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Many software systems today are highly-configurable, meaning the user can customize
their instance of the application, adding and removing features as needed. However,
this configurability makes it harder to ensure that faults will not escape testing and
manifest as failures in the field. This is because many failures are configuration-
dependent; they will appear under certain combinations of features configurations,
but not others. Once faults are found and reported in the field, there can be a
long lag time (days, weeks or even months) until patches are created and released
to fix them. In the meantime, users will continue to use these software systems and
need to be able to workaround potential failures. This thesis presents a self-adaptive
framework for avoiding configuration-dependent failures at runtime. The framework
is built on top of an existing self-adaptive system, Rainbow, and is implemented as
a distributed client-base, with a central controller for applying the failure avoidance
reconfigurations to clients as needed. Over time as the system gains global information
of failures that have occurred, it will not only adapt to new configurations, but it
guards other clients from these potentially bad configurations as well.

We have performed two evaluations to determine the feasibility of this framework
in practice. We first evaluate a set of heuristic failure avoidance algorithms which
forms the core of our adaptation, and compare these against an existing bounded brute

force algorithm. We find that our heuristic algorithms are effective in avoiding most



failures, but for a lower computational cost. Although we miss some workarounds
found by the brute force algorithm, we also find new workarounds that are outside
of the bounded search space suggesting that a heuristic approach may be better. We
then implemented our framework on top of Rainbow and evaluate this on the Firefox
web browser. In a study using four distributed instances of Firefox and a set of seeded
faults based on real Firefox configuration bugs, we determine that we can workaround
them all, and that once observed, we will no longer see the same failure again. We
also see new native failures that we did not seed, and find workarounds for these as
well. We conclude that our self-adaptive framework is feasible approach for avoiding

configuration dependent failures at runtime.
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Chapter 1

Introduction

Many programs offer the user the option of selecting a custom set of features (or con-
figuration options) when running an application. For instance, a typical web browser
provides options to open web pages in new tabs or within the same window, and
compilers may include different kinds of optimization flags. These features may im-
prove the robustness of a system, improve performance, or simply allow for increased
customization. The existence of large numbers of features means that software test-
ing, which is an already expensive process, will be harder and may miss many of the
less commonly used customizations [44]. A typical configurable system such as a web
browser may have hundreds or thousands of options which leads to billions or trillions
of possible customizations [14]. Research on testing configurable systems has focused
on a particular type of fault called a feature interaction fault; a fault that occurs only
under a specific combination of features [14,25,34,44,48,55]. The problem of feature
interaction faults has existed for years, with early work arising from the telecommu-
nications industry [57]. These types of faults are difficult to detect and understand
because of interlocking dependencies. [25,44]. Patching a feature interaction fault

can involve digging deep into the source code to look for problems that are not obvi-



ous. And reproducing it can mean having to select the correct configuration, which
is non-trivial when there are billions of choices [14,55]. Because feature interaction
faults are hard to detect they can often slip into released software. And once there,
it may take a long time to detect, and then once detected to repair [3].

Recent work on self-adaptive software [3, 6, 10, 16, 20, 24, 29, 49] may provide a
way to allow configurable systems to continue running, despite the existence of fea-
ture interaction faults. In self-adaptive software systems, the system is run within a
framework that monitors, analyzes, plans and then executes change. This is called
the MAPE loop [6,53]. A wutility function measures specific quality attributes of the
running system such as response time, system load or network bandwidth. These
are then monitored and when a change is detected that exceeds some threshold, the
system analyzes this change, creates a plan and then executes a reconfiguration. Tra-
ditionally, MAPE has been applied only to continuous utility functions of the system —
primarily those for quality attributes. But recent work has suggested that we can also
create self-adaptation in response to discrete changes such as system failures [4,28].
In [4] Carzaniga et al. present a technique to automatically re-write small parts of a
program (i.e. an automated patch), providing workarounds for failures seen in web
applications. Furthermore, Garvin et al. [25,28] present a set of algorithms, and per-
formed a feasibility study to show that it is possible to avoid failures in configurable
systems when they are only manifested under a specific set of feature combinations
(i.e. they are configuration dependent). They also showed that there was locality of
the combinations of features meaning that when we avoid one failure, we are likely
to avoid additional ones.

In this thesis we build upon the research of Garvin et al. to implement a self-
adaptive framework for avoiding configuration dependent failures. First, we experi-

ment with some variations of their failure avoidance algorithms and evaluate these



alternatives with respect to effectiveness and efficiency. We then propose a framework
that modifies an existing self-adaptive framework, Rainbow [23], for our purpose. We
extend Rainbow with new methods to monitor for discrete failures, and add our
strategies for avoiding and guarding against these failures. We then apply this frame-
work to a distributed Firefox installation. We evaluate its effectiveness on a set of
real faults for the Firefox web browser. We show that self-adaptation for avoidance
of configuration dependent failures is feasible and that over time our system will be

able to both avoid and guard against future failures.

1.1 Motivation

Consider the situation in which a user is browsing the Internet. As all users can
attest, failures occur and can sometimes seem random. The screen hangs up, the
browser unexpectedly crashes, these are common parts of a users’ experience. The
simplest response is to restart, and continue as normal, hoping the problem is not
encountered again. A proactive user might be inclined to submit a bug report to the
software owners, but responses can be slow and patches may be shelved until the next
update [3].

One of the reasons for these types of problems to escape testing is that browsers are
highly configurable systems and its impossible to comprehensively test all the different
combinations of configurations with all of the different use cases [14,25,34,44, 48, 55].
This can lead to a situation where an error exists because of some combination of con-
figurations, and changing the configurations avoids the error. This set of reconfigura-
tions effectively becomes a workaround for that particular error. A good workaround
is one that does not overly impact the functionality of the intended use case. This

means that workaround should only include the reconfigurations necessary to avoid



keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page
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Figure 1.1: Firefox Feature Model

the failure. By keeping the number of reconfigurations (the distance) between the
workaround and the starting configuration small the impact on the functionality will
be minimized.

Instead of waiting for a developer to fix the bug, a user could search for a
workaround using alternative configurations. This of course requires that the bug
can be replicated, and the user has a large amount of free time available. But what if
the work of searching for a workaround could be done behind the scene? Now when
an error is encountered, the current configuration and the steps necessary to replicate
the error are sent to a failure avoidance algorithm. If the failure can be replicated,
then the failure avoidance algorithm can search for a set of reconfigurations that avoid
the failure. If a passing configuration is found, then this becomes a workaround and
is sent back to the user, and their configuration is updated with reconfigurations in
the workaround. The failure avoidance algorithm can update the user’s guard which
will prevent the failure from occurring in the future by monitoring the configuration
and preventing reconfigurations that would return the user to the original failing con-
figuration state Finally, this workaround can be deployed to all users of a system,

protecting others from ever experiencing the same failure.
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Figure 1.2: Firefox Default Configuration

1.1.1 Example

Consider a small part of the feature model for Firefox as is shown in Figure 1.1.
In this figure we see four configuration options. The first three keyword.enabled,
privacy.sanitizeOnShutdown, and browser.autofocus are all optional, binary features.
We can include them (True) or exclude them. The last feature, browser.startup.page
is mandatory and has three possible values (1, 2 or 3). The system will start in a
default configuration. But there are 24 possible configurations that this system can
reconfigure to, and the user is allowed to change these at will. Lets look at the case
where a user is in the default configuration (see Figure 1.2). That means that keyword
enabled is set to True, privacy.sanitizeOnShutdown is set to False, browser.autofocus
is set to True, and browser.startup.page is set to 1.

As time goes on the user has made some changes to the system, and now browser.autofocus
is set to False and browser.startup.page is set to 3. This configuration is shown in
Figure 1.3.

As the user continues browsing, everything is running normally, but then the user
runs into a problem. A failure occurs under their specific use-case (or test case). The
first obstacle to overcome is recreating the failure. Using a web browser as an example
we would need to capture all of the actions a user has made leading up to the failure.

This will be represented as a test case. If, by running the test case with the current



keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page
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Figure 1.3: Firefox Feature Model Selected Configuration

configuration the failure is reproduced then we can search for a new configuration
where this failure is no longer seen. If for any reason the failure is not replicated,
then the failure avoidance algorithm will be unable to search for a workaround. In
this particular example, we find that the problem is caused by the change the user
made to browser.startup.page, setting it to 3.

We have two primary goals when looking for a workaround. First, we want to stay
as close as possible to the user’s starting configuration so that they retain most of
their original functionality. Otherwise, we may render the system unusable for their
particular use case. Since the user may no longer be in the default configuration,
keeping track of the changes the user has made is critical for finding workarounds
that maintain as much functionality as possible. Second, we want to avoid moving
into configurations that we have previously determined are faulty, since this may
cause new problems.

This particular failure has two possible workarounds. The value for browser.startup.page
can be set to 1 or to 2. Either would avoid the failure, but because we want to keep as
much functionality as possible for the user, we want to make the change that would
have the smallest impact. Unfortunately, in this case we do not know which of the
two reconfigurations is best. One option is to ask the user with a prompt which

one is preferred, however that is not always possible and we will leave this as future



keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page
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Figure 1.4: Updated Firefox Feature Model

work. In this thesis, if we can’t determine which is better, we will break such a tie
randomly. In this example we choose browser.startup.page set to 1. If, however, we
could have also avoided this failure by changing the keyword.enabled to False and
privacy.sanitizeOnShutdown to True, we would assume this would move use further
away from the current functionality, because it is two option changes away, and thus
would be rejected given that there are one-change possibilities.

Now that we know how to avoid the failure, we can also infer what caused it. Based
on the failure and the found workaround we can assume that the reconfiguration
option browser.startup.page set to 3 is at least partially to blame for the failure.
Avoiding that feature in the future is one of the key aspects of the failure avoidance
framework. This will be accomplished by implementing a guard [28]. Now the feature
model has changed as shown in Figure 1.4. The value for browser.startup.page is no
longer allowed to take on the value 3.

It is also possible that multiple configuration options must be changed to succeed

with a workaround. For instance, if the workaround requires that privacy.sanitizeOnShutdown

be set to True as well as browser.startup.page be set to 1 or 2, we now have a two-
hop workaround. This means that the workaround is two reconfigurations different
from the starting configuration (assuming each reconfiguration changes only a single

option). This also means that the feature model will require multiple guards to pre-
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Figure 1.5: Updated Firefox Feature Model with Multiple Guards

vent the failure from reoccurring. This is represented in Figure 2.1, shown with an

excludes dependency between the features.

1.2 Research Contributions

As seen in our motivating example, the potential exists for us to avoid failures in
a system through prudent reconfigurations and to guard against future failures. In
the work of Garvin et al. [25, 28], they developed an algorithm that searches for
workarounds in a bounded brute force manner by searching all one-hop or two-hop
reconfigurations for a workaround. However, since the configuration space grows
exponentially large with the addition of features, this will not scale well and the
bound must be small. Second, they evaluated their algorithms by re-creating the
history of failures in the GCC compiler, but did not actually implement this idea in
a real self-adaptive system.

This thesis extends the work of Garvin et al. in two significant ways. First, we
evaluate a set of heuristic algorithms for finding workarounds that have the potential
to be more efficient than the exhaustive one or two-hop algorithms. We evaluate
these algorithms on the same GCC compiler failures and find that there are failures

with no one or two-hop reconfigurations that our new algorithms can avoid. We also



see that our heuristic algorithms perform well with respect to effectiveness, finding
workarounds for most of the failures that the brute force algorithms find. Second,
we extend the Rainbow self-adaptive software system to work with our new utility
function (failure avoidance) and adapt this to work on a set of Firefox clients. We
used a set of real failures and determined that we can find workarounds and avoid all
of these failures over time. We also found (and avoided) several native failures that
we did not seed, but were able to reproduce once found.

In summary the contributions of this thesis are:

e An evaluation of a set of alternative heuristic algorithms for failure workarounds;

e A proposed self-adaptive framework for failure avoidance in configurable sys-

tems built on top of the Rainbow framework; and

e Experimentation with a set of Firefox clients and real faults showing the feasi-

bility of this approach.

1.3 Overview of Thesis

The next chapter will cover background on the existing failure avoidance algorithms
and Rainbow as well as discuss other related work. Chapter 3 presents our failure
avoidance framework and the modifications that we made to Rainbow to realize this.
Chapter 4 presents a case study to evaluate variations of the failure avoidance algo-
rithm. Chapter 5 presents our case study on the Firefox self-adaptive implementation.

Finally Chapter 6 concludes and presents future work.
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Chapter 2

Background and Related Work

This chapter covers two main ideas that form the basis for this work. The first is the
failure avoidance algorithm algorithm and the second is the Rainbow self-adaptive

framework. We then present other related work.

2.1 Failure Avoidance Algorithm

Garvin et al. [27,28] propose a set of algorithms for failure avoidance. This work is
based on the notion of feature locality — the idea that multiple failures are likely to
be manifested only under a small set of feature combinations, rather than be spread
evenly through the configuration space. In this work they also confirm the existence
of feature locality in the GCC compiler. In practice, feature locality means that if
a failure can only be seen under a small set of configurations then there will exist
a number of configurations that will avoid the failure and these may be relatively
close to the failing ones (satisfying our first goal laid out in the introduction). In
addition, bad configurations exist that can trigger multiple failures and by avoiding

these configurations future failures can be avoided as well. This satisfies our second
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goal presented in the introduction.

2.1.1 Algorithm Overview

The avoidance technique proposed can be divided into five steps. Step one reports
information about a failure. Step two tries, by a brute force algorithm (discussed
below), to find a similar configuration to the failing one, that passes the failing test
case. Step three updates the system with a new passing configuration. Step four
constructs a guard based on previously discovered good configurations. Step five
then reconfigures the system. The core of this algorithm is that as configurations are
found they are added to the guard database which can be used to circumvent failures
as they are discovered. The original work was evaluated using three versions of the
GNU GCC compiler [2] with faults from the GCC bug repository. The evaluated
versions are 4.4.0, 4.4.1 and 4.4.2.

Algorithms 1 and 2 are taken from [27] and reproduced here. Algorithm 1 is the
core of Step two. It works by first establishing the failure, generating a population
of reconfigurations (line #4) that represent z-hop reconfiguration options (in the
evaluation = was set to one and two). This is done by looking at the feature model,
and changing each possible z configuration options from the staring configuration,
one at a time. A loop (lines #5-13) then iterates over each reconfiguration, checks to
make sure that the reconfiguration is valid, and runs the initial failing test case. If
the results of the test are now a pass instead of a fail, then the reconfiguration can be
stored as a workaround configuration. There is also a check at the end (line #15) to
remove superset reconfigurations. This serves to eliminate redundant reconfigurations
when the value of z is greater then one.

Algorithm 2 is the core of Step four. It looks at a given configuration ¢ and
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Algorithm 1 Algorithm for Analysis of Failures [27]
let t < the reported test case
let ¢ < the reported configuration
let d <~ the maximum number of feature groups to change at a time
let R <the set of reconfigurations that affect between one and d feature groups;
for all r € R do

let ¢ ' < ¢ after applying reconfiguration r

if t can be run under configuration ¢’ then

if t passes under configuration ¢’ then
note r as a known workaround
note ¢’ as a passing workaround
end if

end if
: end for
: for all r € R do

if r is a possible or known workaround whose supersets in R are all either
possible or known workarounds then then
16: note r as a basis for generalization
17: end if
18: end for
19: for all » € R do
20: if 1 is a strict superset of a a basis for generalization then
21: Forget that 1’ is a possible or known workaround
22: Forget that 1’ is a basis for generalization
23: end if
24: end for

e e e e
ARl > ol

compares it to all found workarounds. If applying the workaround for some test case
t changes ¢, then c is a potential dangerous configuration and should be rejected. If
not c is safe as far as we know, and can be used.

To understand how the brute force algorithm works lets look at our earlier exam-
ple. Starting with the user’s current configuration a failure is encountered. To search
for a workaround all one — hop reconfigurations will be tested.

Figure 2.1 is the starting configuration for testing. We will now generate the set
R based on all one — hop reconfigurations from this configuration. There will be five

of them, one for each possible reconfiguration. Note that there are 24 configurations
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Algorithm 2 Algorithm for Guard on Configurations [27]

1: let ¢ < the reported configuration

2: let T < the set of test cases with known workarounds

3: for allt € T do

4: if cis a passing configuration for t then

5: continue with the next iteration of the loop on line 3
6: end if

7: for all basis for generalization r from t do

8: let ¢’ «+ ¢ after applying reconfiguration r

9: if ¢ =¢ then
10: continue with the next iteration of the loop on line 3
11: end if
12: end for
13: reject ¢
14: end for
15: accept ¢

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.pag

[¢}

N £
True | | False m

Figure 2.1: Firefox Feature Model Selected Configuration

in total, so while we call this brute-force it is only exhaustive with respect to the

cardinality of the hop (i.e. one in this case).
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keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

£
’True‘ ’False‘ M \M m

Figure 2.2: Reconfiguration Option 1

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N
True False True | | False m

Figure 2.3: Reconfiguration Option 2

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N
True | | False m True | | False

Figure 2.4: Reconfiguration Option 3

The configuration in Figure 2.2 changes keyword.enabled to False. The configu-
ration in Figure 2.3 changes privacy.sanitizeOnShutdown to True. The configuration
in Figure 2.4 changes browser.autofocus to True. The configuration in Figure 2.5
changes browser.startup.page to 1. Finally, the configuration in Figure 2.6 changes
browser.startup.page to 2.

If we were looking at the same failure as we discussed earlier, then 3 of the tests
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keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N /N A
[ True | | False

Figure 2.5: Reconfiguration Option 4

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

N £
True | | False m

Figure 2.6: Reconfiguration Option 5

will still have failed, Figures 2.2, 2.3 and 2.4. However two of the tests, (2.5 and
2.6), would have passed. Because the failure was due to browser.startup.page set to
3, the 2 tests where browser.startup.page was not set to 3 will have passed and two
workarounds will be discovered. We will then select one of these and add these for

reconfiguration and add both workarounds and guards to our set.

2.2 Rainbow Self-Adaptive Framework

Rainbow [7,10, 23, 24], developed by S.W. Chen, D. Garlan and B. Schmerl, is a
self-adaptive framework designed to answer not only the what of automatic system
adaptation, but also the when. By taking advantage of the architecture of a system
and focusing on a select number of critical properties, a system can be monitored

during runtime to allow for effective adaption for a number of possible issues. The
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existing rainbow implementation, provides a rainbow server and a client, znn. com, a
web browser that opens the fictional website.

Rainbow is built with three core objectives. It is meant to be general so that
many architectural styles can be used and Rainbow isn’t limited to what systems can
be adapted. It should be cost-effective, so that using the self-adaptive capabilities
don’t compromise the usefulness of the system. Finally the self adaptation should be
transparent so that multiple objectives can be measured and compared. We tried to

maintain these objectives when extending it for our purpose.

N

/ Adaptation :
[ P ]‘—[ Architectural Evaluator ]
Manager
h
Adaptation Knowledge
and Evaluator N
Environmental Architectural
[ Strategy Executor Maal ][ Model ]
. Effectors
Translation 3 Gauges [ G, G, .. G, ]
Layer E, Ey ... Eg 1
Probes [ PP, . P, ]
\ I

[ Target System ]

Figure 2.7: Rainbow Overview

2.2.1 Overview

An overview of the Rainbow architecture is shown in Figure 2.7. The top layer (the
Adaptation and Evaluator Layer), contains information about the architecture of the
system including a model of both the architecture and environment, evaluators for the

reconfiguration strategies and execution managers. At the lowest level is the system
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that adapts (called the Target System). In the middle layer, sit a set of probes and
gauges and effectors. Effectors interface with the target system to make changes. The
effectors and strategies are both written in the Stitch script language.

