. In consequence, configuration choices

that avoid one failure are likely to avoid others and maintain-
ing a history of failures will allow us both to avoid failures
as we reconfigure as well as to select potential reconfigura-
tion workarounds upon failure. We have evaluated our hy-
pothesis on a case study crossing three releases of the GNU
compiler collection (GCC), simulating online adaptations by
reconstructing the failure time-line, and show that (1) very
few features impact the visibility of any failure, (2) a knowl-
edge of failure history increases our effectiveness more than
eight times over uninformed reconfigurations within five re-
configurations, and (3) we see a downward trend over time
in the number of reconfiguration attempts needed to achieve
our goal. These results suggest that feature locality exists
and may be useful for self-adaptive software.

The contributions of this work are:
• A presentation of feature locality and its potential im-

pact on ensuring the dependability during reconfigu-
ration.
• A case study to evaluate the existence of feature lo-

cality and our ability to exploit it on a set of failures
detected in the field.

The rest of this paper is laid out as follows: In the next
section we introduce background through a motivating ex-
ample and discuss related work. We present our hypothesis
in Section 3, Section 4 details our case study, and Section 5
concludes and highlights opportunities for future work.

2. BACKGROUND AND RELATED WORK
Our hypotheses and technique draw from two areas of

software engineering: the research on dynamically recon-
figurable systems, autonomic systems, and adaptation for
correctness, and the work on prediction schemes for fault
proneness. In this section, with the help of an example from
NASA’s Mars Exploration Program, we introduce the rele-
vant terminology and illustrate the connections between this
prior work and failure avoidance.

2.1 The Spirit Sol 18 Anomaly
Only 18 Mars solar days (sols, each approximately one

Earth day) after landing, NASA’s Mars rover, Spirit [1],
encountered a nearly mission-ending software failure. The
symptoms began with failed communications on the rover’s
two independent channels and eventually developed into in-
termittent, babbled transmissions along with an inability to
obey basic commands. Not until sol 20 could NASA ob-
tain crucial diagnostic information, including a health up-
date packet, which showed signs of multiple reboots, a low
battery, and a high internal temperature. Spirit was stuck
in an endless reboot cycle and therefore failing to sleep; it
risked running out of power or overheating.

The situation persisted through sol 21. Then the team at
NASA managed a reboot with most of the flash file system
disabled, and the rover started accepting commands consis-
tently. Recovery became a possibility, though Spirit had to
be put back in “crippled” mode every Martian morning.

In the meantime, NASA engineers strove to isolate the
responsible software fault; although they were now able to
avoid the failures, the root cause remained. On sol 71 the
fault was found: a NASA-built component had expected
the third-party file system to deallocate space as files were
deleted, but deallocation only occurred when the enclosing
directories were removed. As such, the file system had been
bloated beyond a mountable size, and during boot, the failed

mount from flash memory would trigger the default recovery
action: a reboot. By sol 98 a fix was finished and installed.

In summary, the reconfiguration, which was found in three
days through trial and error, meant that Spirit survived with
limited functionality until the fix was delivered two and a
half months later.

2.2 Terminology
Spirit was deployed as a single system, but its function-

ality was divided among features: the software and hard-
ware components governing power, temperature, radios, sen-
sors, motors, actuators, autonomous navigation, etc. Be-
cause most of these features could be enabled or disabled,
Spirit constituted a highly-configurable system. However,
like many highly-configurable systems, some features de-
pended on or conflicted with others, so not every config-
uration—that is, not every choice of features—was valid.
Under NASA’s workaround for the anomaly, feature con-
straints, dependencies between features, disallowed most of
Spirit’s functionality because flash memory was disabled.
(Even more functionality would have been lost without the
workaround: Spirit would have been inoperable and eventu-
ally unrecoverable.)

A configurable system’s features and feature constraints
are usually represented compactly in a feature model. There
are several languages for expressing a feature model in a form
that mirrors the organization of functionality [2,10,26], but
for our purposes we translate from these languages to a more
uniform, relational form by following the process in [8]. The
result is a sequence of configuration choices, each of which
has a set of mutually exclusive options. For example, Spirit’s
solar panels and batteries, along with their associated soft-
ware, can be toggled independently. Thus, the transforma-
tion creates one choice between active solar panels and a
newly-introduced “null” feature, and it produces a similar
choice for the batteries. We say that there are two feature
groups, each containing two alternative features.

A sequence of independent feature choices makes for a
structured model, but not one that is expressive enough to
encode most feature constraints. Hence, as detailed in [9], we
define one boolean variable for every feature and treat each
configuration as an assignment to these variables; a variable
is assigned true if and only if the configuration includes the
corresponding feature. Then the restrictions on legal con-
figurations can be expressed as a propositional formula. For
instance, suppose we define P to mean that Spirit’s solar
panels are active and Q to mean that Spirit’s batteries are
providing energy. For Spirit to be in operation, P ∨Q must
hold, or else there will be no power supply.

Like other systems, when a highly-configurable system ob-
servably deviates from its requirements, we say that it has
encountered a failure [21]. Spirit rebooting, nearly over-
heating, ignoring commands, and returning garbled data,
for instance, constitutes a failure. We will reserve the term
fault and its synonym bug for flaws in the system that make
failures possible [21].

If the system would have met its requirements had it been
configured differently, we say that the failure it encountered
was reconfiguration-avoidable. In NASA’s race to save Spirit,
for instance, the rover began functioning correctly once en-
gineers eliminated the flash memory mount.

