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Abstract. In densely deployed wireless sensor networks (WSN), sensor observations are
highly correlated in the space domain. Furthermore, the nature of the physical phenomenon
constitutes the temporal correlation between each consecutive observation of a sensor node.
These spatial and temporal correlations along with the collaborative nature of the WSN
bring significant potential advantages for the development of efficient communication proto-
cols well-suited for the WSN paradigm. In this paper, a theoretical framework is developed
to model the spatial and temporal correlations in sensor networks. The objective of this
framework is to enable the development of efficient communication protocols which exploit
these advantageous intrinsic features of the WSN paradigm. Based on this framework, possi-
ble approaches are explored to exploit spatial and temporal correlation for efficient medium
access and reliable event transport in WSN, respectively.

1 Introduction

Wireless sensor networks (WSN) are event based systems that rely on the collective effort of densely
deployed several microsensor nodes which continuously observe physical phenomenon. The main objective
of the WSN is to reliably detect/estimate event features from the collective information provided by sensor
nodes. Therefore, the energy and hence processing constraints of small wireless sensor nodes are overcome
by this collective sensing notion which is realized via their networked deployment. While the collaborative
nature of the WSN brings significant advantages over traditional sensing, the spatio-temporal correlation
among the sensor observations is another significant and unique characteristic of the WSN which can be
exploited to drastically enhance the overall network performance. The characteristics of the correlation
in the WSN can be summarized as follows:

– Spatial Correlation: Typical WSN applications require spatially dense sensor deployment in order to
achieve satisfactory coverage [1]. As a result, multiple sensors record information about a single event
in the sensor field. Due to high density in the network topology, spatially proximal sensor observations
are highly correlated with the degree of correlation increasing with decreasing internode separation.

– Temporal Correlation: Some of the WSN applications such as event tracking may require sensor nodes
to periodically perform observation and transmission of the sensed event features. The nature of the
energy-radiating physical phenomenon constitutes the temporal correlation between each consecutive
observation of a sensor node [7]. The degree of correlation between consecutive sensor measurements
may vary according to the temporal variation characteristics of the phenomenon.

In addition to the collaborative nature of the WSN, the existence of above mentioned spatial and
temporal correlations bring significant potential advantages for the development of efficient communica-
tion protocols well-suited for the WSN paradigm. For example, intuitively, due to the spatial correlation,
data from spatially separated sensors is more useful to the sink than highly correlated data from nodes
in proximity. Therefore, it may not be necessary for every sensor node to transmit its data to the sink;
instead, a smaller number of sensor measurements might be adequate to communicate the event features
to the sink within a certain reliability/fidelity level. Similarly, for a certain event tracking application, the
measurement reporting frequency, at which the sensor nodes transmit their observations, can be adjusted
such that temporal-correlated phenomenon signal is captured at the sink within a certain distortion level
and with minimum energy-expenditure.



There has been some research effort to study the correlation in WSN [5, 9, 10]. However, most of
these existing studies investigate the information theoretical aspects of the correlation, and they do not
provide efficient networking protocols which exploit the correlation in the WSN.

On the other hand, there already exists significant amount of research on the communication protocols
for sensor networks in the literature [1]. For example, there exist some proposals to address the medium
access control (MAC) problems in wireless sensor networks [2, 4, 11, 18]. However, these solutions mostly
focus on energy-latency tradeoffs and none of these MAC protocols take advantage of the correlation in
the WSN in order to improve energy-efficiency without compromising on the access latency. Similarly,
there also exist transport layer proposals for wireless sensor networks in the current literature [17, 13,
16]. However, what is common in all of these works is that none of these solutions exploit the correlation
to achieve energy-efficient communication in WSN.

In this paper, several key elements are investigated to capture and exploit the correlation in the WSN
for the realization of advanced efficient communication protocols. We first develop a theoretical framework
to model the spatial and temporal correlations in sensor networks. The objective of this framework
is to enable the development of efficient communication protocols which exploit these advantageous
intrinsic features of the WSN paradigm. Based on this framework, possible approaches are discussed to
exploit spatial and temporal correlation for efficient medium access and reliable event transport in WSN,
respectively.

The remainder of this paper is organized as follows. In Section 2, the theoretical framework is devel-
oped to model the spatial and temporal correlations in wireless sensor networks. In Section 3.1, we discuss
an efficient medium access control approach in WSN which aims to reduce the energy consumption of
the network by exploiting spatial correlation in the WSN without compromising the access latency. In
Section 3.2, we explore a reliable event transport mechanism exploiting temporal correlation with an
objective of reliable event detection with minimum energy expenditure. Finally, the concluding remarks
are discussed in Section 4.

2 Spatio-Temporal Correlation in Wireless Sensor Networks

In this section, we develop the theoretical framework for the spatio-temporal correlation in wireless sensor
networks.

2.1 Architecture and Correlation Model for WSN

In a sensor field, each sensor observes the noisy version of a physical phenomenon. The sink is interested in
observing the physical phenomenon using the observations from sensor nodes with the highest accuracy.
The physical phenomenon in interest can be modeled as a spatio-temporal process s(t, x, y) as a function
of time t and spatial coordinates (x, y).