Rainbow uses the probes and gauges to monitor the target system. Depending on
the values obtained from these, Rainbow will use the strategies to determine what
reconfigurations to make. These are then implemented by the effectors. These are
meant to provide an automated way to perform what would otherwise be human tasks.
For instance, if a person monitoring a website sees that the latency has increased
then they could bring additional servers online to try and bring the latency down.
Rainbow will take the human out of this example and instead make the necessary
changes based on the adaptation strategy which should also tell it to bring additional
servers online [9].

Rainbow follows the IBM autonomic MAPE architecture [22]. This means that

there are 441 phases that Rainbow will use.

e Monitoring — This phase handles collecting the necessary system data. There
are multiple ways to accomplish this, such as instrumenting source code or
reading system logs. Because the monitor is constantly running the overhead
must be kept as low as possible. This means that the data collected will be

simple to collect, and require very little or no logic to decipher.

e Detection — This phase interprets the data collected through monitoring. In
addition the phase will determine if it is possible to improve the system using

any of the available adaptation strategies.

e Decision — This phase chooses the best adaptation strategy to improve the
system. It might also be used to determine what is causing the system to

underperform.
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e Action — This phase executes the chosen strategy, and then checks to make
sure that the system is performing as expected. This phase might need to deal
with system level errors in case the strategy fails, or the desired result is not

obtained.

e Knowledge — This component manages the data shared between the separate

phases to facilitate the adaptation.

The Rainbow Framework uses a number of components to provide the monitoring,
detection, decision, action, and knowledge phases. Now we will look at how each of

these components represent the phases needed for self adaptation.

2.2.1.1 Translation Layer: Monitoring and Action

Correspondence between the target system and the architecture requires a component
that connects the properties from the architecture model to the target system. The
translation component provides this capability taking abstract data from the target
system, and interpreting it into the appropriate property in the model. In addition,
changes may be made to the target system by Rainbow in order to adapt the system,
and this requires a bridge between Rainbow and the target system.

Getting information from the system is accomplished through Rainbow’s probes
and gauges, which represent monitoring. The probes are used to measure some aspect
of the system, while the gauges interpret the data the probe is looking at, and updates
the architecture model accordingly. Each probe is mapped to a specific gauge, which
means that multiple types of probes can be employed. For instance a probe can check
for the existence of some file, or read data out of a log. It is also possible to use
different gauges to interpret the data in different ways, such as a gauge which just

reports the value the probe gives it, versus one that reports the average value of the
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probe it is connected to. This one to many relationship is why the probes and gauges
are separate.

Changing the target system is done using effectors, which represent part of the
action phase. These are open ended mechanisms that range in potential and use. An
effector can be as simple as making a system call, or it could be more complicated,
such as running a predefined script. Without effectors Rainbow would have no way

of changing the target system, and therefore no way of adapting it to changes.

2.2.1.2 Evaluator and Adaptation Layer: Detect and Decide

The rainbow architecture evaluator is run every time a model property changes. If a
constraint is violated by the change, then the adaptation manager is notified to begin
its search for adaptation. The evaluator defined in Rainbow as a constraint that can
be added to the architecture model and checked after each change. This takes care
of the Detect phase.

The adaptation manager handles the decision phase for Rainbow. Once activated,
the adaptation manager will use the models to select a strategy that best solves the
current problem. Choosing the best strategy involves checking multiple strategies
and evaluating the potential results of choosing that strategy. Being able to define
multiple strategies and let the adaptation manager choose the best one based on a
number of system concerns is one of the core advantages of using Rainbow [23]. Each
strategy is made up of one or more tactics and each tactic is a sequence of commands.
These are defined using a stitch script, and can be tailored for a variety of situations,
such as aggressive strategies that might overcompensate but guaranteed to solve the
issue, verses a more timid strategy that is less intrusive to the system, but might not
always solve the issue.

In addition, a strategy executer is employed which hooks to defined effectors to
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carry out the adaptation. This is the second part of the action phase, and deals with
handling issues that might arise, such as errors from the effectors or failure of a tactic

to resolve the issue.

2.2.1.3 Knowlege Component: Models

There are two models used in the Rainbow framework. The first is the architecture
model, which represents the state that the system is in. This includes information
such as the current properties and constraints on the target system. The architectural
model is updated to reflect the current values of properties as the system is running.
The other model used is the environment model, which represents information about
the system. This includes information such as the current execution environment, and
resources available. While the architecture model is used to determine if something
can be improved, the environment model allows Rainbow to know what adaptation
strategies might perform better.

A model manager is used to update and access the architecture model. This
manager is also used to deploy the translation component and is queried by the adap-
tation manager to know what strategies and techniques to use. The model manager
represents the Knowledge process of the Rainbow framework, and is essentially the

glue that keeps the self adaptation running.

2.2.2 Existing Version of Rainbow

The primary Rainbow example provided is a mock news website to showcase Rain-
bow’s ability to adapt to a changing system. As latency on a web page increases,
multiple strategies can be deployed to improve the user experience. First, additional

servers can be brought online to handle the increased load. If that fails the content
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on the web page could be decreased. For example pictures are removed, which means
less information to load, and an improved wait time for users. Even though the func-
tionality is decreased because the content has been lessened, the alternative is no one

being able to access the page which is worse.

2.3 Related Work

We now present some of the other related work broken on self-adaptation, finding

failure workarounds and on configuration-aware testing.

2.3.1 Self-adaptation

There has been a large amount of work done recently on the topic of self-adaptive
systems. The concept of a self-adaptive system is related to the idea of autonomic
computing [22]. As software continues to become more and more complicated the idea
of a system that can regulate itself effectively and efficiently becomes increasingly
worth the investment. Self-adaptive software has been used on software product
lines [50], which transitions well into our work on configurations.

Some of the early work on self-adaptive software deals with systems that can heal
themselves. For instance the work of Dashofy et al. [16] looks at targeting event based
software architectures and requires a large infrastructure to define and implement the
repairs. This work shares some similarities to Rainbow.

Some of the work in self-adaptive systems has focused on improving a particular
aspect. The work of Esfahani et al. [21] deals with weighing the pros and cons of
an adaptation strategy and how to choose one. The biggest issue is dealing with

the uncertainty of what a decision is supposed to do vs what actually happens. The
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work of Ebnenasir et al. [19] looks at updating the program once a failure has been
encountered.

There has also been work done meant to support self-adaptive systems. This
includes the work of Georgas et al [29] which looks at the architectural configurations
for a system and can reconfigure to avoid bad states. This is fully decoupled from
the self-adaptive adaptation manager. In terms of system validation Zhang et al. [59]
worked on splitting the analysis and validation of self-adaptive software into adaptive
and non-adaptive to better understand self-adaptive software.

There has also been work on building complete self-adaptive systems such as FU-
SION by Elkhodary et al. [20] FUSION makes system adaptations based on a model
constructed from features. While these features can be similar to the features we are
using, they are adapting based on quality of service attributes. By abstracting the
technique from a specific architecture and instead focusing on features the system
can be adapted to handle unexpected conditions. Other work by Perkins et al. [42]
observes the system to determine standard behavior, detects errors when they oc-
cur, creates and deploys a patch that enforces a failure to be true and monitors the
deployed patches and updates them when necessary.

Finally, Salehie et al. [49] provides an overview of a number of self-adaptive sys-
tems. This survey of current trends in self-adaptive software highlighting difficulties
and areas for improvement. Rainbow was featured in this analysis and compared
well to other systems. Rainbow was the only self adaptive framework that provided
self-configuration, self-healing and self-optimization properties, as well as providing
explicit features for extensive monitoring and basic features for detection, decision
and acting. Even though some frameworks such as ML-IDS and Self-Adaptive can
outperform Rainbow in regards to specific features, Rainbow provides solid overall

functionality and this makes it ideal as a base for our failure avoidance framework.
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2.3.2 Failure Workarounds

Workarounds can be used to supplement standard software testing, as understanding
how to avoid a failure can give great insight into why the failure exists, as well as
providing users a method of avoiding the failure until a fix is found. There has been
work done on adapting software to avoid failures using standard APIs [17] or using
alternative but equivalent execution sequences [31].

Other related work is that of automatically finding patches using genetic pro-
gramming from the work of Weimer et al. [54]. Their approach finds faults in systems
using standard tests, with no formal specifications required. An extended form of
genetic programing is used to find a workaround for the failure. The workaround is
then minimized using delta debugging similar to our technique.

ARMOR is a tool designed by Carzaniga et al [5], [4], [3]. The goal of ARMOR
is to make applications more resilient to failures during runtime. This is done by
finding workarounds for failures, but instead of the workarounds being based on re-
configurations, their workarounds are based on alternate library calls. This technique
is similar to ours in its goal and the requirements to find a workaround. While our
technique needs a feature model for the system, they require a list of alternative li-
brary calls. Both techniques need the failure to be replicable in order to determine
that the workaround is really a workaround.

The work by Cleve et al. [12] examines the state differences between a passing and
failing run of a program. By focusing on the relevant data at the time of the failure
the cause of the failure can be identified. This leads to a better understanding of the
failure and how to replicate it. In addition the work of DiGiuseppe et al. [18] further
looks at faults and how they interact within a program. Specifically the faults which

obscure other faults, and would imply that workarounds can lead to new failures.
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Workarounds can be concentrated in the system shown by the work of Kim et
al. [33]. This is done by caching the location of a fault in a system to find areas to
focus on further testing and validation. Results show a large number of faults are
located in a minority of the source code files. This can be related to the concept of
feature locality, as if failures are concentrated in source code it would follow that a

feature which includes the buggy source code will be responsible for multiple failures.

2.3.3 Configuration-Aware Testing

Testing the right configurations is both difficult and critical for large highly-configurable
systems. An exponential increase in the number of configurations with features,
means a large increase in the number of ways something can go wrong. Because
of this, a lot of work has been done on how to effectively test the configuration
space [14,25,34,44,48,55,55]. There is also a body of work on this topic in the
software product line testing community [1].

Part of being able to perform configuration-aware testing comes from the idea
of feature testing [11]. In their work, Classen et al. examine what makes a feature
and how to define feature interaction. Further work by Garvin and Cohen [25] more
formally defines the notion of feature interaction for configurable systems.

Many sampling techniques have been used for selecting a subset of configurations
for testing. The use of covering arrays to achieve good samples for testing configurable
systems [56], [46] and software product lines [43] is common. For instance, the work of
Lochau et al. [36] use pairwise combinations to efficiently test software product lines.
This style of testing involves covering arrays which we use in some of our new failure
avoidance algorithms. These will be discussed in more detail in Chapter 4. Since

software product lines are a type of configurable system, the work which focuses on
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feature models of SPLs such as [15], [30] can be used to create better feature models
of a configuration space.

Another way to improve configuration testing is to introduce prioritization. The
wok of Sriknanth et al. [51] looks at prioritizing what configurations to test by exam-
ining setup time and relevance to the feature being tested as well as previous failures.
This is also seen the work by Qu et al. [45].

One aspect of configuration testing is validating a configuration [52] and under-
standing the configuration space. Reisner et al. [47] used symbolic execution of con-
figurable software systems to show a much smaller configuration space possible then

previously thought.
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Chapter 3

Failure Avoidance Framework

In this chapter we present our new failure avoidance framework that we built upon
the Rainbow framework. A number of changes were necessary to Rainbow which we
detail below. The framework is shown in Figure 3.1. In this figure we see a set of
clients running. A client is representative of a user of a system (such as Firefox)
which means that each client will have their own build of the system. Each client will
have an error probe and an error gauge so that when a failure occurs on the client the
information (current configuration, failing test case) is sent to the failure avoidance
algorithm to find a workaround. The workarounds use the system model (in our case
the firefox feature model and the history of past failures). Each client will also keep
track of the workarounds already discovered which allows them to implement a guard
to prevent seeing the same failure twice. When a workaround is found a change is

then made to the client that failed.



27

Error Detected
Find workaround Strategy ]‘—\

¥ [ Model of system ]

Failure avoidance tactic ]

Run Failure
Avoidance
Algorithm

Run Failure
Avoidance
Algorithm

v

Client 1 Client 2 ] [ Client m ]

Run Failure
Avoidance
Algorithm

{

Figure 3.1: Failure Avoidance Framework

3.1 Architecture of System

The architecture is designed for use as a distributed system with a number of clients
running the system in parallel. A single central master is responsible for maintain-
ing information about the existing guards and is responsible for running the failure
avoidance algorithm when needed. We felt that this distributed client model would
be more representative of the real world. Each of the clients will be monitored for
failures, and in a real world these failures will be replicated by creating a test case
of the clients behavior and actions prior to the failure. In our simulation we will be
using mozmill tests that represent client behavior prior to a failure. The recreation

of a failure in a real world setting is saved for future work.

3.1.1 Feature Model

The system model that is monitored /used in this framework is the feature model. The
feature model is made up of properties of the system that will be monitored. Because

we want to adapt to failures the failure avoidance framework needs a failure property.
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$Property error : int << HIGH : int = 1; LOW : int = 0; default : int = 0; >> ;$
$ rule primaryConstraint = invariant self.error <= 0;$

Figure 3.2: Example Property and Constraint

It is called error and is an integer with a high value of 1 and a low and default
value of 0. This represents no error for 0, and an error detected for 1. To determine
if adaptation is necessary a constraint needs to be violated for some property. In
our system a new constraint rule is also added that says the error value should not
exceed 0. Our initial version of the framework makes this property binary, but it can
be expanded to have multiple values. We leave that as future work. For instance
instead of the current 0 or 1, it could represent a scale from 0 to 5 where 5 is a critical
failure and requires immediate attention. An example of the new error property and

constraint is shown in figure 3.2.

3.2 Modifications for Monitoring

The first part of avoiding failures is simply detecting when a failure has occurred. We

describe the necessary changes for monitoring we made here.

3.2.1 Failure Probes

A new probe will be used to detect when a failure has occurred. This probe is defined
in the errorProbe.pl file and determines if a failure has occurred by checking for
the presence of an error flag file. The use of a flag file was chosen because it allows
us to remove the Rainbow architecture from the failure detection to determine if an
error has occurred. In this way, it does not matter how an error was detected, as

long as an error.true file is created in the appropriate location. We can detect a
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failure in this way by running test cases, or by user reports in theory. In addition the
probe.yml file is extended to work with the probe.

Each client has its own probe, which means that each client also has its won
probe.yml file. This allows for customization of each probe, so that each one can be
checking for the file in a different location. For instance, client 1 error probe checks

for the file in the client 1 directory, and so on.

3.2.2 Failure Gauges

Because a new probe was added, at least one new gauge must be added as well. To
do this a new errorGauge is created and added to the Rainbow distribution (this is
contained in the main jar file). The new gauge simply collects the report from the
probe and updates the model with the result. In addition the gauge.yml file in the
model directory must be updated as well for each of the gauge instances.

Unlike with the probes, the gauges must be declared in the Master and in each
client. In order to get Rainbow to detect that a gauge should be running the master
must have a copy of each gauge instance. This means for x clients there will be x

error gauge instances on the Master, and 1 on each client.

3.2.3 Effectors

Interacting with the model is done using the failure avoidance algorithm. Calling the
effector will launch the algorithm giving it the client information (what test failed and
the current configuration at the time of the failure). The algorithm will then attempt
to find a workaround for the failure and update the client with the results. Even if no
workaround is found the effector must remove the error. true file, otherwise Rainbow

will continually try to run different strategies to satisfy the primary constraint. This
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is a change that is needed because our algorithms take some time to perform the
analyze phase.

One of the major benefits of the effector is that the results of searching for a
workaround, if positive, can be shared across all clients. This means that if client
one encounters an error, and finds a workaround, client two will gain knowledge of
the workaround and client two’s guard is improved. Sharing information allows for
failure avoidance without needing a user to actually encounter the failure themselves.
This is done to allow the system to more quickly reach a steady state, which is where

no new failures are encountered.

3.2.4 New Stitch Scripts

Three major changes were made to Rainbow’s adaptation scripts. First, a new value
vector was added to the utility function which allows for tracking the average value of
the error property. A new tactic was designed, the failure avoidance tactic, which calls
the effector that searches for a workaround using a failure avoidance algorithm. In
addition the tactic was added to the utility function where it is specified to improve
the value of the error property. This is so that the Rainbow adaptation manager
knows that this tactic can be applied to fix a violation of the primary constraint.
Finally a strategy, Search for Workaround, was added. Search for workaround is
called when the primary constraint is violated and it runs the new Failure avoidance

tactic.

3.2.5 Main Algorithm

Up until this point one failure avoidance algorithm has been described (and used)

to find workarounds, however additional algorithms could be added which would
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improve the adaptation process by allowing multiple tactics. For instance if time is of
the essence, a faster algorithm that is not as thorough vs. a slower algorithm which
will find more workarounds to improve the guard. Algorithm 3 shows the high-level
algorithm that is used in this framework.

We start with a set of target client systems and a set of failure avoidance algo-
rithms. We also have an architecture which includes the feature model. Our initial
algorithm assumes that a single tactic will be used while running (we leave the use
of dynamic tactic selection as future work). While the system is being monitored, if
a failure is discovered then the client with the failure is locked and the failure avoid-
ance algorithm runs. When a workaround is found the client is updated to its new
configuration. In addition, the workaround information is also deployed to all clients

so that they can update their guard.

Algorithm 3 Algorithm for Failure Avoidance Framework
let C < the set of target client systems
let A < the set of failure avoidance algorithms
let M <— the architectural model of the framework
let t <— the chosen failure avoidance tactic
for all ¢; € C' do
Instantiate an error probe e; and error gauge g; on ¢;, and map them together
end for
while System is being monitored do
if e; detects a failure then

¢; is locked

g; updates M with the failure

Error Constraint in M is violated, the Search for workaround strategy is
called
13: Failure avoidance tactic t selects a failure avoidance algorithm a € A
14: a replicates the failure from ¢;, attempts to find a workaround
15: if a discovers a workaround w then
16: w is deployed to all ce C so that each ¢ can update its guard
17: end if
18: ¢; is updated with result from a, ¢; is unlocked
19: end if
20: end while

— = =
T
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Chapter 4

Heuristic Failure Avoidance

Algorithms

The failure avoidance framework (see Figure 3.1) provides the flexibility to include
different failure workaround algorithms. In initial work by Garvin et al. [27,28], the
authors propose an algorithm for finding workarounds that exhaustively searches one
feature change from the current configuration (called from now on the one-hop algo-
rithm), i.e. each feature is switched on/off in turn to determine if the change will lead
to a non-failing test case. In that work, they also performed an exhaustive two-hop
search (two-hop algorithm) without finding any additional workarounds. However,
their algorithm can still miss potential workarounds; any beyond one or two-hops will
not be found. In this chapter we propose several additional workaround algorithms,
ones that are stochastic and will explore beyond the two-hop boundary. We then
evaluate these on the same open source program used in [27], GCC.

Algorithm 4 shows the modified failure avoidance algorithm as was presented
in [27]. The only change we make to that algorithm, is that we change the set

of reconfigurations to a population of possible workaround configurations. In this
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Algorithm 4 Algorithm for Finding Workarounds

1: let t < the reported test case

2: let ¢ <— the reported configuration

3: let R <—the set of given possible workaround configurations
4: for allr € R do
5
6
7

if t can be run under configuration r then
if t passes under configuration r then
let 1’ < the minimized configuration subset of r where t can be run
under configuration r’ and t passes under configuration r’

8: note the set of reconfigurations to reach r’ from c as a known
workaround

9: note 1’ as a passing workaround

10: end if

11: end if

12: end for

13: for all r € R do

14: if r is a possible or known workaround whose supersets in R are all either
possible or known workarounds then then

15: note r as a basis for generalization

16: end if

17: end for

18: for all » € R do

19: if ris a strict superset of a a basis for generalization then

20: Forget that 1’ is a possible or known workaround

21: Forget that 1’ is a basis for generalization

22: end if

23: end for

algorithm lines #3 and 4 from the original algorithm are consolidated into line #3.
By doing this, it means that the manner of finding the population is not fixed, so any
of the algorithms we propose can simply be be plugged into this line. In addition, once
a configuration has been found to pass a failing test, it must be minimized before the
result can be added to the pool of known workarounds (line #7). We discuss the need
and method for minimization below. The rest of the algorithm mirrors the orignal

algorithm from Chapter 3.
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4.1 Limitations of the One and Two-hop
Algorithms

The one and two-hop algorithms both use a brute force approach to explore the im-
mediate population space around a failing configuration. Each workaround found
will be one or two option changes away from the failing configuration, and each
workaround will contain exactly one reconfiguration. This has the advantage of keep-
ing the workarounds close to the starting configuration which minimizes the chance
that the workaround will impact the intended functionality of the user.

