
Feature Interaction Mutations - Supplement

Brady J. Garvin and Myra B. Cohen
University of Nebraska-Lincoln

Department of Computer Science and Engineering
Lincoln, NE 68588-0115

{bgarvin,myra}@cse.unl.edu

I. MUTATIONS

GCC Bug #41643. In the simplest GCC interaction fault,
an if that should have tested a condition in the form
(!foo||!bar) was wrongly implemented so that it only
checked !foo.
if(foo){
if(bar){
goto L1;

}
}
//...
L1:

if(foo){
∆ if(true){

goto L1;
}

}
//...
L1:

Although the change is a simple first-order mutation, it
occurred in optional code, and the predicate could only be
falsified by statements in code for different features. The
mutated statement, a use, and one of its defs were in the
reachable blocks of every critical pair.

The general mutation suggested is to identify a viable
def/use pair that is not contained by any non-interaction
pair’s reachable set, and then to apply a normal mutation
to either the def or the use.
GCC Bug #39794. As with bug #41643, the mutation
corresponding to GCC Bug #39794 is semantically a guard
condition changed to true or false.
if(xyzzy==null){
xyzzy=...;

}

∆ if(true){
xyzzy=...;

}

The fix is actually somewhat more complicated because
the GCC developers had to move one definition of xyzzy
(which represents the canonicalized expression for a memory
address) earlier and then change a function signature in order
to introduce the guard.

The effects of this mutation are similar to the effects of
#41643, but the reasons for it being an interaction fault are
different. Although the if’s use is in code for an optional
feature (a dead store elimination pass), it can draw on a
wide variety of defs, not all of which are in optional code.
The fault is only an interaction fault because the subsequent
assignment almost always leads to equivalent gen and kill
sets and therefore the same ultimate outcome. We identified
at least twelve features that would disturb the inputs to the
dead store elimination pass enough to mask the fault.

GCC Bug #40087. The most complicated of the three bugs
was #40087, which arguably was several faults caused by a
single misunderstanding. In five places, and in four different
ways, the mutation followed the pattern where a guard was
altered, eventually affecting the value escaping a function in
optional code; at the same time, all of the code that could
use the def was governed by a different set of features.

The unique aspect of #40087 is in how the guards
changed, because at two points the correct condition to test
is false. Thus, it would perhaps be better to classify those
mutations separately, as introducing a definition.
//...

//...

//...
∆ plugh=...
//...

For this kind of mutation to yield an interaction fault, the
location of the injected definition and the locations where it
could be read must not be within the reachable set of any
non-interaction pair.