Importantly, a failure may be reconfiguration-avoidable in
some situations but not others; reconfiguration workarounds

must sacrifice functionality to attain correctness. On sol
21, Spirit’s goal was survival, so the loss of flash memory
was acceptable. But if NASA had required the rover’s more
advanced scientific abilities to stay active, it is unlikely that
the failure could have been avoided.

2.3 Adaptation for Correctness
For Spirit’s development team, it was worthwhile to give

special attention to a single deployment. That’s not the
case for most highly-configurable systems; we expect many
deployments, perhaps in a variety of configurations. If we
are to apply the lessons from the rover scenario, recovery and
failure avoidance must be at least partially automated and,
if possible, leverage information from other deployments.

Systems that employ such automation—those that have
the capacity to monitor their environment and behavior and
then react to more closely conform to requirements—are
called autonomic or self-adaptive [28]. There is a large body
of work describing such adaptation in both the hardware
and the software domain. Researchers have considered sys-
tems designed to respond to poor performance [11], security
vulnerabilities [25], architectural mismatches [11], misconfig-
uration [6,12], interoperability issues [12,29], and functional
failures [4,6,13], all without human intervention. Additional
studies have produced methods for validating these designs
in safety-critical systems [30] and dynamic SPLs [19,24].

Throughout all of this work the adaptation process can
be divided into four activities: monitoring, detecting, decid-
ing, and acting [28]. Monitoring is responsible for sensing
the program’s environment and tracking its behaviors. The
data it gathers feeds into detection code, which determines
whether the observations should force a change in the sys-
tem’s state. If a modification is warranted, the decision
routines are invoked to choose a response, in this case a
reconfiguration. The action phase carries out the decision
code’s choice.

We are primarily interested in the decision phase of sys-
tems that combat functional failures, self-healing systems
[3,5,6,11,12,19]. Once self-healing software has determined
that a failure has occurred, it must decide how to restore
the system to a known good state, retry the failed task, and
avoid the failure on future tasks. We concentrate on the last
two choices.

Our approach extends the intuition pioneered by Hassan
et al. [20] and refined by Kim et al. [22]: just as memory
accesses exhibit spatial and temporal locality patterns that
can be exploited by a cache, fault-introducing changes to a
system’s source code also demonstrate locality. The latter
work points out four forms of locality exhibited by faults,
two that refer to the time of changes and two that refer to
their locations in the source code. We hypothesize a related
locality of failures (rather than faults) in a system’s configu-
ration space (rather than its change history or source code).

3. TECHNIQUE FOR AVOIDANCE
Our follow-on conjecture to this hypothesis is that we can

learn from failures to guard against and recover from later
ones. We view this process as an auxiliary function on top
of the decision phase in the normal self-adaptive loop.

To evaluate the hypothesis, we make several simplifying
assumptions. First, we assume that an explicit feature model
is available to the software at runtime. We take as given the
mechanisms to detect failures and to maintain state upon

D1 D3

CS

History

Deployments

1.

2.

3.

4. 5.

1. Report
2. Analyze (Alg. 1)
3. Update
4. Guard (Alg. 2)
5. Reconfigure

D2

Figure 1: Exploiting History

reconfiguration. Then, for the purposes of the study we tar-
get all reconfiguration efforts on avoiding the discrete fail-
ure events rather than rating configurations with a full util-
ity function. However, we do capture some of the tradeoff
between functionality and correctness that a real system’s
utility function would encode; we divide feature groups into
those that can modified and those that must not change.
Finally, we assume that the input stream can be broken up
into segments, which correspond to the test cases that we
use in the remaining sections.

Figure 1 illustrates our approach at a high level. Because
it is black-box, our technique must learn about the system by
encountering failures in the field. But it would be wasteful
if every deployment of the system had to see each failure, so
instead we establish a central store to relay failure informa-
tion between deployments. In the figure, the store is labeled
CS, and each deployment is designated by a subscripted D.
Reporting of failures in deployments may be automatic or
there may be some manual intervention. For instance, the
reporting of a specific test case and configuration (below)
may require a developer to provide additional information.

If we view a long running self-adaptive system as exe-
cuting a sequence of phases where in each phase a specific
configuration is used, then our method is triggered when a
failure is detected, advises the reconfiguration process, and
then allows the system to run under a new configuration.
This process repeats when subsequent failures are detected.

Since we test our hypothesis on a system that is not self-
adaptive, we simulate this type of behavior by having a sin-
gle run of a program’s configuration act like a phase in the
execution of the long running system. For instance, when
compiling a program one must choose a set of configuration
options. If a compilation error, hard crash, or other failure is
observed, one might then recompile the same program with
a slightly different set of options until the failure is avoided.

Together, the central store and the deployment execute
five steps. Step 1 begins the relay process: whenever a de-
ployment detects a failure, it reports a test case and a con-
figuration to the store. In step 2, an off-line analysis occurs
to estimate whether the failure is configuration-dependent,
and if so, which configurations it affects. For failures that
have reconfiguration workarounds, the analysis results are
broadcast in step 3. Step 4 uses this data to forbid con-
figurations believed to be dangerous, both at the time the
update is received and when a deployment is reconfigured
for other reasons. Lastly, step 5 draws on the historical fail-
ure information to suggest workarounds when a new failure
appears.