Although the two-hop algorithm may find more workarounds, the result is an
increase in time and cost. The problem is that finding workarounds with this method
constitutes an exponential growth with respect to the number of features in the feature
model. As systems continue to grow larger, and feature models therefore increase in
size, anything more than a one-hop algorithm becomes infeasible. In the study by
Garvin et al. [27] although some new two-hop workarounds were found for failures,
these were failures that already had a one-hop workaround, so they were of minimal
value. In this case, the additional cost of the two-hop may not be justifiable. We

explore this issue further in our case study.

4.2 Heuristically Exploring the Population Space

Since one of the main principles of the one or two-hop algorithm is that if a workaround
exists it will be close to the starting configuration, this means that the number of
reconfigurations necessary to reach a safe state is small, and it means that the po-
tential functional impact of the workaround is kept small as well. We also know that

multiple workarounds might exists for the same failure, and these workarounds will
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often be related. For instance, if we examine the compiler, GCC, it uses a flag, -W
which controls warnings. For all circumstances, where the use of the -W flag serves
as a workaround, the -Wall flag will work as well and we would like to include these
in our workaround set. There must be some difference between these features even
though they can both be used to avoid the same failure. Because the functional im-
pact can change on a feature by feature basis finding all of the possible workarounds
is necessary to ensure that the minimal functional change is achieved. We believe
that a search for reconfigurations further away from our starting point is necessary
to find some of these additional workarounds.

In addition, in the work of Kuhn et al. [34], the failures may be due to more
than two or three configuration options, albeit less often than due to one or two
configuration options. This leads us to believe that there are going to be multiple
ways to avoid a failure using a one-hop workaround, and it also suggests that some
workarounds may not be found without only a single reconfiguration. Since the z-
hop approach approach will clearly scale poorly for large configuration spaces, we
need a heuristic method to search for new workarounds. In addition, the time it
takes to find even a one-hop reconfiguration workaround is bounded by the number
of reconfigurations. Could this number be improved upon with a different approach?
These questions prompted further research that led to the following algorithms, all

of which are heuristic.

4.2.1 Genetic Algorithm

Our first attempt to improve upon the z-hop approach is a genetic algorithm. A
genetic algorithm (GA) is a metaheuristic search algorithm, that can be used to find

solutions to optimization problems. The two key parts of a GA are the representation
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of the candidate solutions, and a fitness function that is used to evaluate those candi-
date solutions. The candidate solutions can be selected randomly or by seeding, and
they are ordered based on the fitness function. The highly ranked ordered candidate
solutions are then mixed using a crossover pattern to speed convergence, and then
partially mutated to introduce diversity. The new candidates are ordered again, and
the cycle repeats until either a set number of generations are concluded, or an optimal
solution is found. GA’s have been used when dealing with many aspects of software
engineering testing including test suite generation and because of this it seemed like
a fair conclusion to try and adapt a GA to represent a configuration.

To apply a GA to this problem we needed a fitness function. The original fitness
function we try is binary where 0 represents that the test with the candidate config-
uration passes, and 1 represents that the test run with the candidate configuration
fails. After some initial testing the fitness function was enhanced to improve the
quality of workarounds found. The new fitness function uses a distance metric. The
distance represents the number of reconfigurations necessary to reach the potential
workaround configuration from the starting configuration. There is also an additional
value added if the test run is not a workaround. For our experiments the additional
value is the total number of configuration options from the feature model. The idea
here is to minimize the workarounds found and try to converge to a workaround that
is much closer to the starting configuration. The algorithm for finding the fitness
is shown in Algorithm 5. This fitness function will hopefully prune out as many
unnecessary configuration changes as possible and help minimize the workarounds
found.

To order the configurations for selection, first it is ensured that the candidates do
not violate any of the existing constraints on the configuration. Then each candidate

is run through a driver that returns whether the test passes or fails. If the test
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Algorithm 5 Algorithm for Fitness Function

1: let t < the reported test case
2: let ¢ <— the potential workaround configuration
3: let s <— the starting configuration
4: let d «— the number of reconfigurations to reach from c from s (distance)
5: if t can be run under configuration ¢ then
6: if t passes under configuration ¢ then
7: return d
8: end if
9: end if
10: return d + number of configurations in s

passes with the reconfiguration, then the passing configuration is compared with the
failing one. If an option is different it is added to the reconfiguration set. This set of
reconfigurations is then added to the set of workarounds (assuming it is not already
in this set).

Two problems emerged from the use of the genetic algorithm for finding workarounds.
First, the GA tended to converge towards a single workaround, which was not always
the smallest workaround possible for that bug. Second, the GA seemed to converge
closer to the starting configuration more quickly as the mutation rate was increased.
This was partly due to the limitations of the fitness function, and partly influenced by
the nature of the problem. A configuration that serves as a workaround may still be a
workaround with the addition of superfluous reconfigurations. The problems with the
GA converging to one workaround might be solved with the addition of multiple runs
of the GA starting from scratch each time and an extension to the fitness function to
avoid previously found workarounds. However, since we were seeing better results as
our mutation got higher (and hence we were adding more randomness) we decided to
first try a completely random algorithm. We leave the use of a genetic algorithm as
future work.

There were some workarounds found for failures that did not previously have a
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workaround. This would indicate the existence of at least a three-hop workaround

and suggests that examining the larger search space may be profitable.

4.2.2 Random Search

The genetic algorithm was slightly modified so that a random algorithm could be
tried. To come up with the starting population for the genetic algorithm a number
of configurations are randomly generated. The random algorithm keeps this step in
tact, but instead instead of crossover and mutation, the randomly generated starting
configuration is simply checked to see if it serves as a workaround. This means that
for a feature model with 100 different configurations for the same cost as the one-hop
algorithm you can check 100 completely random configurations and explore a much
larger size of the configuration space. The downside of this approach, of course, is
that it lacks any intelligence in configuration selection.

The only check that is needed after generating a random configuration is to make
sure that the configuration does not violate any of the constraints of the feature
model. If it does a new random configuration can be generated. This is to ensure
that none of the tests are wasted by checking a configuration that could never serve
as a workaround

The overall idea is that if each configuration option is a switch on a giant switch-
board. A random configuration amounts to looking at each switch and giving an
equal chance to pick each option. This works well for finding a workaround because
in many cases as long as the feature that exposes the fault is changed the configu-
ration will serve as a workaround. For example, if a workaround exists as long as
— Wall is chosen, and random configuration has a 50/50 chance of selecting — Wall

because it can either be included or not included, then each random configuration
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has a 50/50 chance of being a workaround. Increasing the number of features neces-
sary for a workaround will decrease the odds of a random configuration from being a
workaround.

The only thing that affects this model is the addition of masking. Certain config-
uration options might have an affect on other configuration options. For instance the
compiler GCC has two configuration options, —fschedule—insns and — fschedule—insns2.
If a workaround requires that the option— fschedule—insns2 be set and — fschedule—insns2
requires that —fschedule—insns be set then consider what happens when configura-
tion option —fschedule—insns is not selected. The presence of —fschedule—insns2 will
be masked because the necessary option —fschedule—insns was not set. In this way
even though only one reconfiguration is necessary for a workaround, the presence of
another reconfiguration can essentially remove the first one.

The problem with this completely random approach is that we now need to deter-
mine what the necessary reconfiguration(s) for a workaround are. A workaround that
involves changing half of the configurations for a system may work, but it might also
disrupt the functionality so much that it is of no use to the user. Much like with the
GA, we want to reduce the reconfigurations to as close to the starting configuration
as possible. Because there is no fitness function as in the GA to drive us towards
better reconfigurations, a different method was needed. For this a minimizer was

implemented.

4.2.3 Minimizer for Workarounds

The minimizer works using a delta debugging technique [58] for finding the smallest
number of reconfigurations necessary for a workaround. The algorithm will check the

given configuration, C' to make sure it is a workaround. This means that for our
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purposes a failing test case for the delta debugging algorithm is actually one that
passes. In effect, the smallest failing inducing input is the fewest reconfigurations
necessary for a workaround. In other words removing any of the reconfigurations will
result in the test to fail, and the workaround will no longer be valid.

To find the minimal workaround binary search is used. Given the starting config-
uration S and the starting workaround configuration C'. C' will be split into partitions
where some of the reconfigurations are from C' and the rest are from S. The parti-
tions will then be checked to see if they serve as a workaround. If a partition c is a
workaround, then C' will be reduced to ¢, and the process will restart. In this way
the algorithm will systematically reduce the number of reconfigurations in C' that are
different from S until a minimal C' is found.

For instance C' will be split into two partitions ¢; and cy. if ¢; is a workaround
then reduce C to ¢; and start again. If ¢y is a workaround then reduce C' to ¢y and
start again. If neither serve as a workaround then split C' into a small ¢; and a large
¢;. test all the small ¢;s first, and then the large ¢;s. If at any point ¢; serves as a
workaround then reduce C' to ¢; and start over. If none of the ¢;s are a workaround
then double the number of partitions generated. Repeat this until the number of
partitions is greater then the number of reconfigurations different from the starting
configuration. This means that the current C' is the minimal workaround. In the
worst case the cost is 3|c| + |c|?.

Using the minimizer a randomly generated configuration that serves as a workaround
can be reduced to the minimal subset of reconfigurations necessary to avoid the fail-
ure. In this way the problem that the GA had with workarounds that are different
only because of superfluous workarounds is avoided.

Lets revisit our example from the introduction to see how random with a minimizer

will work. Again, we start with a selected configuration in figure 4.1.
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keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N /N
True | | False m

Figure 4.1: Firefox Feature Model Selected Configuration

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

[Tre] [Flase]  [True] [Faise] [ True] [Faise]

Figure 4.2: Randomly Generated Configuration 1

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

£
’True‘ ’False‘ m \M M

Figure 4.3: Randomly Generated Configuration 2

Now we encounter a failure. The one-hop algorithm algorithm would generate a
set of possible workaround configurations by making one change on each configuration
in the set. The random algorithm is just given a size for the set and then randomly
generates a set of possible workaround configurations. For this example lets say that
2 randomly generated possible workarounds are generated. One in figure 4.2, and the

other in figure 4.3
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keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N £\
[ True | | False | [False|

Figure 4.4: Minimized Configuration 1

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N

Figure 4.5: Minimized Configuration 2

The failure encountered is caused by browser.startup.page being set to three,
same as before. This means that the first configuration in figure 4.2 still fails, but the
second one in figure 4.3 will pass. Because of this random configuration two serves
as a workaround. Looking at random configuration two we can see that it has three
reconfigurations from the starting configuration. We want to minimize this to find
the minimal reconfigurations necessary to avoid the failure.

The first thing the minimizer does is rerun the configuration to make sure that it
passes. Then it splits the reconfigurations into two groups, and fills in the blanks with
the starting configuration values. This will result in two minimized configurations.
One in figure 4.4 and the other in figure 4.5

The first minimized workaround will fail and the second one will pass. This means
that keyword.enabled set to false can be discarded as a reconfiguration as it is not

necessary to create a workaround. The process is repeated with the remaining two
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keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

2 A

Figure 4.6: Minimized Configuration 3

keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

N £
True | | False m

Figure 4.7: Minimized Configuration 4

reconfigurations and two more minimized configurations are generated. One in figure
4.6 and the other in figure 4.7.

Minimized configuration three will fail its test and minimized configuration four
will pass. This means that browser.autofocus set to true can be discarded as it is
not necessary for a workaround. This leaves only browser.startup.page set to two,
which as we know will avoid the failure that occurs when browser.startup.page is set
to three. The final result is the workaround configuration shown in figure 4.8.

The minimizer ran five tests once the failure was encountered. One to replicate
the test, and then four during the course of minimization. Compared to one-hop the
random plus minimizer actually performs worse in this case. However, consider that
the size of this feature model is quite small, only four features with 9 configuration
options. When dealing with a feature model with hundreds of options the one-hop al-

gorithm will scale linearly. While searching for a one-hop reconfiguration workaround
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keyword.enabled | | privacy.sanitizeOnShutdown ’browser.autofocus‘ browser.startup.page

/N /N A
False [False|

Figure 4.8: Workaround Configuration

random plus the minimizer will take logarithmic time with respect to the size of the
feature model. Finding larger then one-hop workarounds will take longer, but this is
countered by the fact that the one-hop algorithm cannot find any workarounds larger

then one-hop.

4.2.4 Multi-Minimizer

One of the problems with the randomization algorithm followed by the minimizer algo-
rithm is that it might contain multiple workarounds. To find additional workarounds
we implemented a multi-minimizer that finds these additional workarounds. For ex-
ample if the partition c¢; is a workaround then using the minimizer algorithm C' is
reduced to ¢; and the process restarts. Now, not only is C' reduced to ¢;, but once
C has been minimized ¢, is also checked to see if it is a workaround. In the origi-
nal algorithm it didn’t matter if there are multiple ways to recreate the failure, only
finding one was enough. However part of the Failure avoidance algorithm is the
guard that can prevent further failures. Improving the guard means finding as many
workarounds as possible and from the original research we know that there are bugs
that have multiple one-hop workarounds. Using the multi minimizer means more of
these workarounds can be discovered and minimized.

The major problem with the multi minimizer is the increased cost. Obviously
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checking each of the partitions instead of just the first passing one will mean that
the algorithm takes longer. However if no workaround is found then obviously the
algorithm is not called in the first place. This means that the multi minimizer will
only add additional workarounds to bugs that already have at least one workaround,
and the additional cost will only be added when dealing with bugs that have multiple

workarounds.

4.2.5 Covering Array

Assuming that there are workarounds beyond two-hop, we want to be able to ex-
plore some systematic ways to find these, since random may or may not find these
workarounds. And we want to do this efficiently. For this we turned to covering
arrays.

Covering arrays have been used for testing highly configurable software systems
[32,44,55]. The idea is that it is impossible to test every combination of configurations,
however you could test every z pair combination of configurations, where x is some
number greater then one. The idea is that testing the combinations will be sufficient
to find the hidden bugs that manifest only with select configurations.

What we want to do is create a covering array for the feature model, and then
each time a failure is encountered check the covering array for a workaround. If a
workaround is detected then the configuration will be reduced using the minimizer
or the multi-minimizer. There has been work done on combining delta debugging
with covering arrays [35] and using covering arrays to find a minimal failing test
[40], though our work will focus on using covering arrays to more systematically
explore the configuration space and then using delta debugging to minimize the found

configuration workarounds.



46

Initially it was decided to try two-way and three way covering arrays. The two-
way covering arrays will take about 15 tests, and the three way around 60 to cover the
GCC feature model. This means that the time costs for the covering arrays should be
lower then the expensive random tests. In addition because the covering arrays are
systematically built the number of duplicate workarounds should be reduced when

compared to the random tests.

4.3 Case Study

We conducted a case study to determine if the new algorithms, improve on the original
one or two-hop algorithms for failure avoidance. We first ask if there are workarounds
beyond what can be found only with one or two-hop, as well as evaluate the cost
of running these algorithms on our data. In this study we answer three research
questions.

RQ1. Do we find failures that can be avoided only beyond the one or two-hop
distance?

RQ2. Can we find additional (new) workarounds for failures beyond those found by
the one or two-hop algorithm.

RQ3. What are the tradeoffs in terms of effectiveness and efficiency between the

different failure avoidance algorithms.

4.3.1 Study Design

Objects of Study. Our evaluation of the new failure avoidance algorithms was done
on several versions of GCC [2]. We chose GCC because it is a highly-configurable
system with a large and active user base. The other advantage of using GCC was

that the evaluation for the one and two-hop algorithms had already been done. As
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long as we can reasonably replicate the results, we have a nice baseline from which to
compare our new algorithms. The three versions of GCC used were 4.4.0, 4.4.1 and
4.4.2. All of these versions were released in 2009, and they are all quite large, each
exceeding 23 million lines of code.

We were able to use the feature model and test suite from the original experiments.

The feature model was kept restricted to command line arguments and contained a
small number of configuration options which represent adjusting the optimization
level for GCC. All three versions share a feature model. The test suite was generated
by collecting failures from GCC’s public bug database. It started with 360 failures
and in the original work was pruned to 237. The failures removed were either platform
dependent, nondeterministic or no indisputable oracle could be used.
Preliminary Study. The first part of the study is to replicate the results from
the original work. The three versions of GCC used, 4.4.0, 4.4.1 and 4.4.2, were
downloaded and installed on sandhills. The tests were then run and the results
compared. Some variation was expected as the underlying architecture would be
different. For GCC 4.4.0 127 bugs could be replicated, and workarounds were found
for 29 of those bugs using the one-hop algorithm. The original work had 137 bugs
replicable, with 31 having workarounds.

To understand this difference, the feature model of GCC was examined and
a few discoveries were made. There were some reconfiguration options, such as
— f—section—anchors, that upon closer inspection were dependent on the architecture
of the system. This meant that a workaround that included —jf—section—anchors
might not be a workaround on a different architecture. These reconfiguration options
were locked for future experiments, though there is some interesting work possible
which explores the idea of architecture dependent workarounds.

Another thing that was looked at was constraints. When the constraints of the



48

GCC system were included in the feature model the number of workarounds found
for the one-hop algorithm were drastically reduced. However experiments run using
the two-hop algorithm managed to perform close to the unconstrained results. Closer
inspection into GCC showed that the system is smart enough to include needed con-
figurations when they are not specifically declared. This means that if a one-hop
workaround uses a reconfiguration that requires an optimization level to be set, the
optimization level will be adjusted automatically if it is not included. Essentially the
workaround requires two reconfigurations, but one will suffice as the system will auto-
matically include the other. Because the unconstrained results more closely resemble
original GCC results, it was decided to move forward using an unconstrained feature
model for future tests.

The final results for GCC 4.4.0 are 127 bugs replicated, with 27 bugs with workarounds
for both the one-hop and the two-hop algorithm. This is close enough to the original
results that it will serve as a baseline for comparing to new algorithms for find-
ing workarounds. For GCC 4.4.1 there were 123 bugs replicated with 26 bugs with
workarounds for both the one-hop and two-hop algorithm. Finally in GCC 4.4.2 there
were 110 bugs replicated with 22 bugs with workarounds for both the one-hop and

two-hop algorithms.

4.3.2 Independent and Dependent Variables

The independent variables in our study are the variants of the failure avoidance
algorithm. First we use the one and two-hop algorithms. We also use the random
algorithm with 10, 25, 50, 100 an 150 iterations. For each we applied both the
minimizer and multi-minimizer. We also built two and three-way covering arrays for

our application using the CASA tool [26] Our dependent variables are the number of
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workarounds and the time to find the workarounds.

4.3.3 Results

The results of the one and two-hop algorithms, the random algorithm trials, and the
covering array trials are shown in table 4.1. The table displays the average number
of workarounds found for each bug that had a workaround for each of the algorithms
tried. The one and two-hop were only run once as the results will not change. The
other algorithms rely on some degree of randomness so they were run for five trials
each and the results displayed are an average of those trials.

For the random algorithm, 10 iterations for both the minimizer and multi-minimizer
averaged 26.2 and 26.4 bugs with workarounds respectively. This means that random
at this level is not finding as many bugs with workarounds as the one or two-hop
algorithms. In addition the time cost for running random with the minimizer came
out to a little over an hour, and the multi-minimizer took almost an hour and a half.
More than the cost of one-hop at just over half an hour.

Running random with 25 iterations increases the number of bugs with workarounds
found past 27, however it is still not complete compared to the one-hop algorithm. In
fact increasing the iterations to 150 gives an average number of bugs with workarounds
of 29.8 for the minimizer and 29.6 for the multi-minimizer and still is not guaran-
teed to find all of the one-hop workarounds we know exist. At most 30 bugs with
workarounds are found, and the new workarounds are three-hops away from the start-
ing configuration.

Finding these workarounds is very interesting because it provides evidence that
there are workarounds that could not be discovered using either the one or two-hop

approach. The two-hop algorithm took over 139 hours which means that a three-



20

hop version of the algorithm is would take at least 900 days running on one machine.
Parallelization could be used to decrease this computation time, however it could also
be used on any of the other approaches. Considering the 150 iteration random with
multi-minimizer took a little over 20 hours and will scale to larger feature models it
makes sense that for finding these three-hop workarounds a brute force approach is
not the most effective..

Because the random algorithm could not find all of the one-hop workarounds even
with 150 iterations, a two-way covering away was used. The idea is that each two-
way pair of reconfiguration options should guarantee that all the one-hop workarounds
were found. When the tests were run though, using five different randomly generated
two-way covering arrays an average of 23 bugs with workarounds were found. These
results are not as good as the one or two-hop algorithms. We were not expecting
the covering array to miss one-hop workarounds as it is guaranteed to have all of
the two-way combinations. Looking into it we discovered that there is configuration
masking going on. A situation exists where some reconfigurations will affect others,
such as the —fschedule—insns and — fschedule—insns2 example from above, and even
though all two-way combinations are present they might not be tested.

To overcome this problem we first tried combining two sets of two-way covering
arrays (2Dway). There are many different ways to reach all two-way combinations,
so combining two sets could help reduce the masking effect. The results were better.
Costing only about three hours on average the double stacked two-way covering arrays
were comparable to the random 100 iteration multi-minimized tests at a fraction of
the time cost. The results of the three way covering array were similar to that as well.
The time cost and the number of workarounds found were very close, even though
the three way covering array has 30 additional tests to run.

The time to first workaround was also examined. This represents the case where
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instead of finding all workarounds for a bug we only care about the first one. The
quicker a test can return that a workaround was found the better. Random performed
well at almost 17 minutes, which is less then half the time it took for the one-hop
algorithm to run. However, the covering arrays performed even better with the two-
way at just over 15 minutes, and the three way down to about 12 minutes 30 seconds.
This result shows another area where the covering array seems to outperform the

random algorithm.

4.3.4 Number of Workarounds Found

There are 29 failures that have at least one workaround, and of these 27 could be
found using the one-hop algorithm. In addition there are some failures where it
seems as though there is a limit on the number of workarounds to be found, such as
bug 25689, 25733 and 41016. Even with a large number of tests run the number of
found workarounds always seems to be the same number.

As expected, the more tests run the higher the chance of finding additional
workarounds. Looking at the average, as the number of iterations increase the num-
ber of workarounds found increases as well. It also shows that the multi-minimizer
finds more workarounds on average then just the minimizer. This makes sense as we
know there are a number of one-hop workarounds and the multi minimizer is capa-
ble of finding all of them that are present in one random configuration. In addition
it appears that on average the random multi minimizer for 100 and 150 iterations
are equal. This is interesting as an increase in 50 random configurations does not
necessarily yield additional workarounds.

If we examine bug 39794 using the three way covering array, we see that 18

workarounds can be found, while the random algorithms find only 17 workarounds at



52

07§ DOO ut onbruyoa], Aq Sng yoey I0j PUNO SPUNOIRYIOA\ JO IDqUINN T 9[qR],

97 98¢ 08'¥ 107 68°0 ags 08¢ 0L¢ oFeroAy
90 80 70 80 0 0 08
8T Ve 80 9% 0 67207
g 97 q 1 ¥20ey
3 8¢ 3 [3 i 19927
! 8¢C 99 i V1967
8T Ve i Gvsey
0 70 0 881y
3 9L i 8¢ €557
L i L L c
{0 80 4 91 0
[ 1 ) 78 8¢
79 T 6 8’8 Y
(49 T 9¢
8T T id
[44 T 8T
g 3 i g <
[4 L [4 L [4
I I I I 0 I I
911 I [N 90T € <
21 I Gl STl 96 [ I
4 4 4 4 1 4 4 1 4 4
811 811 76 9L i el Vel [ I 9
ST 8.1 7ot A T 8T [ 91 91 V1
901 76 8¢ 7 9¢ 1 8zl 811 v'e gl L 3088¢
g g 8¢ S 8¢ T S 9¢ 4 T T TPS8€
< < (44 8¢ T g 9¢ 4 T T 07S8¢
T 91 70 90 z0 71 80 0 ¢ ¢ 2069¢
4 71 T 90 T ¢l c0 80 91 0 [4 14 6201¢
T T 1 1 T T T T T T T T £616T
[4 [4 [4 14 [4 [4 [4 [4 [4 [4 [4 14 [4 68952
/10GT/ININH298 | /T00T/ININY298 | /T0S/ININYUP98 | /162/ININY298 | /T0T/ININY298 | /T0ST/INY298 | /T00T/IN¥298 | /106/IN¥298 | /168/IN¥U29% | /101/ N8 /ReMe/vD | /Aemdz/vD | /Aeme/vD | doHg/dd | doHT/ 4 | wnNsng
Ioziuururur _:_:Z —:O_\.:wg .~®x_:__:__:. :_O_u:@u._ }m.:/L &:C.@»O w.v.:.rvm wa:._m




23

most. This implies that there are more workarounds to be found, but the necessary
configuration to see the workaround isn’t being generated by the random algorithm.
Looking into bug 39794’s workarounds deeper shows that the workaround that the
three way covering array finds but random misses is a four-hop reconfiguration that
uses the options — furapv, — fno—tree—vrp, — fno—tree— ccp, and — fno—tree— dominator— opts.
For a random configuration to have all of these options statistically is a little over
6%. This isn’t even considering the masking of configuration options that we know
exists in gce. The masking occurs when the selection of one configuration can alter
or change another configuration. This can reduce the odds of finding the four-hop
workaround even further, which means for these complicated multi-hop workarounds,

random will take a large number of iterations and may never find them.

4.3.5 Number of Hops for Workarounds Found

Table 4.2 shows the number of hops for each workaround found over all algorithms
testing GCC 4.4.0. Bug 40749 and 8045 only have workarounds that are three-
hops from the starting configuration. The original failure avoidance algorithm would
have needed to exhaustively search all three-hop combinations to find these new
workarounds. This would require 159 *158 * 157 tests, which comes out to a total
of at most 3944154 test cases. This shows how an exhaustive technique is limited
with even a small increase in the number of hops to be checked. The workarounds
in question involve changing the optimization level of GCC, and then turning on two
related configuration options.

Certain configuration options are related to each other, such as affecting similar as-
pects of the program. For instance a workaround might require — foranch—target—load— optimize

and —fbranch—target—load—optimize2. —fbranch—target—load—optimize2 requires
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Table 4.2: Number of Hops for all Workarounds Found for Each Bug in GCC 4.4.0

—fbranch—target—load— optimize and an optimization level higher then zero to be

selected. This workaround could not be found without checking all three of these

options.

We also see a handful of bugs with workarounds that require three, four or even

five-hops. The greatest number of hops found for a workaround is five. Looking at

GCC 4.4.0 this occurs for four different bugs, 40579, 41646, 41917 and 42542. two of

the bugs have workarounds for every level of hop between one and five, and the other
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two only have one-hops and a five-hop workaround. Lets take a closer look at some
of these bugs.

The one-hop workarounds for 40579 are — fpeel—loops , — funroll—loops , <bundle—only
feature 0 of [null, null, null, null, nulll> ; <bundle—only feature 1 of [null, null, null,
null, nulll> , —fwrapv, <bundle—only feature 3 of [null, null, null, null, null> ,
—ftrapv , —fno—tree—vrp , —fno—tree—loop— optimize , —fno—ivopts and — funroll— all—loops.
From this we can see that there are lots of configuration options available to create
a workaround, from adjusting the optimization level, messing with loops, changing
trees, etc. Looking at these options it would seem that there are many ways to avoid
this particular bug. The five-hop workaround is — fno—tree— dce, — fno—tree— scev— cprop,
—fno—tree—ch, —fno—tree—copy—prop and —fno—tree—dominator—opts. Every sin-
gle one of these configuration options deals with trees in some way, but none are
the the same option from the one-hop workarounds. This makes sense because if
any of the options in the five-hop workaround could be found in the list of one-hop
workarounds we would expect the configuration to be minimized.

The single one-hop workaround for bug 41917 is <bundle—only feature 0 of [null,
null, null, null, null’>. This translates to setting the optimization level to zero.
The five-hop workaround is —fno—forward—propagate, —fno—tree—uvrp, —fno—gcse,
—fno—tree—ccp and —fno—tree—dominator—opts. Notice how each of these config-
uration options involves turning off some flag. Each is a —fno option. Essentially,
changing the configuration level to zero will avoid the failure because it turns off these
five options. This five-hop workaround shows us exactly what flags are causing the
problem, and gives a developer working on fixing the failure a much clearer picture
of where the failure is. If you consider the fact that turning the optimization level to
zero affects many configuration options n then the workaround with more hops is a

subset of the workaround with less hops in this case.
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Brute Force Covering Array Random minimizer Random multi-minimizer

Time 1Hop | 2Hop | 2Way | 2DWay | 3Way | 101 251 501 1001 1501 101 251 501 1001 1501

Hours 0.60 | 139.27 | 0.77 2.71 3.11 1.18 2.20 4.58 9.08 14.18 | 1.45 3.27 6.77 13.42 20.93

Minutes | 36.00 | 8356.00 | 46.20 | 162.80 | 186.80 | 71.00 | 132.00 | 275.00 | 545.00 | 851.00 | 87.00 | 196.00 | 406.00 | 805.00 | 1256.00

TestCases | 159 25122 15 30 60 10 25 50 100 150 10 25 50 100 150

Table 4.3: Time for Each Technique to Run

Time | CA2Way | CA3Way | Random
Hours 0.25 0.21 0.28
Minutes 15.20 12.40 16.80

Table 4.4: Time to First Workaround

4.3.6 Time for Techniques to Run

The times were measured for each technique to run and displayed in Table 4.3. In
addition we look at the number of test cases that were run. For the case of the covering
array a test case represents a possible workaround configuration, and then additional
tests would be run by the minimizer to find the minimal workaround configuration.

The longest test we ran was clearly the two-hop algorithm, taking almost 7 times
longer then the longest random technique. This shows just how infeasible a brute
force technique would be for finding those three-hop workarounds for bugs that have
no one or two-hop workarounds.

The covering array performed fairly well, with the two-way only taking ten min-
utes longer on average then the one-hop technique. Looking at our results from
earlier, we know that the two-way covering array is not very good at finding all of
the workarounds discovered by the one-hop. The double stacked two-way covering
array took almost four times longer with only an additional 15 tests. This increase
in time was likely caused by a large number of duplicate configurations that required
the minimizer to be used more often. The three way covering array performs only
a little slower, taking an additional 20 minutes, however it adds 30 test cases. This

shows that even though there is an increase in test cases, they are spread out around
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the configuration space, and there are fewer minimizations necessary overall.

Random is compared with the minimizer and the multi-minimizer. Obviously the
more iterations the longer the tests will take to run. The multi-minimizer also takes
longer than the minimizer due to an increase in the number of times a configuration
is checked to see if it is a workaround. The minimizer will not know if it is working on
minimizing a duplicate workaround until the end, which means that a large amount
of time can be wasted during the minimization step. From the earlier table we know
that there is not much difference between the 100I MM and 1501 MM tests, however
the additional 50 tests mean a seven hour increase in run time. Even with the smallest
run of ten iterations and the regular minimizer the random tests took twice as long
as the one-hop algorithm.

We also looked at time to first workaround for the covering array and random
algorithms as shown in Table 4.4. The three way covering array is actually the fastest,
with an average time of just under 12 and a half minutes. The results from random
aren’t bad either, with a response on average in the first 17 minutes. If all a user was
concerned about was finding a workaround, any workaround, as quickly as possible
then the covering array or random algorithm work much faster than even the one-hop
algorithm, taking only half the time. In addition the time to first workaround will be
shorter for a failure with multiple workarounds as the odds of finding any workaround
increases. An experiment to calculate the average time to first workaround using the
one-hop algorithm didn’t make sense, as the order of the feature model will determine

when the workarounds are discovered.
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Brute Force Covering Array Random minimizer Random multi-minimizer

Workarounds found in | 1Hop | 2Hop | 2Way | 2DWay | 3Way | 101 | 251 | 501 | 1001 | 1501 | 101 | 251 | 501 | 1001 | 1501
all trials 28 28 25 28 29 26 | 26 | 28 | 29 30 | 25 | 27 | 29 | 30 30
at least one trial 28 28 30 30 30 27 1 30 | 30 | 30 30 | 27 | 30 | 30 | 30 30

Table 4.5: Number of Bugs with at Least One Workaround Found

Brute Force Covering Array Random minimizer Random multi minimizer
BugNum | 1Hop | 2Hop | 2Way | 2DWay | 3Way | 10FI | 10I | 25I | 50I | 100I | 150I | 10I | 25I | 50I | 100I | 1501
25689 2 2 2 2 1 2 2 2 2 2 2 2 2 2
25733 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31029 2 2 0 1.6 0.8 0.2 | 04 | 0.6 1 1.2 | 1.6 08 | 0.8 | 1.4 2
36902 3 3 0 0.8 1.4 0 0 0 | 04|06 |08 02102 ] 18 | 1.8
38540 1 1 24 3.6 5 1 2 3 4 4.8 5 3.2 | 42 | 46 5 5
38541 1 1 2.4 3.6 5 1 1.8 | 24 | 32 5 5 24 | 42 | 438 5 5
38808 7 12 3.4 124 12.4 1 3 36 | 54 | 6.6 | 7.6 76 | 82 | 94 | 114
40321 6 11 7.2 13.2 13 1 3.6 | 54 | 6.2 7 7.6 104 1 10.8 | 12 | 128
40796 2 5 2.6 5 1 28 | 3.8 | 44 5 5 38 |46 | 5 5 5
40924 9 14 8.6 13.2 15.4 1 ) 7 82 | 92 | 102|106 | 13.2| 144 | 16.2 | 16.2
41016 1 1 0 1 1 1 1 1 1 1 0.8 1 1 1 1
41153 2 2 1 2 1 2 2 2 2 1.8 2 2 2 2
41183 5 5 4 5 1 28 | 46 | 5 5 5 5 5 5 5 5
41403 1 2 0.4 24 3 0.8 2 1.6 | 26 | 3.2 | 34 | 1.2 | 2.6 3 3 3
41619 8 8 6.6 8 1 42 | 58 | 7 8 78 | 74| 8 8 8 8
41630 3 3 1.4 3.6 4 1 2 34 | 34 4 4 34 4 | 38 4 4
41643 4 6 5 8.8 9 1 42 52| 52|58 |64 |66 | 8 9 9 9
41646 3 4 3.6 8.8 9 1 42 | 46 | 56 | 66 | 6.8 | 56 | 7.6 | 88 9 9
41917 1 1 0 1.6 2 1 14 | 16 | 1.8 | 1.6 2 14 | 1.8 | 14 2 2
42049 7 7 5 7 1 46 | 5.8 | 6.8 | 6.8 7 6.8 | 6.8 7 7 7
42231 7 8 5.8 8 1 52 | 6 76 | 7.8 8 68 | 8 8 8 8
42488 5 5 0 24 2.8 0 04 | 04 1 2 3 1 1.8 | 3.2 4 4.6
42542 4 4 3.2 8.8 1 34| 5 58 | 66 | 6.6 | 54 | 74 | 86 | 88 9
42614 4 6 3.8 7 1 5 54 | 6.2 7 7 6.2 | 6.8 7 7 7
42667 3 3 0.8 3 1 26 | 3 3 3 3 28 | 3 3 3 3
43024 5 5 3 5 1 34 |48 | 5 5 5 4.8 5 5 5 5
40749 0 0 1.4 2.6 4 0.8 1 28 | 3.6 4 4 22 | 32 | 34 4 4
8045 0 0 0 0.8 1.6 0 0 06 | 04 | 1.2 | 28 1 1 24 | 48 | 44
Average | 3.46 | 4.36 | 2.66 5.05 540 | 0.85 | 2.54 | 3.30 | 3.89 | 4.39 | 4.66 | 3.76 | 4.69 | 5.05 | 5.48 | 5.61

Table 4.6: Number of Workarounds Found for Each Bug by Technique in GCC 4.4.1
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BugNum | 1Hop | 2Hop | 3Hop | 4Hop | 5Hop
25689
25733
31029
36902
38540
38541
38808
40321
40796
40924
41016
41153
41183
41403
41619
41630
41643
41646
41917
42049
42231
42488
42542
42614
42667
43024
40749
8045

Average
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Table 4.7: Number of Hops for all Workarounds Found for Each Bug in GCC 4.4.1

4.4 Discussion of Results

The first question attempted to answer in this case study, is whether or not there
exists any additional workarounds beyond one or two-hops. In addition we asked
if there are any failures that do not have a one or two-hop workaround, but do
have a workaround greater then two-hops away from the starting configuration. By
using a random algorithm with a minimizer we have seen that there are three-hop
workarounds for bugs that have no one or two-hop workaround. We also discovered

workarounds up to five-hops away from the starting configuration.
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Brute Force Covering Array Random minimizer Random multi minimizer
BugNum | 1Hop | 2Hop | 2Way | 2DWay | 3Way | 10FI | 10I | 25I | 501 | 1001 | 150 | 10T | 25I | 50I | 100I | 1501
25689 2 2 2 2 2 1 1.8 2 2 2 2 2 2 2 2 2
25733 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31029 2 2 0 1.6 0.8 02 |04 ] 02|06 | 16 | 18 0 08 | 1.4 | 1.8 2
36902 3 3 0 0.8 14 0 02|04 ] 08| 02] 06 0 04|02 08 | 1.2
38540 1 1 24 3.6 5 1 1.2 | 26 | 3.8 | 46 | 4.6 2 3.8 | 48 5 5
38541 1 1 2.4 3.6 5 1 26 | 24 | 44 | 46 | 48 | 26 | 3.8 | 44 | 4.8 5
38808 7 12 3.4 12.2 124 1 28 | 3.2 5 66 | 74 | 38 | 62 | 7.8 | 9.6 | 10.6
40796 2 5 2.6 5 5 1 22 | 34 5 4.8 5 3.6 4 5 5 5
41153 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2
41183 5 5 ) ) 1 3.6 5 5 5 ) 4.8 ) 5 5 5
41403 1 2 0.4 2.4 3 0.8 14 | 28 | 28 | 3.8 | 36 | 14 | 18 3 3 3
41619 8 8 6.6 8 8 1 54 | 64 | 68 | 7.6 8 7.8 8 8 8 8
41630 3 3 14 3.6 4 1 32| 32| 36 4 38 | 38 4 4 4 4
41643 4 6 5 8.8 9 1 42 | 44 | 54 7 76 | 6.8 | 7.8 | 88 9 9
41917 1 1 0 1.6 2 0.8 08 | 1.2 | 1.8 | 16 2 1 1.6 | 1.6 2 1.8
42049 7 7 5 7 7 1 42 | 58 | 6.8 | 6.6 7 6.4 7 7 7 7
42231 7 8 5.8 8 8 1 52 | 64 | 74 | 76 8 78 | 7.8 8 8 8
42488 5 5 0 2.4 2.8 0.2 0.2 1 22| 24 | 28 | 02 | 26 4 3 4.2
42542 4 4 3.2 8 8.8 1 42 | 52 | 52 | 62 | 66 | 5.2 | 76 | 7.8 | 86 9
42614 4 6 3.8 7 7 1 46 | 5.8 | 6.6 | 6.6 | 6.8 | 5.8 7 7 7 7
42667 3 3 0.8 3 3 1 2.8 3 3 3 3 3 3 3 3 3
43024 5 5 3 5 5 1 4 4.8 5 5 5 4.8 5 5 5 5
8045 0 0 0 0.8 1.6 0 06 | 04 ] 02| 22 26 0 1.2 | 14 5 5
Average | 3.39 | 4.00 | 2.34 4.45 473 | 0.83 | 2.55 | 3.16 | 3.76 | 4.17 | 4.39 | 3.30 | 4.06 | 4.44 | 4.77 | 4.90

Table 4.8: Number of Workarounds Found for Each Bug by Technique in GCC 4.4.2

The second question dealt with comparing new techniques to the original brute

force. We wanted to find new workarounds, find them quicker, and guarantee that

all of the workarounds found using brute force can be discovered as well. Finding

new workarounds is easy. Finding them quicker was much harder to do, as the act

of minimizing any workaround found takes a great deal of time. Compared to the

brute force where each workaround found will already be minimal. The other issue

is guaranteeing to find all of the workarounds that the brute force can detect. The

problem with this is some of the workarounds are more difficult to detect due to

masking of configuration options. This means that unless an exhaustive approach

is used, or a great deal of time is spent, it might not be possible to guarantee all

workarounds from the one or two-hop algorithm are found.
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BugNum 3Hop | 4Hop | 5Hop
25689
25733
31029
36902
38540
38541
38808
40796
41153
41183
41403
41619
41630
41643
41917
42049
42231
42488
42542
42614
42667
43024
8045

Average
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Table 4.9: Number of Hops for all Workarounds Found for Each Bug in GCC 4.4.2

4.4.1 Summary

In this section we evaluated several algorithms for finding workarounds. The random
algorithm did find new workarounds, but it was not guaranteed to locate all of the
one-hop workarounds found through a bounded exhaustive search. Even though the
covering arrays could not guarantee finding all of the one-hop workarounds, they
found a large number of two-hop and beyond workarounds with five times the time
cost. Compare this to the fact that the two-hop algorithm takes 236 times the time
cost of running the one-hop algorithm, significant strides have been made.