1 let t← the reported test case;
2 let c← the reported configuration;
3 let d← the maximum number of feature groups to

change at a time (a parameter to the technique);
4 let R← the set of reconfigurations that affect between

one and d feature groups;
5 foreach r ∈ R do
6 let c′ ← c after applying reconfiguration r;
7 if t can be run under configuration c′ then
8 if t passes under configuration c′ then
9 note r as a known workaround ;

10 note c′ as a passing configuration;
11 end

12 else
13 note r as a possible workaround ;
14 end
15 end
16 foreach r ∈ R do
17 if r is a possible or known workaround whose

supersets in R are all either possible or known
workarounds then

18 note r as a basis for generalization;
19 end
20 end
21 foreach r ∈ R do
22 if r is a strict superset of a basis for generalization

then
23 forget that r′ is a possible or known

workaround ;
24 forget that r′ is a basis for generalization;

25 end

26 end
Algorithm 1: Analysis of Failures

Steps 1 and 3 are simply data transfers. The algorithmic
steps 2, 4, and 5 warrant more detail, which we provide in
the following subsections.

3.1 Failure Analysis
Step 2, the analysis of reported failures, is listed as Algo-

rithm 1. The main idea is to try, by brute force, configura-
tions that are similar to the one reported and see which ones
pass. Although there are techniques to sample the config-
uration space more evenly [27], here we want the most ac-
curacy near configurations that will see comparable inputs,
presumably those that differ by only a few features.

Lines 1 and 2 begin by establishing the circumstances that
led to the original failure, and lines 3 and 4 construct a set of
reconfigurations to explore the vicinity. Throughout these
algorithms we treat a reconfiguration as a set of choices for
particular feature groups. For example, Spirit would have
a reconfiguration to ensure that the solar panels are active,
and a superset of that reconfiguration would guarantee that
both the panels and the batteries are providing power.

Each reconfiguration is handled by an iteration of the loop
on line 5. If, on line 7, the new configuration that results
is both valid and suitable for the test case, the test is run
by line 8 and the results recorded on lines 9 and 10. Oth-
erwise, the algorithm notes that it could not evaluate the
reconfiguration, at line 13.

Because the first loop only investigates within a small
radius, the technique must make some generalizations to
classify the rest of the configuration space. Our experience
suggests that while failures may depend on several feature
choices, the elimination of any one will usually constitute
avoidance. Furthermore, if we are to preserve as much of

1 let c← the current configuration;
2 let T ← the set of test cases with known workarounds;
3 foreach t ∈ T do
4 if c is a passing configuration for t then
5 continue with the next iteration of the

loop on line 3 ;

6 end
7 foreach basis for generalization r from t do
8 let c′ ← c after applying reconfiguration r;
9 if c = c′ then

10 continue with the next iteration of the
loop on line 3 ;

11 end
12 end
13 reject c;
14 end
15 accept c;

Algorithm 2: Guard on Configurations

the intended functionality as possible, we should favor small
changes to the system configuration. Therefore, in the ab-
sence of contrary evidence, we generalize a workaround re-
configuration by assuming it to always mask the fault, even
when other parts of the configuration are radically different.

The second loop, which begins at line 16, is responsible for
determining which workarounds can be generalized without
contradicting the algorithm’s observations. Per line 17, an
effective reconfiguration that is a subset of an ineffective one
is not generalized.

Finally, the loop at line 21 discards information that is
redundant in light of the generalizations. Specifically, if one
reconfiguration is consistently effective, another reconfigu-
ration that makes the same changes plus some extras is not
useful; the conditional on lines 22–25 forgets it.

As an example, suppose that Algorithm 1 is applied to a
failure that resembles the one Spirit encountered: the sys-
tem misbehaves when all of four features, f1–f4 are present,
and, moreover, f4 is mandated by the test case. First, line
4 will calculate the set R, including a reconfiguration to dis-
able just f1, a reconfiguration to disable just f2, etc. For
each of f1–f3, the corresponding single-feature reconfigura-
tion will cause the test case to pass, so all three will be known
workarounds. The reconfiguration eliminating f4 can’t be
attempted, so it will be labeled a possible workaround. Any
supersets of these reconfigurations must either be impossi-
ble to test or also workarounds, so, regardless of d, these
four are marked as bases for generalization on line 18. Their
strict supersets are subsequently pruned by the loop at line
21, leaving the final diagnosis: any reconfiguration that dis-
ables one of f1–f3 should avoid the failure; reconfigurations
that do not, but do disable f4, might be effective.

3.2 Configuration Guard
Once the analysis results are available and distributed,

Algorithm 2 guards deployments against dangerous configu-
rations. For each test case where Algorithm 1 found feature
selection to be significant, the guard checks that the current
configuration is either known to be passing, on lines 4–6, or
that a general workaround has been applied, on lines 7–12.

Continuing the example from Section 3, suppose that a
deployment receives notification of the failure caused by f1–
f4 while in a configuration that enables everything but f2.
Because Algorithm 1 identified the f2-disabling reconfigura-
tion as effective, and that reconfiguration has no effect on

the deployment’s current feature choices, it will assume that
it does not need to take action. Similarly, if its configuration
just disabled f4, it could also continue, because there is a
possibility that a workaround has been applied.

3.3 Choosing New Configurations
The last algorithm, for handling failures that the guard

does not avoid, we only explain at a high level. First it
builds a pool of candidate reconfigurations as in lines 3 and
4 of Algorithm 1. Then, after ruling out those that are not
applicable to the current configuration and those that have
been unsuccessfully tried before against the current failure,
it chooses the one that suppressed the largest number of
previous failures, breaking ties arbitrarily.