For research question one we asked if there exists failures avoided only by three-

hop or greater workarounds. For GCC version 4.4.0 looking at Table 4.1 the random
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and covering array versions of the failure avoidance algorithm were able to find a
three-hop workaround for bug 40749 and bug 8045. These bugs do not have a one
or two-hop workaround and will not be found by the one-hop or two-hop algorithm.
Version 4.4.1 of GCC in table 4.6 has the same workarounds found and version 4.4.2
in table 4.8 has three-hop workarounds found for bug 8045 using our new techniques.
We can answer question one in the affirmative because we discovered workarounds,
in all three versions of GCC tested, for bugs that do not have a one or two-hop
workarounds.

For research question two we asked what additional workarounds can be discovered
by exploring beyond a two-hop space. For GCC version 4.4.0 looking at table 4.2 we
can see that the average number of one-hop workarounds for a bug is 3.7. This fits
in with what we know about there being multiple ways to workaround a failure. The
average number of two-hop workarounds drops down to just over one per bug. A
large part of this is due to the 14 two-hop workarounds for bug 40321. For the three-
hop workarounds the number jumps up, to 1.53 workarounds per bug. The fact that
there are more three-hop workarounds for bugs then two-hops is interesting, because
it means that an algorithm that can explore beyond the two-hop space has a larger
pool of potential workarounds to discover then previously thought.

There are an average of 0.27 four-hop workarounds and 0.13 five-hop workarounds
per bug as well. The fact that workarounds exists at such a distance from the starting
configuration is quite interesting, as it means that a failure is tied to at least that
number of features. However, because all of the bugs with four-hop and five-hop
workarounds have at least one one-hop workaround as well, there is a much easier
way to avoid the failure. Consider the case of bug 41917. The one-hop workaround
involves shutting off all optimization while the five-hop workaround involves shutting

off five specific optimizations. If the user wanted to avoid the bug, but not remove
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all optimizations, then the five-hop workaround would actually be preferred.

For GCC version 4.4.1 in Table 4.7 the numbers are similar to version 4.4.0. One-
hop the most number of workarounds per bug at 3.46, a drop to 1.14 for two-hop, an
increase to 1.32 for three-hop and finally a drop to 0.36 and 0.14 for four and five-hops
respectively. GCC version 4.4.2 in table 4.9 has the number of workarounds per bug
at 3.39 for one-hops, 0.61 for two-hops, 1.13 for three-hops, 0.22 for four-hops and
0.09 for five-hops. This means that the pattern of more three-hop workarounds per
bug then two-hop workarounds holds for all versions of GCC tested and each version
tested has four and five-hop workarounds found. For question two we can answer
that there are more three-hop workarounds found then two-hop workarounds, and
four and five-hop workarounds exist which can in cases be more useful to the user
then the comparable one-hop workaround.

For research question three we asked what is the most effective and efficient al-
gorithm for detecting workarounds. What we were looking for is a balance between
an algorithm that runs quickly (efficient) and finds at least one workaround for every
bug that has one (effective). Looking at GCC 4.4.0 In table 4.3 the results for the
time to run each technique are listed. The one-hop algorithm runs in only 36 min-
utes and is guaranteed to find all one-hop workarounds. However because it cannot
find any workarounds beyond one-hop and we know there are bugs with three-hop
workarounds as seen in table 4.1 only it loses some effectiveness. Table 4.5 shows for
each technique if at least one workaround for a bug with a workaround was found
and if it was found during all five test runs or on at least one of the tests. The
one-hop algorithm only finds workarounds for 28 of the 30 bugs with workarounds.
The two-hop algorithm takes very long to run and at almost 140 hours its efficiency
is far too low to make it a viable option. It also only finds workarounds for 28 of the

30 bugs with workarounds
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The random algorithm with the minimizer takes less time on average than random
with the multi minimizer and the same number of iterations. Because of this the
random with minimizer is more efficient then random with the multi minimizer. The
multi minimizer will allow a single iteration to return multiple workarounds. This
essentially means that if the iteration does not contain any workarounds, then none
will be found, regardless of the minimizer used. Because we are concerned with
finding any workaround for a bug, the multi minimizer isn’t any more effective then
minimizer as it is only going to find additional workarounds. The largest difference
will come from if the random algorithm was lucking in choosing configurations to test.

Looking at the results from the random algorithm the first test which has a chance
to find all 30 of the bugs with workarounds is with 25 iterations which took on average
132 minutes. This will require some luck however as four of the bugs with workarounds
found were not found during all five trial runs. The 100 iterations random multi
minimization test found at least a workaround for all 30 bugs with workarounds on
all 5 trial runs. This test took on average 805 minutes, still about 10 times less then
the two-hop algorithm.

The two-way covering array algorithm takes only 46 minutes, slightly more than
the one-hop algorithm. It only finds workarounds though for 25 of the 30 bugs with
workarounds. To improve its efficiency we created five new two-way stacked covering
arrays by combining two two-way covering arrays and ran the tests again. The two-
way stacked covering arrays took 162 minutes and found workarounds for all 30 bugs
with workarounds, though two of the bugs with workarounds were missed during one
of the five trials. Next we tried a three way covering array algorithm and it can
find workarounds for all 30 bugs with workarounds missing only one bug on one test.
This algorithm took on average 186 minutes, making it slightly less efficient then the

stacked two-way covering arrays.
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The other comparison made is the time to first workaround only. If finding a
single workaround is your top priority and the algorithm can stop once it has been
discovered, then the average time spent should drop. Table 4.4 shows the results for
the two-way covering array, three way covering array and the random algorithm. The
random algorithm is the slowest taking on average almost 17 minutes. The two-way
covering array takes slightly more then 15 minutes and the three way covering array
takes about 12 and a half minutes. For these tests then, the three way covering array
is the most efficient.

It is difficult to answer question three because of the randomness of the algorithms.
The covering arrays are more systematic then random but still can’t guarantee find-
ing workarounds for all bugs with workarounds due to masking of features. Our
results show that the stacked two-way covering array and three way covering array
are comparable to random with about 50 iterations. The minimizer version of the
50 iterations random took 275 minutes which makes it much less efficient then ei-
ther of the covering arrays. Because of this, and the fact that the covering arrays
performed better at time to first workaround, we consider the covering arrays as the

most efficient and effective method to finding workarounds for failures.
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Chapter 5

Failure Avoidance Feasibility in

Practice

In this chapter we present a study on an implementation of the failure avoidance
framework. The goal is to evaluate if the framework will be successful in a real
system running multiple distributed clients. We will measure this by determining if
the workarounds found and the modifications made to the clients result in a drop of
time to the first workaround and if we can completely avoid failures that have been
seen.

We chose Firefox as the target system. Work by Garvin et al. [25] showed that
Firefox contains configuration dependent bugs. This is a real highly-configurable
application in which users are distributed and diverse. If we can get our framework
to successfully run in this environment, then it will be a good indication if it can work

in practice.
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5.1 Simulation Setup

We built a simulation of the failure avoidance framework to represent four users of
Firefox, working in parallel. We use Firefox version 18.0 [38] for the simulation. This
was chosen because it is a recent version that is compatible with the Mozmill testing
framework, and the Mozmill framework provides a way to automate the running of
tests (Appendix B). The failure avoidance framework is built on top of Rainbow (as
described in Chapter 3) that was provided to us by B. Schmerl at CMU [23].

To run the simulation, a master node is started first which loads the framework
feature model and sets up the adaptation strategies. After this, the client nodes are
activated, which involves deploying probes and creating a map between them and
the properties on the master. This follows the standard implementation of Rainbow.
Once all of the delegates are instantiated, the gauges activate and the monitoring
begins. Because we use four clients to represent four Firefox users we will need to
instantiate four clients in the framework. Each version of Firefox has its own version
of Mozmill, which will select and run test cases; each test case is meant to simulate
a user performing some task on the system.

Three critical parts of the simulation are as follows. The failure avoidance frame-
work handles failures that the clients encounter by activating the failure avoiding
algorithm and sending the results to the clients. Second, we need a Firefox feature
model that defines the configuration space. Third, we need a Mozmill test suite that
defines the tests to be run and a script to select which clients run which tests. Each
of these aspects of the simulation will be further explained below. The simulation is
set up and run on Sandhills. Sandhills is a cluster of 1440 AMD cores housed in a
total of 44 nodes. This allows us to run multiple clients in parallel.

The simulation will differ from the real world in a few key areas. In the real world
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the failure avoidance framework will need to be able to create test cases based on
the behavior of a user leading up to a failure. In the simulation we use procreated
mozmill tests. The real world will also have a much larger number of clients so the
failure avoidance framework will need to handle a much larger number of simultaneous
reported failures. The framework provides functionality for such an issue, however

we leave the implementation as future work.

5.1.1 Failure Avoidance Framework

The failure avoidance framework as outlined in Chapter 3 is used in our simulation.
We decided to use the Random, 10 iterations, single minimizer failure avoidance algo-
rithm for this study. We chose this algorithm to start since it will run the fewest tests
and performed relatively well in effectiveness. The Firefox feature model is signifi-
cantly larger than the GCC feature model we used in our first study, therefore even
the one-hop algorithm will be very expensive. The time required to find workarounds
becomes important in this simulation, since we are now running this in real time.
Because of this, and because we are going to stop at the first workaround, we won’t
use the multi-minimizer. Other variations such as using the covering array, adding
the multi-minimizer, etc. are left as future work.

We have added one additional check done before the failure avoidance algorithm is
called to search for a workaround. We want to make sure that any failure encountered
is a real failure (and not just a transient failure due to the test harness failing), so the
Mozmill test is rerun under the failing configuration before we begin our workaround
search. If it does not fail, then the effector will return that the test was not repro-
ducible to the client. If it does fail, then all of the already found workarounds are

checked to see if they will avoid the failure. If one of the existing workarounds suc-



69

ceeds, then the effector will return that a workaround has already been discovered.
Finally, if the test is reproducible and no workaround already exists, then the failure
avoidance algorithm is called. If a workaround is discovered, the effector will return
that a workaround has been found to the appropriate client, and then update all
clients with the new guard information. If no workaround is found then the client is

informed and regular testing can resume.

5.1.2 Failure Avoidance Algorithm

To set up the failure avoidance algorithm for our simulation it had to be modified
to allow Mozmill tests to be run. The earlier tests were done using GCC bugs, but
because the target system in the simulation is Firefox the algorithm will need to
be able to run Mozmill test and determine wether it passed or failed under some
configuration.

A script is used to call the Mozmill tests within the client. To adapt Mozmill
testing into the failure avoidance algorithm we set up a driver to call this script. The
failure avoidance algorithm can generate a configuration file for Firefox based on the
current configuration in the test, and pass the location of the Mozmill file to be tested
to the driver. The driver runs the Mozmill test in the same way as on the client, but
this time using the given configuration from the failure avoidance algorithm.

Once the test is completed the failure avoidance algorithm can check the generated
file with the results and determine if the test passed or failed. In this way the
output running the test remains the same, and the failure avoidance algorithm is
only minimally changed. This also means that not only can the algorithm used be
swapped out, but as long as there is a way to automatically run a test case with a

given configuration any system can be plugged in. This allows for customization of
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the failure avoidance framework to a particular target system.

5.1.3 Firefox Feature Model

We created the feature model by obtaining a list of Firefox configurations and pruning
it as described next. The starting list was the full list from the Firefox about:config
utility. We first removed all of the hardware specific configuration options. Next
we removed the security preferences assuming that a workaround that compromises
security would be undesirable. We also removed preferences that dealt with plugins,
extensions, and fonts. Finally we removed the more complicated String and Integer
preferences leaving 311 preferences for us to work with. This is almost double the
number of configurations used in the GCC study. The feature model then contains
639 options (due to some non binary preferences). This leads to a configuration space

of approximately 1.30 x 10938,

5.1.4 Firefox Mozmill Test Suite

Mozmill has a test suite that can be downloaded for use in regression testing of
firefox [37]. We selected the functional category of tests from the most recent version
of Firefox and ran all of them on one of our Firefox clients. Some of the tests did
not pass, however this was expected since the version of Firefox being tested is older
then the available Mozmill test suite. One example is that some of the tests have
functions that perform differently in the version of Firefox being tested, and therefore
will always fail.

After pruning out the failing tests, we are left with 36 Mozmill functional tests
which always pass under the default Firefox configuration. By using these tests in the

test suite we will be able to check that the configuration workarounds being found
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won’t overly impact the users functionality. If a workaround does cause a substantial
drop in functionality related to one of the 36 tests, then the test that is supposed
to pass will fail. In addition it is possible that a specific configuration will cause a
passing test to fail, and if this is the case then the failure avoidance algorithm should
be able to find a workaround. These will be categorized as unexpected workarounds
within our simulation (discussed later).

We then added seven Mozmill tests we created to the test suite that represent
configuration faults found in the Mozilla bug repository. The test will check to see if
a bad configuration is selected in Firefox and then throw an error. This is done by
creating an assert within a Mozmill test which checks the value of a configuration. An
example of one of these tests is found in the appendix B.1. We looked at the Firefox
bug repository [39] for faults reported in version 18 that involved configurations and
if a failure was caused by a change in the configuration space it was turned into a
Mozmill test. There were also three Firefox bugs from [25] that were found to be
configuration dependent. If the failure could be replicated on Firefox 18 they were

added as well. The full set of Mozmill tests can be found in the Appendix.

e Firefox bug 306208 — Firefox displays tab bar on pop ups when browser.tabs.drawinTitlebar
is set to true (tab bar should only be displayed in main page), fails on changed

configuration

e Firefox bug 344189 — Firefox opens 2 tabs when browser.search.openintab is

set to true (only 1 tab should open), fails on default configuration

e Firefox bug 442970 — Firefox opens last session and home page when browser.startup.page

is set to 3 (only last session should open), fails on changed configuration

e Firefox bug 505548 — Firefox gives no warning when browser.startup.page is set
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to 3 (open previous session on startup) and privacy.sanitize.sanitizeOnShutdown

is set to true (wipe all session data on closing), fails on changed configuration

e Firefox bug 797945 — Firefox doesn’t apply binding properly when plugins.click _to_play

is set to true, fails on default configuration

e Firefox bug 808290 — Firefox is unpredictable when browser.link.open_newwindow
is set to 1 and a link is clicked immediately before focusing on a new tab, fails

on changed configuration

e Firefox bug 840411 — about:home won’t work on firefox if browser.startup.homepage_override.

is set to "ignore”, fails on changed configuration

These bugs were then encoded as Mozmill tests which will check the current Fire-
fox client’s configuration and throw a failure if the bad configuration is detected.
This gives us an accurate way of recreate the failures without having to worry
about changes to Firefox. The failure avoidance algorithm should be able to find
a workaround for each of these tests when they fail by minimizing out of the con-
figuration option that caused the test to fail. These will be categorized as expected
workarounds within our simulation.

Overall we have 36 passing tests and seven tests designed to fail for our simulation.
The designed to fail tests however, might require a reconfiguration to fail, which means

the likelihood of encountering them is lower.

5.1.5 Simulating the Clients

The users are simulated by Algorithm 6 that randomly calls a test from our Mozmill
test suite. Each client keeps track of its current configuration, the guard information

and if a failure has been encountered. The overall idea is that the clients will explore
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Algorithm 6 Algorithm for Running Client

1: let M < the suite of mozmill tests

2: let ¢ <— the current configuration

3: let r < a single option from c

4: let G < the set of Guarded reconfigurations

5: let f < false (represents if a failure has not been discovered)

6: while Client is running do

7 if f = false (a failure has not been discovered) then

8: Change the configuration ¢ by up to one reconfiguration r unless r € G
9: Randomly select a mozmill test m € M and run m.

10: if m fails under configuration ¢ then

11: let f < true

12: end if

13: end if

14: if An update for the guard g is available then

15: add g to G

16: end if

17: if A workaround configuration ¢’ has been discovered for test m then

18: note that ¢’ is a workaround for m

19: let f < false
20: else if The test m failing under configuration c¢ could not be replicated then
21: note that m with c is not replicable
22: let f < false
23: else if A workaround could not be found for test m failing under configuration

¢ then

24: note that m with ¢ has no current workaround
25: let f < false
26: end if

27: end while

the configuration space while trying different mozmill tests. When a failure is encoun-
tered the client will stop running new Mozmill tests, and wait for a response from the
failure avoidance framework effector. The response will either be that a workaround
is found, a workaround is not found, or the test cannot be replicated. In all cases
once a response has been received the client can resume running tests. In addition
the client will be checking to see if the guard can be updated with a new potentially

bad reconfiguration.
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This set up allows the system to keep track not only of the failing test case,
but also the configuration at the time the test failed. This will allow the failure to
be replicated and make it possible to search for a workaround. When a failure is
encountered the client will stop until a message has been sent from the effector. It is
possible for a user to continue working once a failure has been encountered, however
for the purpose of this simulation we wanted to keep track of time between detecting
a failure and getting a response without a bottleneck on the queue. We are only using
one master and one failure avoidance algorithm so failures can only be addressed one
at a time in the order they are received.

The starting configuration is kept as default for one of the users, and varies by up
to five configuration options for the other three. Before each test is run there is also a
chance that the configuration will change by one configuration option. This is where
the guard algorithm is implemented. As workarounds are found the configuration
information is deployed to each of the clients, which allows them to update their
own personal guard. Before each Mozmill test is run the client checks its current
configuration, and has a chance to randomly change a single configuration option.
This number was kept low so that the exploration of the configuration space didn’t
expand too rapidly. We thought this would be a more realistic simulation of users
who are unlikely to move far away from the default configuration quickly, but who
may creep away over time. Before each reconfiguration the client checks with the

guard for permission to make the change.

5.1.5.1 Use of the Guard

As stated earlier, each time a Mozmill test is run, the client has a chance to change
its current configuration. At the time of this change the client will also check to

make sure that the change will not bring the configuration to a potentially bad state.
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This ensures that after a workaround is found, the failure should not be encountered
again. It also provides an easy way to spread workaround knowledge to all clients.
By keeping the guard updated a client ensures that it will not encounter a failure
that another client has already found a workaround for.

If two clients both encounter a failure at around the same time, then it is possible
a queue will form while the failure avoidance algorithm is working. In this case it is
possible that a workaround found for one of the clients will also serve as a workaround
for the other. This means that the failure was encountered before the guard had a
chance to be updated. The second client does not know the workaround it has received
will avoid the failure it sent to the master. The algorithm must therefore check to
see if a found workaround can serve for the failure it is looking at, and if it is, let the
client know that their guard is up to date and they can continue running tests.

This situation will result in a case where a client is being protected from a failure
by the guard, but is still waiting for a response from the master. The response time

for this case will be evaluated further in the case study.

5.1.6 Record Keeping

While the simulation is running each of the clients will keep track of tests run, updates
to the guard, guard activation, and results sent back from the master. All of these
will be be marked with a timestamp so comparisons can be made between the clients.
An example of this is stored in the appendix C.1. In addition after each Mozmill
test is run a file will be created that contains the current configuration so that tests
can be replicated. The master will keep track of workarounds, and tests run with the
result of each. By compiling this information we will be able to accurately look at

the simulation results and determine if the current system is working as intended.
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5.2 Case Study

We conducted a case study to determine if the failure avoidance framework works. We
first ask if the framework can find workarounds of all the expected workarounds in the
test suite as well as is the guard working to prevent failures with found workarounds
from being encountered again. In this study we answer two questions.

RQ1. Can the failure avoidance framework efficiently find workarounds for all of the
failing test cases we introduced to the test suite?

RQ2. Is the guard effective at preventing future failures once a workaround has been
found?

Objects of Study. Our evaluation of the failure avoidance framework was done
using Firefox version 18 [38] as the target system and the Random with 10 iterations
and the minimizer as the failure avoidance algorithm. The Feature model for firefox
was constructed using the about:config configurations from Firefox and pruned as
described above. The test suite for Firefox was created by combining a subsection of
the default Mozmill test suite for functional tests found at [37] and the Mozmill tests

from [39] and [25] designed to fail under certain configurations described above.

5.2.1 Independent and Dependent Variables

The independent variable in our study is the time the simulation will run.
Our dependent variables are the number of workarounds and the number of guards

activated.



Test ‘ 0:15 ‘ 0:30 ‘ 0:45 ‘ 1:00 ‘ 1:15 ‘ 1:30 ‘ 1:45 ‘ 2:00 ‘ 2:15 2:30 ‘ 2:45 3:00
Expected to Fail

firefoxBug_344189.js FW | 2P 4P 5P - PG 4P | 2P | 8P | GTPG3P | 3P 4PG2P
firefoxBug_306208.js P 2P P 5P 5P 3P 3P | 4P | 2P P 5P 5P

firefoxBug_797945.js - | FWP | 3P2GP | 2P 3P 5P 3P | 5P | 2P 6P 2PGP | PG5PG
firefoxBug_808290.js P 3P P 4P 5P P P 3P | 4P 4P 6P P
firefoxBug_840411.js 2P 4P 2P 3P - 4P 6P | 3P | 8P 4P 2P 6P
firefoxBug_442970.js P 2P 4P P 4P P 3P | 2P | 5P 2P 2P 5P
firefoxBug_505548.js P P - 4P 5P 4P 4P | 3P | 2P 6P 6P 3P

Not Expected to Fail
testClearFormHistory.js 4P 3P 4P 3P | FPW5P 3P P 5P P 3PG 4P GP
testPopupsBlocked.js 5P 3P P 4P P PF2PWP | 6P | 3P | 5P 6P 2P 5P
testAddMozSearchProvider.js 3P | 3PF | PW2P | P 4P 4P 7P | 6P | 5P 4P 4P 3P
Does Not Fail

testGoButton.js 5P 4P P 5P 4P 5P 2P | 2P P 4P 3P 4P
testLocationBarSearches.js 5P 4P 5P 5P 3P 2P 5P | 3P | 5P 6P 2P 2P
testPasteLocationBar.js 5P P 5P P 5P 3P 6P | 2P | 5P 2P 11P 3P
testAddBookmarkToMenu.js 2P 2P P 3P 4P P 3P | 5P | TP 10P 3P 6P
testCloseDownloadManager.js 5P 2P 6P P P 6P 2P | 9P | 2P 3P 6P 3P
testOpenDownloadManager.js P 5P 2P 5P 4P 2P 4P | 5P | 4P 2P 2P 3P
test AutoCompleteOff.js 6P 6P 5P 5P 4P - 4P | 6P | 3P 4P 3P 4P
testBasicFormCompletion.js 4P 9P P 10P 4P 6P 6P | 2P | 3P 4P 4P 6P
testDisableFormManager.js - 2P 4P 6P P 4P 5P | 2P | 4P 3P 3P 5P
testNavigateFTP.js 6P P 10P 5P 5P 2P 2P | 3P | 4P 4P 2P 4P
testPopupsAllowed.js 3P 4P 3P 6P P 4P 2P | 3P | 5P 5P P 5P
testDefaultPhishingEnabled.js 4P 6P 4P 4P 8P 3P 2P | 6P | 5P 5P 3P P
testDefaultSecurityPrefs.js 4P P 9p P 3P 2P 3P P 5P 4P 8P P
testPancRetention.js 4P P 4P 3P - 2P 3P | 2P | 4P 5P P 3P
testPasswordNotSaved.js 5P 4P 2P 2P 6P 4P 3p | 7P | TP 3P 6P 4P
testPreferredLanguage.js 3P 3P 3P 4P 3P 4P 3P | 4P | 4P 5P 4P 5P
testRestoreHomepageToDefault.js 4P P 5P 4P 3P P 3P | 6P | 8P 5P 3P 3P
testSetToCurrentPage.js 3P P 6P 3P 5P 4P 2P | 7P | 3P 3P 7P 3P
testSwitchPanes.js P P P 6P 3P P 6P | 8P | 4P 3P 2P 5P
testOpenSearchAutodiscovery.js P - 4P P 4P 4P 6P | 6P | 6P 5P 6P 3P
testSearchViaFocus.js 2P - - P P - 3P | 2P | 4P - 4P P
testSearchViaShortcut.js 4P - 4P 2P 3P 4P 8P | 5P | 4P 5P 8P 4P
testDVCertificate.js 2P 3P 5P 2P 2P P 3P | 6P | TP 4P 4P 4P
testEnablePrivilege.js 3P 5P 5P 5P 3P 5P 5P | 5P | 3P P P 5P
testIdentityPopupOpenClose.js P P 3P P P P 5P | 6P P 4P 6P P
testSSLDisabledErrorPage.js 9P 2P 5P P 3P 5P 6P | 5P | 6P 5P 3P 5P
testSubmitUnencryptedInfoWarning.js | 2P 9P 2P 5P 4P 2P 5P | 3P | 4P 5P 3P 6P
testUntrustedConnectionErrorPage.js | 4P P 5P 6P 4P 4P 5P | 2P P 4P 3P 5P
testCloseTab.js 2P 4P 2P 5P 2P 3P 9P | 3P | 3P 6P P 3P
testTabGroupNaming.js 3P 3P 4P 6P 5P - 2P | 4P | 3P 5P P 3P
testToggleTabView.js 4P P 5P 3P 2P 2P 5p | 6P | 5P 3P 3P 6P
testBackForwardButtons.js 2P 2P P 2P 6P 6P 6P | 3P | 5P 3P 5P 4P
testHomeButton.js 4P 6P 3P 5P 2P 5P 5P | 6P | 4P 8P P 6P

Table 5.1: Simulation of System Run

5.2.2 Simulation Results

Five trails of the simulation were run, each one lasting at least three hours. The

results of these runs are recorded in tables 5.1 through 5.5. The tables show 15

minute time slots. A P represents a passing test case for one of the clients during

that time period. F represents a failing test case for one of the clients. W means a
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Test [ 0:15 [ 0:30 [0:45 [ 1:00 [ 1:15 [ 1:30 [ 1:45 [ 2:00 [ 2:15 [2:30 [ 2:45 [ 3:00
Expected to Fail
firefoxBug_344189.js FWGP | G2P | 7P | 4P G4P | G2P | 2P | 2PG2P 2P 2P | 2PG | 2P
firefoxBug_306208.js 3P 3P 4P | 3P P 5P P 2P 4P 2P 4P P
firefoxBug_797945.js F W2P | 3P | 4P | 2PG2P | 2P 6P 3P P 4P 5P 3P
firefoxBug_808290.js 3P - P P 4P P P 2P 2P 6P 7P | 3PF
firefoxBug_840411.js 5P 4P 2P — 3P 4P 5P 5P PFWP | 2P | 2PGP | G
firefoxBug_442970.js 3P 5P 6P P 2P 3P 1P — 3P 5P 1P 2P
firefoxBug_505548.js 4P 2P 2P | 3P 2P 2P 3P 2P 3P 5P 3P 3P
Not Expected to Fail
testPopupsAllowed.js P P ‘ 5P ‘ FP ‘ PW2p ‘ PGP ‘ G5P ‘ 4PG3P 2P ‘ 3P ‘ 5P ‘ 3P
Does Not Fail

testGoButton.js P 5P 2P | 6P 4P — 3P 2P 4P 2P 4P P
testLocationBarSearches.js 4P 2P 2P P 6P 2P P 2P 3P 2P 2P —
testPasteLocationBar.js 3P 4P — 2P 4P 3P — P 2P 3P P 2P
testAddBookmarkToMenu.js 4P 3P 2P | 4P 4P 6P 5P 4P 3P 2P — 2P
testCloseDownloadManager.js 4P 2P 5P | 3P 3P 8P 2P 3P 5P 3P 5P P
testOpenDownloadManager.js 2P 3P 5P P 2P 4P 4P 5P 3P 4P 4P 4P
testAutoCompleteOff.js 4P 2P 3P P 6P 9P P P 5P 4P 3P 2P
testBasicFormCompletion.js 3P 4P 3P P P 4P 3P P 5P 3P 4P 4P
testClearFormHistory.js 2P 5P 5P | 2P - 2P 3P 5P 3P 2P 2P -
testDisableFormManager.js 3P 3P 8P | 6P 3P 4P 2P s P 2P PF P
testNavigateF'TP.js 3P 2P P - P 4P 6P 2P 3P 5P 3P 4P
testPopupsBlocked. js P 2P 5P - P 2P 3P 4P 6P 4P 3P P
testDefaultPhishingEnabled.js 2P 4P 3P | 6P 6P 5P P 4P 3P — 3P 2P
testDefaultSecurityPrefs.js 2P 2P 2P | 4P P P P 6P 2P 5P 2P 4P
testPaneRetention.js 5P P P 4P 3P 6P 2P 4P P 3P 2P 6P
testPasswordNotSaved.js 2P P 5P | 8P 3P 4P 4P 4P 4P 5P — 2P
testPreferredLanguage.js 2P 3P 3P | 2P 3P 3P 3P 4P 5P 2P 4P 4P
testRestoreHomepageToDefault.js 2P 2P - 2P 2P 4P 5P P 3P 4P 3P 2P
testSetToCurrentPage.js P 4P 3P | 6P 3P 4P 2P 2P 4P 4P P 2P
testSwitchPanes.js 4P P 2P — 6P P P P 2P 5P P —
testAddMozSearchProvider.js 4P 6P 6P | 2P 4P 6P 8P P - P 2P -
testOpenSearchAutodiscovery.js P 3P 5P P 4P 2P 5P 2P 3P 3P 5P 4P
testSearchViaFocus.js 2P 3P 3P P 3P P 3P 2P 3P P 3P 3P
testSearchViaShortcut.js 4P P 5P | 3P 3P 2P 3P 3P 3P 3P 3P 3P
testDVCertificate.js 3P 3P 2P | 4P 8P 3P 4P 2P P 5P 5P P
testEnablePrivilege.js - 2P 4P | 6P 2P 3P 3P 5P 2P 6P 4P P
testIdentityPopupOpenClose.js 2P 2P 2P P 3P 9P 5P 2P 3P - 4P 4P
testSSLDisabledErrorPage.js 3P 4P 3P | 3P 3P 3P 3P 3P — 4P P P
testSubmitUnencryptedInfoWarning.js 2P P 2P | 2P 4P — 2P P 2P 4P 4P 3P
testUntrustedConnectionErrorPage.js — 6P 2P P 3P 5P 2P 4P P 2P 2P 3P
testCloseTab.js 2P 2P 4P | 2P 3P 2P 2P 2P 5P 3P 2P 2P

test TabGroupNaming.js 2P P P - 4P 5P P 4P 4P 3P - P
testToggleTabView.js - 3P 7P | 3P 2P 3P 2P 2P - 3P 5P -
testBackForwardButtons.js P 2P 2P | 3P 3P 3P 3P — 3P 6P 4P 2P
testHomeButton.js 4P 3P 3P P 2P P 4P 6P P 4P P -

Table 5.2: Simulation of System Run 2
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Test 0:15 030 | 045 [100] 115 [1:30] 145 | 2:00 | 2:15 [ 2:30 [ 2:45 3:00
Expected to Fail
firefoxBug_344189.js FW 2P G2P2G | 3P P 6P 4P 8P P P P 3P
firefoxBug_306208.js P 6P P P 6P 2P P 4P 4P P 3P 2P
firefoxBug_797945.js FFWA 5P 4P 3P 5P 5P | 6PG 4P 4P 2PGP 5P PG3P
firefoxBug_808290.js 2P 4P 4P 5P — 4P 2P 6P 3P 6P 5P 2PFPWP
firefoxBug_840411.js 5P FPWT7P 5P 4P | 2PGPG4P | 8P | 6PGP | 2PGP 3P 3P 4P 2PGP
firefoxBug_442970.js 3P 6P P 4P 6P 6P 6P 4P 2P PF2P | NFPW 7P
firefoxBug_505548.js 6P 2P 3P 9P 5P 5P P 4P 5P 2P 4P 2P
Not Expected to Fail
testPopupsAllowed.js 4P 6P ‘ 4P ‘ 5P ‘ 5P ‘ P P ‘ 5PF ‘ PW3P ‘ 8P ‘ P 2P
Does Not Fail
testGoButton.js 5P 6P 3P 6P 5P 4P 2P 5P 2P P — 2P
testLocationBarSearches.js 5P 4P 6P 4P 2P P 4P 2P 5P 2P 5P 3P
testPasteLocationBar.js P 3P 5P 4P 2P P 9P 3P 3P 4P 3P 10P
testAddBookmarkToMenu.js 4P 3P 5P 5P 5P 4P 6P 3P 3P P P 5P
testCloseDownloadManager.js 4P 4P 3P 9P P 4P 8P 2P 4P 2P 3P 4P
testOpenDownloadManager.js P 3P 5P P 4P P 4P 4P 4P 4P 6P P
testAutoCompleteOff.js 4P 4P 2P - 5P 5P 2P 6P 3P 2P 6P 6P
testBasicFormCompletion.js P P P 4P 2P 5P 4P 4P 5P P 2P 2P
testClearFormHistory.js 4P 2P 3P 4P 8P 3P 5P 2P P 4P 2P 6P
testDisableFormManager.js 4P 4P 4P 4P 8P 5P 5P 3P 4P 2P 9P 5P
testNavigateFTP.js 6P 3P - — 5P 3P 3P 2P 6P 4P 3P 6P
testPopupsBlocked.js 2P 4P 4P P 5P 5P P 2P 3P 4P 4P 3P
testDefaultPhishingEnabled.js 3P 4P 4P 4P 4P 3P 4P 2P 9P 4P 5P P
testDefaultSecurityPrefs.js 3P 3P 8P 5P 5P 3P 6P 5P 2P P P 5P
testPaneRetention.js P 5P 2P 3P 5P 5P 5P 6P 5P 4P 5P 2P
testPasswordNotSaved.js - 4P 2P P 4P 3P 2P 3P 3P 2P 3P 6P
testPreferredLanguage.js 4P 2P P 9P 2P 3P 2P 4P P 4P 3P -
testRestoreHomepageToDefault.js 3P 8P 4P 3P 4P 4P 4P P 2P — 3P P
testSetToCurrentPage.js 4P 4P 5P 3P 4P 4P 6P 5P 6P 5P P 3P
testSwitchPanes.js 3P 3P 4P 13P 2P 2P 4P 4P 5P 2P 2P 4P
testAddMozSearchProvider.js 3P 6P P 4P 6P 3P 4P P 3P 4P P 6P
testOpenSearchAutodiscovery.js 6P 4P 3P - 8P 8P 3P 5P 5P 2P P P
testSearchViaFocus.js 2P - P - 2P 2P 5P 2P 3P 3P - 2P
testSearchViaShortcut.js - 4P 4P 3P P 5P 9P P 5P 2P 7P 3P
testDVCertificate.js 6P 6P P 5P P 4P 5P 2P 5P 6P 8P -
testEnablePrivilege.js P 2P 5P 3P 4P 2P 2P 3P 4P 5P 6P 3P
testIdentityPopupOpenClose.js 3P 3P 6P 3P 3P P 2P 6P 3P P 2P 3P
testSSLDisabledErrorPage.js 6P 4P 5P 2P 6P 6P 2P 8P 6P 2P 4P 2P
testSubmit UnencryptedInfoWarning.js P 4P 5P 3P 8P 3P P 4P P 6P 10P 4P
testUntrustedConnectionErrorPage.js 3P 5P P 4P P 3P 3P 6P 3P P P 6P
testCloseTab.js 4P 4P 5P 6P P 6P 2P 5P 6P 3P 5P 6P
test TabGroupNaming.js P 5P 9P 2P 2P 5P 6P 5P 4P 4P 3P 5P
test ToggleTabView.js P 4P 3P 6P 3P 2P 3P 3P 3P 3P P 4P
testBackForwardButtons.js 2P 4P P 5P 3P 6P 3P 5P 3P 2P 4P 3P
testHomeButton.js 2P 4P 5P 2P P 4P 5P 3P 2P 3P 2P 4P

Table 5.3: Simulation of System Run 3
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Test 0:15 [ 0:30 [ 045 | 1:00 [LI5] 1:30 [ 1:45 | 2:00 2:15 2:30 | 2:45 [3:00

Expected to Fail
firefoxBug_344189.js FWP | G5P 3P 5P P 4P | G4P 3P 6P 4P 4P 6P
firefoxBug_306208.js P 3P 5P 6P 5P 8P PF | PW3P P 4P 4P 2P
firefoxBug_797945.js 2FWA | PG4P | 4PG | 6PG2PG | 6P | 2G2P | 5P 2PG | 2PG2PG 6P 4P 2P
firefoxBug_808290.js P 2P 6P P 4P 5P 2P 4P P 3P 5P 2P
firefoxBug_840411.js 2P 4P 3P 5P 2P 9P 2P 2P 3P 3P 3P 4P
firefoxBug 442970.js 4P 3P 2P 3P 6P 5P 3P 5P P 3P — 3P
firefoxBug_505548.js P 3P 2P 5P 3P 4P - 4P P 6P - P

Not Expected to Fail

testOpenSearchAutodiscovery.js P 3P 3P P — 4P 3P 3P 3P 2PF2P | W5P | 3P
testClearFormHistory.js P 5P 3P 4P 5P 5P 5P 2PF WP 3P 3P 6P
testAutoCompleteOff.js 5P 3PF | PN2P 2P 4P P 4P 5P 5P 4P 5P 4P