To complete the running example, consider the same de-
ployment encountering a new failure, this time caused by
the combination of f1 and f5. The pool of historically effec-
tive workarounds has reconfigurations to individually disable
each of f1 through f3, and one of these—the one eliminating
f1—will succeed. In the best case it will be tried immedi-
ately, but in the worst case the failure won’t be avoided until
the third try.

3.4 Handling Multiple Versions
Complications arise when a new version of the system is

released. The updated system may not have the same set
of faults as the old one, and faults that do survive may
have different reconfiguration workarounds, especially if the
release contains new features.

In our experiments we track workaround data indepen-
dently for each version. At release, the central store checks
for all of the known failures and collects suitable reconfigu-
rations for those that are found. Furthermore, when a fail-
ure is detected in one version, the other active versions are
checked, if possible, under the same test case.

Under this policy forbidden feature combinations become
available again as soon as the known faults are fixed. How-
ever, research also shows that new faults tend to appear in
places where old ones were found [22]. It might be worth-
while to continue using data from old failures, especially if
faults are fixed quickly, and so reduce the risk of failure at
the expense functionality. We plan to investigate this trade-
off in future work.

4. CASE STUDY
As an initial evaluation to understand how configurations

can be employed in avoiding failures we conducted a case
study with 128 failures reported in the field for one of three
versions of a highly-configurable software system. The study’s
research questions are presented in Section 4.1, and the sys-
tems, GCC is covered by Section 4.2. We describe our exper-
imental methodology in Section 4.3, our threats to validity
in Section 4.4, and we discuss the results in Section 4.5.

4.1 Research Questions
For our technique to be useful, there must be failures that

it can work around. Hence, we first asked,
’existenceCan failures can be avoided by reasonable recon-

figurations?
Provided that such failures exist, we must determine whether

they exhibit feature locality:
’localityTo what extent do failures depend on similar com-

binations of features?

Table 1: Failures
GCC

Reported 360 (100.0%)
Incomplete 7 (1.9%)
Platform-Dependent 92 (25.6%)
Require Alternate

3 (0.8%)
Bootstrap Options

Nonfunctional 13 (3.6%)
Nondeterministic 8 (2.2%)
Remaining 237 (65.8%)
Reproducible

128 (35.6%)
on Releases

If the failures are present and localized, then we can ask
about the effectiveness of our technique:

’avoidabilityCan feature locality be exploited to avoid fail-
ures?

4.2 Objects of Study
We evaluated our proposed technique on several versions

of one highly-configurable software system, GCC1. Although
there are characteristics of self-adaptive systems that it can-
not capture, it is very representative of highly-configurable
software and has some characteristics (described below) that
we believe allows us to simulate such a system. Also, GCC
has active user community and a public bug database, which
we can mine for failures [16].

As in a distributed self-adaptive system, GCC deploy-
ments process separate streams of inputs (test cases), in
this case sequences of compilation tasks including those in
the bug reports, and operate under changing configurations
(command-line options) for which we can extract a timeline
from the bug database. Likewise, they are free to exchange
failure information, here via human-generated reports for
the GCC bug database (our central store). Because in-
stances of the compiler are usually isolated from each other,
we do not consider effects due to node interactions. More-
over, GCC reconfigurations can only happen between runs,
so our evaluation does not capture behavioral changes dur-
ing reconfiguration.

The following subsection describes this system in more
detail, with an emphasis on how we obtained the feature
model, failures, initial configurations, and so on.

4.2.1 GCC Versions
GCC [15], the cornerstone of the GNU toolchain, is a com-

pilation framework with front-ends for a variety of languages
and back-ends for a variety of platforms. The case study
covers versions 4.4.0–4.4.2, all released in 2009, which each
exceed 23 million lines of code.

In constructing GCC’s feature model, we restricted our-
selves to the compiler’s command-line options, grouping fea-
tures according the manual. We only included features that
can be toggled without changing the input or the semantics
of the output. One case deserves special explanation: GCC
has some features that cannot be controlled completely from
the command line. For example, the standard optimization

1We have used GCC (in addition to another application),
and a nearly identical initial failure pool in a recent sub-
mission [17]. The only overlap with this work is that we
employed Algorithm 1 (only described at a high level) to
first determine whether a failure is configuration dependent.
Beyond that, we performed a manual study of the faults at
the code level for a different purpose.

packages (-O1, -O2, -Os, and -O3) enable some optimizations
that have no corresponding flag. To handle these otherwise
inaccessible behaviors we treated the use of each package as
a feature, and put these pseudo-features in one group. If a
failure depends on a hidden optimization from -O2, the tech-
nique will suggest workarounds like switching to -O1 and list
the lost optimization flags explicitly.

We also assumed that several options are dictated by the
test case being run: the stages of compilation to execute,
the input language and its extensions (even when those ex-
tensions were not used), the platform or platforms being
compiled for, the application binary interface, the set of en-
abled warnings, and the debug information that is emitted.
This information is used by line 7 of Algorithm 1 and when
selecting the new configuration to ensure workarounds pre-
serve the user’s intended behavior.