Does Not Fail
testGoButton.js P 3P 4P 4P P 4P 5P 2P 3P 4P 3P 2P
testLocationBarSearches.js P 4P 4P 9P 3P 3P 5P 2P — 2P P 8P
testPasteLocationBar.js 2P 3P 6P 3P 2P 3P 4P 3P 6P P 2P 4P
testAddBookmarkToMenu.js - 4P 2P 3P P 4P 3P 2P 4P 2P 6P 5P
testCloseDownloadManager.js P P 5P 2P 3P 3P 4P 3P 3P 3P 4P 5P
testOpenDownloadManager.js P 3P 5P P 4P 2P 4P 3P P 3P 4P
testBasicFormCompletion.js P 3P 3P 2P 5P P P 3P P 2P P 5P
testDisableFormManager.js — P 3P 5P 4P P 2P P 2P 2P 2P 3P
testNavigateFTP.js P 2P 5P P 3P 4P 3P 3P 4P 9P 3P 6P
testPopupsAllowed.js 2P 6P 6P 4P 6P 4P 3P — 5P 5P 3P 3P
testPopupsBlocked.js 3P 5P 2P 3P 6P 2P 2P P 2P 2P 3P —
testDefaultPhishingEnabled.js - 5P 6P 4P 2P 3P 3P 4P 4P P 6P 2P
testDefaultSecurityPrefs.js 2P P 3P 3P 3P 4P 4P 2P 3P 4P 5P 6P
testPaneRetention.js P 2P P 3P 9P 4P 2P 2P 4P 2P 2P 3P
testPasswordNotSaved.js - 5P 4P 6P 3P 2P P 3P 3P P 2P 5P
testPreferredLanguage.js P P 5P 6P 4P 4P 3P P P 2P 3P —
testRestoreHomepageToDefault.js P P 2P 2P 4P 4P 4P 5P 3P P 4P 4P
testSet ToCurrentPage.js 2P 3P 5P 6P 2P 2P P 4P 3P 2P 2P 2P
testSwitchPanes.js - 3P 4P 5P 4P 5P - 2P 4P 3P 3P P
testAddMozSearchProvider.js 3P 8P 5P 4P 3P 3P - 4P 4P 2P 5P 3P
testSearchViaFocus.js P 4P P 2P 3P P P 2P 4P 2P - 2P
testSearchViaShortcut.js 2P P 5P 5P 6P 4P 2P P P P 2P 2P
testDVCertificate.js - 4P 4P 3P 4P 3P 3P 5P 3P 2P 3P 2P
testEnablePrivilege.js 2P 9P 4P 3P 5P 6P 4P 3P P 3P 3P 4P
testIdentityPopupOpenClose.js 2P 6P 3P 3P 3P 3P P — 2P P 5P 4P
testSSLDisabledErrorPage.js - 4P P - 5P 3P 2P 3P 5P P 6P P
testSubmit UnencryptedInfoWarning.js - P P P 3P 5P - - 2P 2P 6P 6P
testUntrustedConnectionErrorPage.js — P 4P 5P 2P 5P P 6P 6P 3P 3P 3P
testCloseTab.js P P 3P 4P 6P 3P 3P P 4P 2P 3P P
test TabGroupNaming.js - 8P P 5P 2P 3P 5P 2P P 4P 3P 4P
test ToggleTabView.js 2P 5P 2P 3P 2P 8P 4P 2P 3P P — 4P
testBackForwardButtons.js 3P 6P 4P 4P 8P 6P 2P 2P - 2P 3P 9P
testHomeButton.js P 5P 6P 6P 4P 5P P P 6P 3P 2P 2P

Table 5.4: Simulation of System Run 4




Test [ 0:15 | 0:30 [045] 1:00 [1:15]1:30 [ 1:45 ] 2:00 [ 2:15 [ 2:30 [ 2:45 [ 3:00
Expected to Fail
firefoxBug-344189.js FW 2P 2P P P 2p | 3P 3P G | 3P | 5P | 3P
firefoxBug_306208.js F FWAPG | 3P P PG | 4P | 4P 4P 2P | PG| 2P | 6P
firefoxBug_797945.js FWPG G 5P 3P 4P | 2P | 2P 2P 4P | 3P | 3P | PG
firefoxBug_808290.js - P P 2P P 4P P | PFW | 2P | 3P P —
firefoxBug_840411.js 3P 2P 5P | FPW2P | 3P — 6P P PG| — 3P | PG
firefoxBug_442970.js 3P - 2P P 2P 2P 2P 2P P 3P 2P 4P
firefoxBug_505548.js — 3P 4P 3P 4P | 2P - P 2P | 2P P 2P
Not Expected to Fail
testOpenSearchAutodiscovery.js P P 6P 5P 3P | 2P | 3P 2P 5P | PF | W3P | 2P
testSSLDisabledErrorPage.js FP PA - 2P 3P | 2P | 2P 5P 4P P 3P 3P
testUntrustedConnectionErrorPage.js FN P 3P 4P 3P P 2P P 2P | 3P 2P 2P
Does Not Fail
testGoButton.js P 2P 3P 3P 2P | 2P | 2P 4P P — P 3P
testLocationBarSearches.js P 2P 6P 3P 3P | 2P | 3P - P - 2P —
testPasteLocationBar.js P 2P 4P 3P 3P — 3P 2P 3P | 2P P P
testAddBookmarkToMenu.js - 2P 6P 4P 3P | 2P P 4P - P 2P P
testCloseDownloadManager.js P 3P 3P - 2P | 4P P 2P 3P | 5P — 3P
testOpenDownloadManager.js P 2P 4P 3P 2P P 3P P 4P - 2P 4P
test AutoCompleteOff.js — 2P 3P 5P 2P | 2P - 2P 3P P 3P 3P
testBasicFormCompletion.js P P 5P 2P P 6P P 6P 3P | 3P P 6P
testClearFormHistory.js 2P — 3P 2P 2P | 3P P P 5P P 2P P
testDisableFormManager.js P 3P P 2P 2P | 5P P P 2P | 5P - P
testNavigateFTP.js 3P 4P 2P 4P — P 2P - 5P P P 2P
testPopupsAllowed.js P P — P 2P | 4P | 3P P 3P — P 3P
testPopupsBlocked.js — 3P 2P 3P 3P | 5P | 3P 2P 2P | 2P P P
testDefaultPhishingEnabled.js P P 4P 2P 2P | 3P | 3P - 2P | 3P - 3P
testDefaultSecurityPrefs.js P P 2P 2P P 2P - P 3P - P 6P
testPaneRetention.js P 2P 2P 3P 2P | 3P P P 4P | 2P 3P 3P
testPasswordNotSaved.js 3P 2P 3P 3P 3P | 3P | 4P P 3P | 2P 5P P
testPreferredLanguage.js — 3P 4P — — — 2P 3P 2P | 3P 2P —
testRestoreHomepageToDefault.js 3P 3P 2P 4P P 4P | 2P P P P 3P -
testSet ToCurrentPage.js P 2P 2P 3P P 5P | 5P 3P P 3P 3P 3P
testSwitchPanes.js — 3P 3P 2P — 2P | 4P P 2P | 2P 2P 3P
testAddMozSearchProvider.js P P 2P 2P P 2P | 4P P 3P | 2P - 5P
testSearchViaFocus.js P - - - - - - - - - - -
testSearchViaShortcut.js P 3P 4P 4P 3P | 3P | 3P 2P P 2P - 2P
testDVCertificate.js 2P 2P 6P 3P - 2P - 2P 3P | 5P 2P P
testEnablePrivilege.js — 3P 2P P 5p | 6P | 2P 3P P 3P 2P 3P
testIdentityPopupOpenClose.js P 4P P 3P — 4P P P 2P | 3P 6P 2P
testSubmitUnencryptedInfoWarning.js — 2P 8P 2P 3P | 5P P P - 2P 3P P
testCloseTab.js 3P — 2P P 4P | 4P P — 3P | 2P P P
testTabGroupNaming.js P 2P P 4P — P — 3P 2P P 3P 2P
testToggleTabView.js P 2P 4P 2P 6P | 3P | 2P P 4P P P 2P
testBackForwardButtons.js P P P 2P 2P P 3P 3P P P 4P —
testHomeButton.js P 4P 3P 2P 2P P 3P P 2P P - -

Table 5.5: Simulation of System Run 5
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workaround was discovered, A means a workaround had already been discovered, and
N means a workaround was not discovered. A number in front of the letter indicates
how many times this even occured (e.g. 5P means a test ran and passed 5 times in
that time slot). The first section of the table presents the results from the Mozmill
we added to the test suite. These are tests that we expect to fail at some point
during the simulation. The second section presents Mozmill test cases that were not
expected to fail, but did (and were reproducible). Finally the last section is made up
of the Mozmill tests that were not expected to and did not fail.

Bug 344189 and bug 797945 fail with the default configuration. It is possible that
the clients will mutate to a safe configuration for these bugs randomly, but the odds
are that the first time the bugs are encountered they will fail, and the search for a
workaround will begin. This is what we see from the simulation results as the first
time the bugs are seen the symbol is F. There is only one other time when a bug
fails the first time it is encountered and that is on system run 5. Bug 306208 fails the
first two times it is seen. Investigation into this shows that two of the clients were
simply unlucky with their pick of starting configuration.

The other bugs seem to be hit randomly throughout the simulation, which is what
we would expect. As changes are made to the configuration each time a test is called
the likelihood of mutating into an unsafe state and then calling a failing test case
increases. However, the system works as designed by detecting the failure, finding
the workaround, and then deploying it to all clients so that the guard can be used to
avoid hitting the failure in the future. We see this as once a W has been seen for a

simulation there are no cases where a F' is then seen.



83

5.2.2.1 Expected Workarounds

Of the seven Firefox bugs over the course of the five, three hour simulation runs,
workarounds were found for six of the bugs. No workaround was ever found for bug
505548, however this can be explained by looking at bug 442970. A workaround for
bug 442970 will create a guard to prevent a client from setting browser.startup.page
to 3. Because browser.startup.page set to 3 is one of the two configuration options
necessary to cause bug 505548 to fail, the test cannot fail once a workaround for bug
442970 is found.

The system was double checked by forcing a client to only test bug 505548. After
running for a while it eventually saw the failure, and the failure avoidance algorithm
was able to find a workaround for the failure. Because the two options necessary
are both reconfigurations from the starting configuration it makes sense that the
likelihood of hitting the failure for bug 505548 is much less then bug 442970. This
does however show that easier to find failures can result in workarounds that guard
against harder to discover failures and confers with the locality result of Garvin et
al. [25].

Obviously the failures that require a default configuration option are discovered
first. In every simulation at least one of the clients will test the bug before reconfig-
uring to a safe state. For the other Firefox bugs it is random. Not only does a client
have to be in the right configuration, but it then has to call the right test to see the
failure. It is entirely possible that a client configures to a dangerous state, and then
reconfigures out of it before the test is called. Despite this at least one of the non
default failing test cases is encountered in each of the three hour simulations.

In simulation three, shown in Table 5.3 a failure for bug 442970 is encountered,

but no workaround is found. Later on, however, that failure is encountered and
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a workaround is found. The failure avoidance algorithm is using the 10 iteration
random with a minimizer that stops after a workaround is found. From our earlier
gece tests we know there is a chance that each of the randomly chosen configurations
might not contain the necessary reconfiguration for a workaround. This shows that
the random algorithm cannot be guaranteed to succeed, and gives evidence for using

a more systematic algorithm, such as a covering array, in the future.

5.2.2.2 Unexpected Workarounds

From the beginning of building the simulation we were expecting to see failures other
than those planned. Running on sandhills adds an extra level of complexity and more
ways for things to go wrong. To start with we deal with the tests that fail and can’t be
replicated. These we would actually expect to see in a real system as not every failure
will be replicable. There are also Mozmill failures that occur during test teardown.

If a Mozmill test fails and the failure is not replicable then the reason for the
failure remains unknown. It is possible that the unknown failure could occur during
the replication test, which would make the failure avoidance algorithm think the
test can be replicated and a workaround should be searched for. Now if a random
configuration is generated and the test is run it passes, the failure avoidance algorithm
is going to think it has found a workaround and minimize it. The minimal workaround
is just going to be whatever the delta algorithm minimizes to as the test should pass
on any of the configurations.

This leads to a workaround that is deployed, but isn’t really a workaround and
the guard is now blocking what should be a safe configuration. We knew it would be
possible to see these workaround false positives, especially as the length of running
the simulation increases. Checking them at the end of running the simulation has

lead to interesting results. Not all of them are false positives.
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The Mozmill test testFormManager/testClearFormHistory.js failed during simu-
lation run one shown in Table 5.1. It was replicable, and a workaround was found.
To determine if it was a false positive we used the failing configuration given by the
client and reran the test. The result was a failure, so it was at least replicable. The
next step was to apply the workaround and test the result. The workaround found
was the configuration option browser.formfill.enable is set to true. Rerunning the test
with the workaround applied avoided the failure. This is a success for our system,
as we were not expecting to find workarounds for failures that we did not put into
the test suite. We knew it was a possibility, but we found that the failure avoidance
works not only for failures found in the Mozilla bug repository, but also unexpected
failures in the Mozmill test suite.

Another Mozmill test testPopupsBlocked.js also failed in simulation one and had
a workaround found. The workaround for that failing test case is javascript.enabled
set to true. Like the previous test case this can be verified, and as an added bonus
the same failure and workaround is detected on multiple simulation runs. Changing
javascript.enabled to false will cause testPopupsBlocked.js to fail.

As expected not all workarounds found were true workarounds. For the long
simulation run, Mozmill test testAddMozSearchProvider.js failed and a workaround
was found. A rerun of that test using the failing configuration returns a pass. The
failure cannot be replicated reliably, and the workaround is a false positive. These
types of failures and workarounds represent one of the largest problems to overcome,
as a false positive can add features to the guard that are not protecting against
failures.

You can see another example of this in simulation run five shown in table 5.5. The
Mozmill test testSSLDisabledErrorPage.js results in a failure the first time it is run,

however the response given by the Framework is that a workaround has already been
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Tests Simulation 1 | Simulation 2 | Simulation 3 | Simulation 4 | Simulation 5 | Long Simulation

testPlockupsBlocked.js w - - -
testPopupsAllowed.js - W W - - W
testClearFormHistory.js W - - W - W
testSSLDisabledErrorPage.js - - - - A(FP) -

testAddMozSearchProvider.js w - - - - A(FP)
testOpenSearchAutodiscovery.js - - - W W -

testRestoreHomepageToDefault.js - - - - - W(FP)

Table 5.6: Unexpected Workarounds Discovered

found. The test was run by us using the given failing configuration and it passed.
This shows the the failure was not replicable, however it did fail during the system
run. In addition it must have failed during the replicable check done by the master
before. Once the test is determined to replicable the master will check to see if any
previously discovered workarounds will suffice. In this case the test passed, but not
because of the workaround. The framework will inform the client that a workaround
has already been discovered for that failure and that it can continue on.

The results of the unexpected workarounds where a workaround was found are
shown in table 5.6. For the five simulation runs there were six Mozmill tests with
unexpected workarounds. For these six tests 5 workarounds were discovered. Looking
at these workarounds 2 were not true workarounds. Of these one was a workaround
that had already been found. This leaves us with one false positive workaround. This
workaround results in additional guards for good configurations that are not necessary.
There is also a case where an unexpected workaround serves as a workaround for
multiple tests. Both test testPlockupsBlocked.js and testPlockupsAllowed.js fail when
javascript.enabled is set to false. Because of this once one has failed and has a
workaround discovered the other will never fail. testAddMozSearchProvider.js and

testOpenSearchAutodiscovery.js also share a workaround.
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5.2.2.3 Guard Activation

In each simulation run we see that the guards will appear after a workaround has been
found. This is expected as a failure cannot be guarded against until the workaround
is discovered. There are some cases where a test will fail multiple times, and this
is attributed to different clients encountering the same failure. In this situation the
client who encountered a failure first will receive that a workaround was found and
the second client will receive that a workaround already exists. After the workaround
has been found no additional clients will encounter the error.

An activated guard will be tied to the failing test case that led to its discovery.
Because of this the guard may be preventing additional failures, but only gets credit
for stopping a client from avoiding the initial failure. For example in the case of bug
442970 the guard is also avoiding seeing the failure in bug 505548 as the reconfigu-
ration being blocked is necessary to encounter that bug. This means that every time
the simulation shows that the guard was being activated for bug 442970, it is also
preventing bug 505548.

For each of the simulations once a workaround is found the test case will no longer
fail. There are cases where some guards are used more frequently then others, however
because seeing the guards requires a random reconfiguration this can be attributed
to randomness. The only case where the guard is causing a problem is in the case
of false positives. If the workaround given for a false positive is one that is already
discovered then there is no issue as no new guard information is discovered. However
in the case where a new false positive workaround is discovered the guard will now

be blocking a safe reconfiguration.
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Test workaround Found | workaround Not Found | workaround Already Found | notReplicated | Overall
SystemRunl 7.48 N/A N/A 2.00 4.74
SystemRun2 7.95 N/A N/A 1.60 4.78
SystemRun3 6.13 11.88 4.65 1.58 6.06
SystemRun4 8.43 7.32 5.18 1.17 5.53
SystemRun5 7.22 N/A 6.03 1.73 4.99

Average 7.43 9.60 5.28 1.62 5.98
‘ LongSystemRun6 ‘ 9.18 ‘ 16.22 ‘ 9.93 ‘ 1.75 ‘ 9.27 ‘

Table 5.7: Average Time from Failure to Response (min)

5.2.3 Response Time

The response time for each simulation was measured as well and is shown in table 5.7.
The response time is the time it takes once a client reports a failure for the master to
send a response back. There are four types of responses checked. workaround found
when a workaround is discovered, workaround not found for when no workaround
is discovered, workaround already found for when an already found workaround will
avoid the failure and not replicated for when the test passes run under the same
configuration it failed on earlier.

The results from the response time table show that the average time to learn that
a workaround has been found is almost seven and a half minutes. This is less then
the average time to learn that a workaround is not found, at just over nine and a
half minutes. For a workaround not found response, the algorithm must check all ten
iterations of the random algorithm. Because the workaround found response time
is two minutes less then the workaround not found time we can conclude that the
additional time cost by using the minimizer is more then made up by stopping at the
first workaround found.

Being stuck in a queue will also increase the time to get a response. If a client is
stuck in a queue waiting for a response, and the algorithm is currently trying to find

the workaround for a similar bug, it is possible that the workaround can be reused
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without rerunning the test. This means that even though a client was stuck in the
queue they can receive a faster response then the client that was in front of them.
This is shown by the fact that the workaround already found average response time is
two minutes less then the workaround found response at only five and a half minutes.

The first thing the failure avoidance algorithm tries to do before anything else is
replicate the failure. If the failure cannot be effectively replicated then a workaround
cannot be discovered. The algorithm takes the configuration from the failing test
case, and reruns the test checking the result. If it passes then the test is considered
not replicable and a not replicated result is returned to the client so they can move
on. An average time for response of less then two minutes was reported.

Overall, for five runs of the simulation over the course of three hours, each the
average time for a response was less then six minutes. We compare this to the results
of the long simulation run (described next) and it shows an increase in time for
response. The overall time to a response for the long system run takes over nine
minutes. This is an increase in about 60% from the earlier response. This is mostly
due to an increase in the response time for workarounds not found, which makes sense
as there were a lot more workaround not found results in the long simulation which
increases the odds that a queue will form and the response for the last client in the
queue will be workaround not found.