The complete model, including pseudo-features, totals 339
features in 168 groups, which means 171 single-feature re-
configurations are possible from any one starting point. All
but one of the groups is binary (e.g. it has two possible
options), while one has five possible choices. We also enu-
merated the dependencies among our features. In total we
have 132 clauses to represent these constraints on the com-
binations of features in GCC. For example if we turn on
the feature -fsched-spec-load, speculative motion of load
instructions, then according to the GCC documentation we
should also run instruction rescheduling before register allo-
cation by enabling -fschedule-insns, O2, or O3.

For failures, we collected 360 reports from GCC’s public
bug database [16] that affect compilation or debugging for
C, C++, and Fortran programs and are also tagged with
“known to fail” on at least one of the versions in the 4.4.0–
4.4.2 range. Then we chose an appropriate subset for the
experiments:

First, we removed seven of these reports because they were
still incomplete.

Then we discarded another 92 that depend on the plat-
form where GCC is built, the platform where it runs, or the
platform that it compiles for. Although we could have easily
included failures that affect our platform—a 64-bit X86 sys-
tem running openSuSE 11.0, which the auto-configuration
detected as x86_64-unknown-linux-gnu—and we also could
have used simulators to reproduce failures that call for other
platforms, we were aiming to make our case study portably
reproducible.

Next, because the bootstrap process that builds GCC is
itself configurable, we further excluded three failures that
required a non-default bootstrap configuration.

Finally, we omitted two other classes of failures: those
where the problem is a violation of a nonfunctional require-
ment so we could not obtain an indisputable oracle (13 fail-
ures), and those that showed nondeterministic behavior (8
failures).

In summary, of the original 360 failures we kept nearly two
thirds, 237. A synopsis of the failures excluded for various
reasons is given in Table 1.

We then checked for each failure under every GCC version
in our study. Almost half of the remaining failures were
only visible in pre- or post-release revisions, so we could not
reproduce them with the released code. On the other hand,
of the failures we could reproduce, most affected all three
versions despite being tagged with only one of the three as
known-to-fail. The release of 4.4.1 showed only three failures

that were not in 4.4.0; only two more were added from 4.4.1
to 4.4.2. The total line of Figure 2 shows the numbers for
each version; the remainder of this table will be discussed in
Section 4.5.

Finally, we used time stamps on the bug reports and the
history of releases in the GCC SVN repository to build an
overall picture of the sequence of events.

4.3 Methodology
For each failure, we are interested in the number of re-

configurations that avoid it and how many tries our tech-
nique needs to choose such a reconfiguration, in the best
case and in the worst case. For each reconfiguration, we
want to determine the number of failures it avoids. Because
the association between failures and reconfigurations is al-
ready determined in Algorithm 1, we collect all of this data
by simulating our technique.

The simulation must consider two types of events: the
release of a new version and the discovery of a failure. It ac-
counts for a release by running Algorithm 1 on every failing
test case that is marked as seen before. To process a failure
the simulation must follow a more complicated procedure.

First it loops through the versions that are deployed and
applies Algorithm 1. Whenever the failure can only be
achieved in configurations that Algorithm 2 would reject, the
simulation notes that our technique would avoid the failure
with zero reconfiguration attempts. Otherwise the failure is
marked as seen.

For efficiency’s sake the study only considers reconfigura-
tion workarounds that change a single feature group; we set
d in Algorithm 1 to one. As a consequence, the simulation
may wrongly classify failures as unavoidable and bias the
data against our technique. We also reran the experiment
with d set to two, but the data remained identical. However,
we cannot make conclusions beyond d = 2.

Next, for those versions where our technique cannot avoid
the failure outright, the simulation determines the number of
tries that the last algorithm would need to suggest a failure-
avoiding reconfiguration. Ties in the sorting of reconfigu-
ration attempts are broken to favor ineffective alternatives
when we compute the worst case, and effective choices in the
best case.

Finally, if the failure was seen in any version, the results
of Algorithm 1 are saved. But if no version saw the failure,
no data is kept for future use. There are two key assump-
tions here: First, we expect that the feature isolation process
can be completed before the next failure is discovered. For
GCC this requires only a few minutes—much less than the
typical interval between bug reports. Second, we pessimisti-
cally permit multiple versions to encounter the same failure
simultaneously.

4.3.1 Biased Random Reconfiguration
For comparison, we also simulated a technique that does

not exploit the information gathered by the central store,
but that uses other knowledge of the system which our tech-
nique does not have. It is meant to represent the approach to
failure avoidance by reconfiguration that has an experienced
user intervene when a failure occurs. First, the configuration
space is not pruned, so every failure will be seen. Second, the
attempted reconfigurations are chosen randomly, but with a
bias towards workarounds that will succeed. The bias en-
codes the advantages of considering the type of failure, the

input that triggered it, white-box knowledge, etc. We sim-
plify the model by assuming that all ineffective reconfigu-
rations have the same probability p, and that all effective
choices have some probability q.

Because there is an element of randomness in this alterna-
tive technique, its worst case is to try the viable workarounds
last and its best case to try them first. For the sake of a
meaningful comparison, we consider its average case.

Let R be the set of candidate reconfigurations, R+ ⊆ R
be the set of reconfigurations that will prevent a failure, and
R− be R \ R+. If we assume—to the disadvantage of our
approach—that the competing technique is not hampered
by some configurations being illegal, the probability of it
avoiding that failure within r reconfigurations is:

1−

(∣∣R−∣∣
r

)
/

(∣∣R−∣∣+ q
p

∣∣R+
∣∣

r

)
. (1)

The calculation applies to exactly one failure, so the num-
ber of failures avoided in the average case is equal to this
probability. Hence, for each test case we add the result of
(1) to the avoidance count for the competing approach.

4.4 Threats to Validity
The major threat to its external validity is the fact that

we only study one system which may not be similar to a real
self-adaptive system. Although this system had a significant
share of reconfiguration-avoidable failures, and these failures
exhibited feature locality, further work is necessary to un-
derstand if these properties hold for self-adaptive software
in general.

There is also the possibility that we only observed locality
patterns because the failures in each system came from one
source. It might be that the users who report bugs tend to
use the compiler in similar ways.

Last, in our analysis of failures broken down by priority,
we have a small number of faults in the highest priority cate-
gory. This may limit our ability to make general conclusions.

For internal validity we must acknowledge the risks in the
manual categorization and encoding of bug reports, the lim-
itations of having only one test case to provoke each failure,
and the ever-present risk of faults in our evaluation code.

Regarding construct validity there is a chance that the
reconfiguration workarounds we propose may cause systems
to encounter failures that are not in the bug database; in
that case our reported rate of success will not be achieved.

4.5 Results
In the following subsections we discuss the results of our

simulation in the context of each research question.

4.6 RQ1: Can Failures be Avoided by Recon-
figuration?

Table 2 presents the reconfiguration workarounds we dis-
covered, organized by failure and version. Each row presents
the number of one-step reconfigurations that are possible.
The first row shows the number of failures that had no
workarounds at all, while failures with suitable configura-
tion dependence are counted in subsequent rows. At the
bottom we total the failures in each version and give the
portion that have at least one known workaround, both as
a count and as a percent of the total. For instance, in GCC
4.4.0 there are 95 failures with no workarounds and 31 that

Table 2: Failures with One-Step Workarounds
of One-Step Counts
Workarounds GCC 4.4.0 GCC 4.4.1 GCC 4.4.2

0 95 87 80
1 9 9 9
2 4 3 2
3 3 3 3
4 3 3 2
5 6 5 5
6 2 2 1
7 2 2 2
8
9 1 1

10 2
11 1
12
13
14 1

Total 126 117 105
Nonzero 31 30 25
Percent Nonzero 25% 26% 24%

Table 3: Failures in GCC with Reconfiguration
Workarounds, by Priority

4.4.0 4.4.1 4.4.2
P1 3 of 5 (60%) 3 of 4 (75%) 2 of 3 (67%)
P2 7 of 23 (30%) 7 of 19 (36%) 5 of 17 (29%)
P3 21 of 84 (25%) 20 of 80 (25%) 18 of 75 (24%)
P4 0 of 11 (0%) 0 of 11 (0%) 0 of 8 (0%)
P5 0 of 3 (0%) 0 of 3 (0%) 0 of 2 (0%)

Total 31 of 126 (25%) 30 of 117 (26%) 25 of 105 (24%)

have at least one. If we examine the sixth row we see that
there are six failures that have five one-step workarounds.
This means that for each failure we can toggle any one of
five features and the failure will no longer occur.

Roughly one quarter of the failures in each version are
sensitive to reasonable reconfigurations, so the choice of fea-
tures does play a significant role in a system’s reliability. We
also observe that, as in the study of Kuhn et al. [23], most
of these failures are affected by only a few features—usually
no more than six or seven. But we do see a handful of ex-
ceptions that can be avoided by changing any one of nine to
14 different features. In these cases there happens be a long
data flow chain that invokes that failure and breaking it at
any point prevents the failure’s occurrence.

We next performed an analysis to see if high-priority fail-
ures have different characteristics than those with lower pri-
orities. We used the rankings given by GCC developers to
focus their fault-fixing efforts: from P1 (the most urgent) to
P5 (unimportant).

Table 3 shows the breakdown. We see that none of the
low-priority (P4 and P5) failures have reconfiguration work-
arounds, but a majority of P1 failures do which is encour-
aging. Percentage-wise we see a trend where failures with
workarounds are more likely to be promoted from the de-
fault P3 status, meaning that the failures that matter most
to developers are also avoidable by reconfiguration.

4.6.1 Summary of RQ1
In summary, approximately one quarter of the failures

can be avoided by reconfigurations, with the fraction being
larger for high-priority bugs (60–75% for GCC P1 reports).

0

5

10

15

0 35 339

Single-Feature Reconfigurations in GCC

N
u
m

b
er

o
f

F
a
il
u
re

s
A

v
o
id

ed

Figure 2: Feature Locality of Failures

4.7 RQ2: To what Extent do Failures Depend
on Similar Combinations of Features?

Next, we view the same data from the perspective of
reconfigurations to determine whether failures share work-
arounds. For each single-feature reconfiguration we counted
the number of bug report/GCC version pairings where the
reconfiguration avoided that failure. After sorting counts
from highest to lowest, we plotted them in Figure 2. Note
the broken scale on the x-axis, which elides 334 bars of height
zero. This indicates that over 300 features had no impact on
avoiding any failure. The spike on the far left corresponds
to disabling undocumented optimizations by lowering the
optimization level and then re-enabling the documented op-
timizations associated with the old level. This single recon-
figuration avoids 15 failures on its own, but at the cost of
the undocumented functionality.

We do see feature locality in this graph: less than 10%
of the reconfigurations appear to affect correctness, and in
an autonomic setting most of the feature choices would be
free to vary in response to other concerns. Furthermore,
the height of the bars shows that failures tend to have over-
lapping workarounds, and avoiding one failure often means
avoiding others.