These response times are heavily tied to the queue, which means that as the
number of clients increase, the odds of a longer queue and longer wait times increase as
well. Improving the response time can be done in two ways. The first is to get a faster
response by using an algorithm that returns a workaround found or workaround not
found response quicker. The second is to add additional failure avoidance algorithms
that can run in parallel. This would allow the failure avoidance framework to handle

multiple simultaneous failures encountered by the clients.
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Test [ 2:00 | 4:00 | 6:00 ] 8:00]10:00 | 12:00 [ 14:00 [ 16:00 | 18:00 [ 20:00 | 22:00 [ 24:00
No workaorund Found

testGoButton.js - - - - - - - - - - FN
testCloseDownloadManager.js - FN - - - FN - — - - FN
test AutoCompleteOff.js - — FN — - — - — - — — -
testDisableFormManager.js — - - - F NFN | FN — FN = — -
testOpenSearch Autodiscovery.js - - FN - - - - - - - -
testDefaultSecurityPrefs.js FN - - - - - - - - - -
testSearchViaFocus.js - - - FN - — - - - - -
testSSLDisabledErrorPage.js — FN - - - - — - — - - -
testHomeButton.js — — — — — FN — — — — -

Workaorund Found

firefoxBug_344189.js 2FWAG G 2G G G — — 2G — G 2G
firefoxBug_-306208.js 2FWAG | 3G - 5G | 3G — G 4G 2G — 3G 2G
firefoxBug_797945.js 2FWAG | 2G - G - G G — G G 3G -
firefoxBug_808290.js - - FWG | 5G 2G G 2G - 3G 2G - 2G
firefoxBug_840411.js - FW 4G G - - - - - - G -
firefoxBug-442970.js F WG G 4G G 2G 2G G G B) G B
testClearFormHistory.js FWG 3G - 5G B G G 3G 3G 2G G 3G
testPopupsAllowed.js - F W2G | 2G G 4G G G 3G G 2G 4G
testAddMozSearchProvider.js 2G FWF | A2G | 4G | 2G ¥ — 3G - 3G 3G -
testRestoreHomepageToDefault.js - - - - - — FW G G - 5G

Table 5.8: Simulation of Long System Run

Result 0:00 | 2:00 | 4:00 | 6:00 | 8:00 | 10:00 | 12:00 | 14:00 | 16:00 | 18:00 | 20:00 | 22:00
Failure 9 5 3 1 2 1 3 1 1 0 0 2
WorkaroundFound 4 3 2 0 0 0 0 1 0 0 0 0
WorkaroundNotFound 1 1 1 1 2 3 0 1 0 0 2
GuardActivated 6 9 11 29 11 11 8 12 16 11 15 19

Table 5.9: Simulation of Long System run Overall

5.2.4 Long Simulation Overall Results

We also ran a longer simulation. The long simulation ran for 24 hours. The tests
that encountered a failure are displayed in Table 5.9. During this experiment, six
of the seven Firefox bugs had workarounds discovered. The one that did not have
a workaround discovered was bug 505548 which makes sense as that bug was being
guarded by the workaround found for bug 442970. This shows that the failure avoid-
ance framework is working as intended and it shows that given enough time all of the
expected workarounds will be discovered. We also see that the guard is working and
prevents any of these failures from reoccurring once the workaround has been found.

In addition there were workarounds discovered for an additional four failing tests.
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Two of these were true workarounds, while the other two are false positives. There
were also 14 no workaround found responses for eight Mozmill tests. The increase in
failures might be due to the configuration that the clients are using. However, if the
configuration is responsible we would expect the failure avoidance algorithm to find a
workaround. The other possibility is that as the test goes on there is a larger chance
for timing issues or file corruption within sandhills.

Looking at a graph of the overall results shown in Figure 5.1, we see how the
number of failures decreases as time goes on, eventually hitting a point where it
overlaps with the no workaround found line. This represents a point where each
failure does not produce a workaround. The graph has three lines. One for number
of failures, one for workarounds found and one for workarounds not found. This data
shows that during a run of the simulation, all of the known failures are avoided within
the first eight hours, and only one additional workaround is discovered after another
16 hours. There are however, a number of failures where no workaround is found
during the entire simulation. Understanding and reducing these failures is a large
part of future work.

The number of guards activated during the long simulation are shown in Figure
5.2 Looking at the rate of which the guard is activated it seems that the number
increases as the test goes on, and then jumps to its highest point once the majority
of workarounds are found. This makes sense as a big part of hitting a guard is luck
when dealing with random reconfigurations. A larger number of workarounds found

means a greater chance of hitting a bad configuration and forcing a guard to activate.
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Test [ 200 [ 4:00 | 6:00 | 8:00 [ 10:00 [ 12:00 [ 14:00 | 16:00 | 18:00 | 20:00 | 22:00 | 24:00
No workaorund Found
testGoButton.js — - — - - - — - — - - FN
testCloseDownloadManager.js - - FN — — - - — - — - —
test AutoCompleteOff.js - - FN — — — — — — — — -
testDisableFormManager.js - - - - F N — - — - - -
testOpenSearch Autodiscovery.js — — - FN - — - — - — - —
testDefaultSecurityPrefs.js FN - - - - - - - - - - -
testSearchViaFocus.js - - - - FN - — - - - - -
testSSLDisabledErrorPage.js — FN — - - - — - — - - -
testHomeButton.js — - — - — - FN - — - — -
Workaorund Found
firefoxBug_344189.js 2FWAG - G 2G G G - — 2G — G 2G
firefoxBug-306208.js 2FWAG | 3G — 5G | 3G — G 4G 2G — 3G 2G
firefoxBug-797945.js 2FWAG | 2G - G — G G — G G 3G -
firefoxBug 808290.js — — FWG | 5G | 2G G 2G — 3G 2G - 2G
firefoxBug_840411.js - FW 4G G - - - - - - G -
firefoxBug-442970.js F WG G 4G G 2G 2G G G G G G
testClearFormHistory.js FWG 3G - 5G G G G 3G 3G 2G G 3G
testPopupsAllowed.js - F W2G | 2G G 4G G G 3G G 2G 4G
testAddMozSearchProvider.js 2G FWF | A2G | 4G | 2G G - 3G - 3G 3G -
testRestoreHomepageToDefault.js - - - — — - - FW G G - 5G
Table 5.10: Simulation of Long System Run with Unique Failures
Long Simulation Run Unique Failures Results
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Figure 5.3: Simulation of Long System Run with Unique Failures Graph
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5.2.4.1 Long Simulation Overall Results for Unique Failures

Looking at the failures in 5.9 there are some failures that occur multiple times for the
same test. It can be assumed that these are really the same failure, being encountered
again, rather then a new failure. If this is true then the graph will look slightly
differently because we can remove the duplicate failures. Removing these duplicate
failures results in table 5.10.

The new graph shown in figure 5.3 has a more obvious drop in failures, and the
number of failures found after 14 hours of run time is only one. This graph shows
how after a period of time the simulation will reach a steady state, where very few
failures are encountered, and those that are have no workaround. In the case of the

long simulation the steady state is reached after 14 hours of runtime.

5.3 Discussion of Results

The number of unexpected workarounds was surprising. The unexpected workarounds
that are not false positives show us that the failure avoidance framework does work,
since these faults are native to the system and not seeded (as our original seven failing
test cases are).

The choice of the random algorithm, 10 iterations, was made to keep the cost of
failure avoidance low. However, we believe that the covering array has the potential
perform better based on the results from the GCC study. We plan to investigate this
as future work. The framework is designed to be interchangeable with regards to how
the workarounds were found, which means that adapting the covering array for the
Firefox simulation is easy. For future work this would seem to be the better option,
as any cases of a workaround not being found using the covering array will always

return workaround not found. Using the random it is possible that a series of unlucky
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Tests Simulation 1 | Simulation 2 | Simulation 3 | Simulation 4 | Simulation 5 | Long Simulation
firefoxBug_344189.js W W W W W W
firefoxBug_306208.js - - - w W W
firefoxBug_797945.js W W W W W W
firefoxBug_808290.js - - W - W W
firefoxBug 840411.js - W W - W W
firefoxBug_442970.js - - W - - W
firefoxBug_505548.js - -

Table 5.11: Expected Workarounds Discovered

configuration choices will prevent a workaround from being found.

5.4 Summary

For research question one we asked if the failure avoidance framework can find all of
the expected workarounds. The results for expected workarounds found are shown
in Table 5.11. Over the course of the five three hour simulations six of the seven
expected workarounds are found. Simulation three and simulation five find the most
workarounds at five each. Simulation four and simulation two each find three, while
simulation one only finds two expected workarounds. This can be attributed to the
random nature of the simulation. Finding the expected workarounds requires a client
to be in a dangerous state and run the appropriate test. Given more time, the odds
of this happening increases. The long simulation finds six of the seven expected
workarounds within the first six hours.

We can answer question one in the affirmative, as even though no workaround
was found for bug 505548 this can be attributed to the fact that once a workaround
was found for bug 442970 then bug 505548 will never fail. Even in the relatively
short runtime of three hours the bugs that fail on the default configuration will have
a workaround discovered, and at best all but one of the bugs will have a workaround
discovered. Increasing the time shows that all of the expected workarounds can be

discovered during a single simulation with four clients.
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For research question two we asked if the guard is effective at preventing future
workarounds. The guards are activated in each simulation once a workaround has
been discovered. Over the course of the five simulations in Table 5.1—5.5 there are
24 cases where a workaround is discovered for some failure. In all 24 cases the test
does not fail again during the simulation. The long simulation in table 5.9 adds an
additional 10 workarounds discovered, and all 10 of those tests do not fail again once
the workaround is discovered.

The guard is preventing the clients from running a test while in a potentially
unsafe configuration. The tests are run and passed after the workaround has been
discovered, so it is not as if the failure is not encountered simply because the test
isn’t being run. There is also no case where a failing test is seen three times before a
workaround is discovered. With four clients the maximum number of times a failure
is seen before a workaround is found is two, which means that during the course of
all simulations no more then two clients are ever inconvenienced by a single failing
test case.

We can answer question two in the affirmative, as once a workaround is discovered
for some test there is no case where the test fails again. The guard has a 100% success
rate during the simulation of preventing seeing the same failure again. There is also
the fact that a guard can be preventing additional failures from occurring, such as in
the case with bug 442970 and bug 505548 and in the case with testPopupsBlocked.js
and testPopupsAllowed.js. Finding a workaround for one of the test pairs will serve as
a workaround for the other, and the guard is effectively preventing seeing a previously

discovered failure and one that has not yet been seen.
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Chapter 6

Conclusions and Future Work

In this thesis we implemented an extension to Rainbow which allows the self adaptive
framework to avoid failures by automatically finding workarounds in the configuration
space. We call this the Failure Avoidance Framework. Finding the workarounds is
done by using a modified version of the failure avoidance algorithm, which is no longer
bound by a one or two-hop algorithm.

In extending the failure avoidance algorithm we discovered additional workarounds
for gce bugs beyond the two-hops that had previously been found. These workarounds
go up to five hops away from the starting configuration. There are also bugs that
did not have a one or two-hop workaround, but do have a three-hop workaround.
Three new techniques were tried. A genetic algorithm, random with minimizer, and
covering Array with minimizer. From these techniques, the genetic algorithm was
shown to be not as good at finding multiple algorithms, and the problem does not
have a simple fitness function. The random technique performed well, but by nature
cannot guarantee the same results every time, which leads to the possibility of missing
workarounds. The covering array is hampered by configuration masking at lower

strengths, but this can be mitigated by increasing the number of covering arrays or
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improving the strength.

The failure avoidance algorithm was implemented on sandhills and a number of
simulations were run to prove that the system works. A test suite was built using
Mozmill tests and a seven configuration bugs from the Firefox bug repository. Four
firefox clients were implemented which randomly change their configuration and then
randomly run a Mozmill tests during a simulation. If a test fails a probe records
the failure, a gauge changes the property in the failure avoidance framework model
which violates a constraint, this activates the adaptation manager which selects the
find workaround strategy. This strategy has a tactic which when executed calls an
effector and the effector runs a failure avoidance algorithm and updates the client
with the result. The process is repeated, and eventually all expected failures will be
encountered, and workarounds will be discovered which stops the failure from ever
being encountered again.

Beyond this the failure avoidance framework will also detect unexpected workarounds.
Four of these workarounds are false positives and the result is that the clients will be
guarding against safe configurations. Three of them however are not false positives
and are actual configuration based failures in the standard Mozmill test suite. This
shows that the failure avoidance framework can avoid failures beyond those we placed

in the simulation.

6.1 Future Work

With respect to the failure avoidance algorithm we wanted to take a look at additional
techniques. There has been a lot of work done on adapting covering arrays to large
configurable system. Omne of these methods is to introduce prioritization into the

algorithm that generates the covering array. This would steer the covering array to
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focus on particular feature options that are more likely to be involved in a workaround.
Using an understand of the target system we would be able to tailer the failure
avoidance algorithm and hopefully further improve its effectiveness and efficiency.

There is a large potential for future work in the area of automatic failure avoidance.
The simulation was run using the failure avoidance algorithm with random and the
minimizer, however the covering array performed very well on the gcc tests. We
want to see how well the covering array would work on the larger configuration space
of Firefox, and the results it has on the response time and number of workarounds
found. Particularly with the unexpected workarounds and the workaround not found
responses from the long simulation.

Another aspect of the failure avoidance framework is how multiple failure avoid-
ance algorithms could be adapted. The framework is currently limited by a single
failure avoidance algorithm. Further work could improve this system, so that depend-
ing on the type of error, or the client sending it, different failure avoidance algorithms
could be used. If the client wants an immediate response a very fast failure avoidance
algorithm is used. If only one client has encountered an failure and there is no queue
then a more effective algorithm could be used to find additional workarounds that
might help prevent future failures.

One of the problems we encountered during the simulation were the false posi-
tive workarounds. Understanding what causes the non replicable failure and reducing
these cases is a big part of future work. There is also the issue of failures where
no workaround is found. More research needs to be done on these failures to dis-
cover what is the cause of them. If a change in configuration is responsible for the
failure, then it would make sense that the failure avoidance algorithm should find a
workaround. This however is not the case and understanding why is big question.

Finally, we plan to continue to generalize the failure avoidance framework. RIght
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now it is still partially tied to the chosen Firefox target system. Even though the
target system can be swapped out, some of the existing code was specifically tailored
to integrate to Firefox. By using more general code we can make it even easier for the

failure avoidance framework to be adapted for a large number of different systems.
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Appendix A

Sandhills

Sandhills is a linux cluster that was used to run all of the experiments in this thesis.
Using sandhills we can deploy multiple jobs in parallel, which allows us to minimize
the time spent running tests. For the GCC tests the bugs were split into groups, and
each group could be run simultaneously with the results combined at the end. For the
Firefox tests each of the delegates and the master were deployed to their own node.
This allows us to simulate a system with 4 users and a master, while only using one

command on a single machine.

#!/bin/bash

#SBATCH --job-name=GCCBFMM

#SBATCH --nodes=3

#SBATCH --ntasks-per-node=5

#SBATCH --time=100:00:00

#SBATCH
--output=/work/esquared/jswanson/gccBFMM/gcc/results/isolation/BFMM_Results.STDOUT

#SBATCH
—-—error=/work/esquared/jswanson/gccBFMM/gcc/results/isolation/BFMM_Results.0UT

#SBATCH --mem-per-cpu=8172

#SBATCH --partition=esquared

srun ./startLocp.sh

Figure A.1: Example Code to Launch a Job on Sandhills
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#!/bin/bash
STNAME=‘hostname

IP=‘dig +short $HOSTNAME®
echo $SLURM_LOCALID

if [ "$SLURM_NODEID" -eq "O" ] ; then
for i in {0..4}
do
if [ "$SLURM_LOCALID" -eq "$i" ] ; then
NUM=$ [$i+1]
{ time ./mainDeployBFMM_4_4_0.sh $NUM ; } 2> results/isolation/4_4_0
fi
done
fi
if [ "$SLURM_NODEID" -eq "1" ] ; then
for i in {0..4}
do
if [ "$SLURM_LOCALID" -eq "$i" ] ; then
NUM=$ [$i+1]
{ time ./mainDeployBFMM_4_4_1.sh $NUM ; } 2> results/isolation/4_4_1
fi
done
fi
if [ "$SLURM_NODEID" -eq "2" ] ; then
for i in {0..4}
do
if [ "$SLURM_LOCALID" -eq "$i" ] ; then
NUM=$ [$i+1]
{ time ./mainDeployBFMM_4_4_2.sh $NUM ; } 2> results/isolation/4_4_2
fi
done
fi

Figure A.2: Example Code to Run Scripts in Parallel on Sandhills
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Appendix B

Mozmill

Mozmill is an add-on for firefox that automates the testing process. It uses test cases
written in javascript. It recreates the actions of a user and can check for events to
declare if the test passed or failed. There exists a test suite for Mozmill that can be
automated which makes it perfect for testing changes made to Firefox. If a Mozmill
test fails, then it can be said that some functionality of Firefox has been changed
from the expected. The mozmill tests use an assert or expected function to check for

functionality.
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/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// Include required modules

var
var
var
var

{ expect } = require("../../../lib/assertions");
places = require("../../../lib/places");
toolbars = require("../../../1lib/toolbars");
utils = require("../../../lib/utils");

const TIMEOUT = 5000;

const LOCAL_TEST_FOLDER = collector.addHttpResource(’../../../data/’);
const LOCAL_TEST_PAGE = LOCAL_TEST_FOLDER + ’layout/mozilla_contribute.html’;

var

setupModule = function() {

controller = mozmill.getBrowserController();
locationBar = new toolbars.locationBar(controller);

}

var

teardownModule = function() {

places.restoreDefaultBookmarks () ;

}

var

testFailure344189 = function() {
const Cu = Components.utils;

Cu.import("resource://gre/modules/Services. jsm") ;
const PREF_SEARCH_OPENINTAB = "browser.search.openintab";
var result = Services.prefs.getBoolPref (PREF_SEARCH_OPENINTAB) ;

expect.ok(!result, "browser.search.openintab set to false");

Figure B.1: Example Mozmill Test

../Python-Install/bin/python2.7 ../Python-Install/bin/mozmill -b

../0obj-x86_64-unknown-linux-gnu/dist/bin/firefox -p
/work/esquared/jswanson/rainbow/FirefoxClientSysteml/profile -P 6711 -t
/work/esquared/jswanson/rainbow/FirefoxClientSysteml/runMozmillTests/mozmill-tests/tests/func
>> testResults.txt

Figure B.2: Example Code to Run a Mozmill Tests
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Appendix C

Example Logs
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1389319001
1389319018
1389319301
1389319302
1389319320
1389319343
1389319361
1389319378
1389319397
1389319415
1389319433
1389319452
1389319469
1389319590
1389320066
1389320068
1389320090
1389320110
1389320127
1389320151
1389320173
1389320175

linked
1389320190
1389320528
1389320547
1389320564
1389320582
1389320600
1389320618
1389320641
1389320659
1389320678
1389320697
1389320725
1389320742

test passed

test failed :

: /testFailures/firefoxBug_840411.js
/testFailures/firefoxBug_797945. js

Updating guard
Workaround found for /testFailures/firefoxBug_797945.js

test passed :

test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test failed :

: /testDownloading/testOpenDownloadManager. js
/testSearch/testSearchViaFocus. js
/testSearch/testOpenSearchAutodiscovery. js
/testToolbar/testBackForwardButtons. js
/testPreferences/testPaneRetention. js
/testTabView/testToggleTabView. js
/testTabbedBrowsing/testCloseTab. js
/testSecurity/testDVCertificate. js

: /testFailures/firefoxBug_306208. js

Updating guard
Updating guard
Workaround found for /testFailures/firefoxBug_306208.js

test passed :
test passed :
test passed :

test failed

test passed :

/testToolbar/testHomeButton. js
/testSecurity/testSSLDisabledErrorPage. js
/testToolbar/testBackForwardButtons. js

on teardown (skip): /testSearch/testSearchViaFocus.js
/testSecurity/testIdentityPopupOpenClose. js

GUARD ACTIVATED user_pref ("plugins.click_to_play", false); has been
to potential errors

test failed :

Error could

test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test passed :
test passed :

/testFormManager/testClearFormHistory. js

not be replicated /testFormManager/testClearFormHistory.js
/testDownloading/testOpenDownloadManager. js
/testSecurity/testIdentityPopupOpenClose. js
/testFailures/firefoxBug_808290. js
/testPreferences/testSwitchPanes. js
/testAwesomeBar/testPastelocationBar. js
/testPreferences/testRestoreHomepageToDefault. js
/testTabView/testToggleTabView. js
/testTabView/testTabGroupNaming. js
/testLayout/testNavigateFTP. js
/testFormManager/testDisableFormManager. js
/testFailures/firefoxBug_344189.js

Figure C.1: Example Client Log
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