4.7.1 Summary of RQ2
Our data shows strong feature locality: a few reconfigura-

tions have a significant impact on failure visibility, while for
the remainder we detected no effect. Accordingly, in an au-
tonomic setting, we need only consider a few features when
predicting and reconfiguring for system reliability.

4.8 RQ3: Can Feature Locality be Exploited
to Avoid Failures?

To answer RQ3 we compiled the simulation results to see
if our technique was in fact effective. Figure 3 shows the
data for the three versions of GCC on the left. The limit on
the number of reconfiguration tries (25) is on the x-axis of
each plot, and the number of faults avoided is on the y-axis
(14-30). We shade the region between our technique’s best
and worst cases; its performance must fall in this region.
For comparison, we also show the average case for random
reconfiguration with various degrees of bias. The lowermost
line is the expected behavior when effective and ineffective
reconfigurations are equally probable, the next line makes

workarounds twice as likely, and so on, until the topmost
line, where failure-avoiding choices are preferred 64 to one.

For instance, on GCC 4.4.1, our technique avoids at least
19 failures within three reconfigurations, slightly better than
we would expect from biased randomly chosen reconfigura-
tions when the effective choices are 32 times more likely to
be picked. In every case the technique prevents more than
half of the reconfiguration-avoidable GCC failures from ever
being seen, and the proportion increases in later versions
because we retain information about surviving failures be-
tween versions. Using biased random reconfiguration as a
ruler, our technique is nearly four times as likely to choose
correctly after even 25 reconfigurations, and its performance
matches much higher levels of bias earlier on. In short,
GCC’s feature locality makes historical workarounds good
candidates for newly encountered failures.

We show another view of this data on the right hand side
of Figure 3. The x-axis lists each of the 35 bug reports cor-
responding to reconfiguration-avoidable failures in chrono-
logical order. The intervals plotted against the y-axis give
the best- and worst-case number of reconfiguration attempts
needed to avoid each failure, with an interval omitted when
the corresponding failure does not affect that GCC version.
Note the break in the axis above 28 attempts. We had no
prior information for some reconfiguration-avoidable failures
and in these cases our technique could do no better than
guess, which means at worst that it will try all 171 possible
changes.

The main trend is captured in the plot for GCC 4.4.0:
after an initial burst of learning from five failures that the
technique is unable to avoid, the accumulated knowledge
prevents nearly three out of every four failures outright, with
several others avoidable in a handful of attempts. Mean-
while, in version 4.4.1, the patterns gleaned from 4.4.0 speed
up the avoidance process, and in 4.4.2 everything is pre-
vented except for two anomalies. Across all versions, 83%
of failures are sidestepped without the technique resorting
to guessing reconfigurations.

4.8.1 Summary of RQ3
Our simulation suggests that, because of the feature local-

ity of failures, a system’s failure history provides guidance
for reconfiguration that effectively avoids new problems.

5. CONCLUSIONS
Self-adaptive systems have been studied widely for ensur-

ing reliability. In this work we have examined self-adaptation
for avoidance of individual failures. We leverage work from
highly-configurable systems because these systems have faults
that can only be exposed under some configurations. But,
for the same reason, reconfiguration is enough to avoid these
faults’ failures in the field.

We conjectured that such failures exhibit feature locality,
a tendency to depend on similar combinations of features,
and we developed a multi-phase distributed algorithm to ex-
ploit this tendency. In a case study on a widely used system,
we confirmed our hypothesis. We also showed that our tech-
nique can learn effective reconfiguration workarounds from
early failures and use this information to guard against and
avoid later ones. Even though it only had black-box informa-
tion and was constrained by test cases that mandated some
feature choices, our technique automatically circumvented
one out of every four failures in the study.

0 5 10 15 20 25

0

10

20

30

Reconfiguration Attempts after Detection

F
a
il
u
re

s
A

v
o
id

ed
in

G
C

C
4
.4

.0

0 10 20 30

0

10

20

171

GCC 4.4.0 ReportsR
ec

o
n
fi
g
u
ra

ti
o
n

A
tt

em
p
ts

a
ft

er
D

et
ec

ti
o
n

0 5 10 15 20 25

0

5

10

15

20

Reconfiguration Attempts after Detection

F
a
il
u
re

s
A

v
o
id

ed
in

G
C

C
4
.4

.1

0 10 20 30

0

10

20

171

GCC 4.4.1 ReportsR
ec

o
n
fi
g
u
ra

ti
o
n

A
tt

em
p
ts

a
ft

er
D

et
ec

ti
o
n

0 5 10 15 20 25

0
2
4
6
8
10
12
14

Reconfiguration Attempts after Detection

F
a
il
u
re

s
A

v
o
id

ed
in

G
C

C
4
.4

.2

0 10 20 30

0

10

20

171

GCC 4.4.2 ReportsR
ec

o
n
fi
g
u
ra

ti
o
n

A
tt

em
p
ts

a
ft

er
D

et
ec

ti
o
n

Our Technique Average Case, Biased Random Reconfiguration with q/p = 1, 2, 4, . . . , 64

Figure 3: Number of Failures Avoided versus the Number of Reconfigurations after Detection

Furthermore, the strategy we proposed suggests several
avenues for future work. We conservatively classified fea-
ture groups as either modifiable or mandated, but a more
granular representation of the tradeoff between functionality
and correctness could better capture users’ preferences.

Finally, although GCC failures supported our conjecture,
we have limited our study to a single system and simulated
online adaptation. We plan to apply this idea to an online
self-adaptive system next to understand how it will work in
practice.

Acknowledgment
This work is supported in part by the National Science Foun-
dation through awards CNS-0720654, CCF-0747009, CCF-
0915526, and CFDA-47.076, by the Air Force Office of Sci-
entific Research through awards FA9550-10-1-0406, FA9550-
09-1-0129, and FA9550-09-1-0687, and the National Aero-
nautics and Space Administration through grant number
NNX08AV20A. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the

authors and do not necessarily reflect the position or policy
of NSF, AFOSR, or NASA.

6. REFERENCES
[1] M. Adler. Mars exploration rover Spirit sol 18

anomaly. In AIAA Space Conference/International
Mars Conference, Sept. 2004.

[2] D. Batory. Scaling step-wise refinement. IEEE
Transactions on Software Engineering, 30(6):355–371,
2004.

[3] Y. Brun and N. Medvidovic. Fault and adversary
tolerance as an emergent property of distributed
systems’ software architectures. In Proceedings of the
Workshop on Engineering Fault Tolerant Systems,
page 7, 2007.

[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot — a technique for cheap recovery.
In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[5] A. Carzaniga, A. Gorla, and M. Pezzè. Self-healing by
means of automatic workarounds. In International
Workshop on Software Engineering for Adaptive and
Self-managing Systems, pages 17–24, 2008.

[6] H. Chang, L. Mariani, and M. Pezze. In-field healing
of integration problems with COTS components. In
Proceedings of the International Conference on
Software Engineering, pages 166–176, 2009.

[7] P. Clements and L. Northrup. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[8] M. B. Cohen, M. B. Dwyer, and J.Shi. Coverage and
adequacy in software product line testing. In
Proceedings of the Workshop on the Role of
Architecture for Testing and Analysis, pages 53–63,
July 2006.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In International Symposium on
Software Testing and Analysis, pages 129–139, July
2007.

[10] K. Czarnecki, S. She, and A. Wasowski. Sample spaces
and feature models: There and back again. In
International Software Product Line Conference, pages
22–31, 2008.

[11] E. M. Dashofy, A. van der Hoek, and R. N. Taylor.
Towards architecture-based self-healing systems. In
Proceedings of the First Workshop on Self-healing
Systems, pages 21–26, 2002.

[12] G. Denaro, M. Pezzè, and D. Tosi. Ensuring
interoperable service-oriented systems through
engineered self-healing. In Proceedings of the Joint
Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages
253–262, 2009.

[13] A. Ebnenasir. Designing run-time fault-tolerance using
dynamic updates. In International Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, page 15, 2007.

[14] A. Elkhodary, N. Esfahani, and S. Malek. FUSION: A
framework for engineering self-tuning self-adaptive
software systems. In Proceedings of the International
Symposium on the Foundations of Software
Engineering, Nov. 2010.

[15] Free Software Foundation. GNU 4.1.1 manpages.
Available at
http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/,
2005.

[16] Free Software Foundation. GCC Bugzilla.
http://gcc.gnu.org/bugzilla/, Mar. 2010.

[17] B. Garvin and M. Cohen. Feature interaction faults
revisited: An exploratory study. in submission 2011.

[18] J. C. Georgas, A. van der Hoek, and R. N. Taylor.
Architectural runtime configuration management in
support of dependable self-adaptive software. In
Workshop on Architecting Dependable Systems, pages
1–6, 2005.

[19] H. Gomaa and M. Hussein. Model-based software
design and adaptation. In International Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, page 7, 2007.

[20] A. Hassan and R. Holt. The top ten list: Dynamic
fault prediction. In Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International
Conference on, pages 263–272, 2005.

[21] IEEE Standards Board. ANSI/IEEE Std
610.121990:Standard Glossary of Software Engineering
Terminology. IEEE, New York, NY, USA, 1990.

[22] S. Kim, T. Zimmermann, E. Whitehead Jr, and
A. Zeller. Predicting faults from cached history. In
Proceedings of the 29th international conference on
Software Engineering, pages 489–498. IEEE Computer
Society, 2007.

[23] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Transactions on Software Engineering,
30(6):418–421, 2004.

[24] F. Munoz and B. Baudry. Artificial table testing
dynamically adaptive systems. Technical report,
Institut National de Recherche en Informatique et en
Automatique, 2009.

[25] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In Symposium on
Operating Systems Principles, pages 87–102, 2009.

[26] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering. Springer, Berlin, 2005.

[27] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: An empirical
study of sampling and prioritization. In International
Symposium on Software Testing and Analysis, pages
75–85, July 2008.

[28] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Transactions
on Autonomous and Adaptive Systems, 4(2):1–42,
2009.

[29] N. Siegmund, M. Pukall, M. Soffner, V. Köppen, and
G. Saake. Using software product lines for runtime
interoperability. In Workshop on AOP and Meta-Data
for Software Evolution, pages 1–7, 2009.

[30] E. Strunk and J. Knight. Assured reconfiguration of
embedded real-time software. In International
Conference on Dependable Systems and Networks,
pages 367 – 376, 2004.

[31] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In International Conference on
Software Engineering, pages 364–374, 2009.

[32] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, Jan 2006.

[33] J. Zhang and B. H. C. Cheng. Model-based
development of dynamically adaptive software. In
International Conference on Software engineering,
pages 371–380, 2006.