Depending on the specific sensor application, the physical phenomenon may be a spatio-temporal
process generated by a point source in case of applications such as object tracking. In this case, the sink
is interested in reconstructing the source signal at a specific location (x0, y0) based on sensor observations.
In other applications, the spatio-temporal process may be a combination of multiple point sources where
the sink is interested in reconstructing the signal in multiple locations or over an event area. Although
the reconstruction is application specific, the properties of the observations can be modeled based on the
spatio-temporal process s(t, x, y).

The model for the information gathered by N sensors in an event area is illustrated in Fig. 1. The
sink is interested in estimating the event source, S, according to the observations of the sensor nodes, ni,
in the event area. Each sensor node ni observes Xi[n], the noisy version of the event information, Si[n],
which is spatially correlated to the event source, S. In order to communicate this observation to the sink
through the WSN, each node has to encode its observation. The encoded information, Yi[n], is then sent
to the sink through the WSN. The sink, at the other end, decodes this information to get the estimate,
Ŝ, of the event source S. The encoders and the decoders are labelled as E and D in Fig. 1, respectively.
Using this model, we will exploit various aspects of correlation among sensor readings both in terms of
time and space.

Each observed sample, Xi[n], of sensor ni at time n is represented as

Xi[n] = Si[n] + Ni[n] (1)
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Figure 1. Correlation model and architecture.

where the subscript i denotes the spatial location of node ni, i.e. (xi, yi), Si[n] is the realization of the
space-time process s(t, x, y) at time t = tn

1 and (x, y) = (xi, yi), and Ni[n] is the observation noise.
{Ni[n]}n is a sequence of i.i.d Gaussian random variables of zero mean and variance σ2

N . We further
assume that the noise each sensor node encounters is independent of each other, i.e., Ni[n] and Nj [n] are
independent for i 6= j and ∀n.

As it is shown in Fig. 1, each observation Xi[n] is then encoded into Yi[n] by the source-coding at
the sensor node as

Yi[n] = fi(Xi[n]) (2)

and then sent through the network to the sink. The sink decodes the received data to reconstruct an
estimation Ŝ of the source S

Ŝ = g(Y1[n1], ..., Y1[nτ ]; ...; YN [n1], ..., YN [nτ ]) (3)

based on the data received from N nodes in the event area over a time period τ = tnτ − tn1 . The sink is
interested in reconstructing the source S according to a distortion constraint

D = E
[
d(S, Ŝ)

]
(4)

In the next subsections, the general distortion function in (4) will be used to independently obtain
the distortion functions for spatial and temporal correlation in the WSN.

2.2 Spatial Correlation in WSN
In this section, we model the spatial correlation between observations of each sensor node. The informa-
tion gathered by N sensors in an event area can be modeled as shown in Fig. 1. The sink is assumed to
be interested in a point source S. Since we only consider the spatial correlation between nodes, in this
analysis, we assume that the samples are temporally independent. Hence, by dropping the time index n,
(1) can be restated as

Xi = Si + Ni, i = 1, ..., N (5)

where the observation noise Ni of each sensor node ni is modeled as i.i.d. Gaussian random variable of
zero mean and variance σ2

N . The samples from the event signal, Si, at each point of the event area are
modeled as joint gaussian random variables (JGRVs) as

E{Si} = 0; var{Si} = σ2
S ; cov{Si, Sj} = σ2

Scorr{Si, Sj}; corr{Si, Sj} = ρi,j = Kϑ(di,j) =
E[SiSj ]

σ2
S

(6)

1 Note that, we use a discrete-time model since each node is assumed to sample the physical phenomenon synchronously
after the initial wake-up.



where di,j =‖ si−sj ‖ denote the correlation coefficient and the distance between nodes ni and nj located
at coordinates si and sj , respectively and Kϑ(·) is the correlation model. Note that, the event source, S,
is also a JGRV with the same properties. Since it is of special interest, we denote with ρ(s,i) and d(s,i),
the correlation coefficient and the distance between the event source S and the node ni throughout our
discussions.

The covariance function, Kϑ(·) models the relation between the correlation coefficient between the
sensor observations, ρ(i,j), and the distance, d(i,j), between the nodes ni and nj . The covariance function
is assumed to be non-negative and decrease monotonically with the distance d =‖ si−sj ‖, with limiting
values of 1 at d = 0 and of 0 at d = ∞. Although our results about the distortion function apply to
all the covariance models, we use the power exponential model in this paper since the physical event
information such as, electromagnetic waves, is modeled to have an exponential autocorrelation function
[14]. Hence, the covariance function, Kϑ(·), is given as

KPE
ϑ (d) = e(−d/θ1); for θ1 > 0, . (7)

As each sensor node ni observes an event information Xi, this information is encoded and then sent
to the sink through the WSN. It is known that for sensor networks with finite number of nodes, uncoded
transmission outperforms any approach based on the separation paradigm leading to the optimal solution
for infinite number of nodes [5]. Hence, we adopt uncoded transmission for the sensor observations in
this work. Each node ni sends to the sink, a scaled version, Yi, of the observed sample Xi according to
encoding power constraint PE .

Yi =

√
PE

σ2
S + σ2

N

Xi, i = 1, ..., N (8)

where σ2
S and σ2

N are the variances of the event information Si and the observation noise Ni, respectively.
The sink needs to calculate the estimation of each event information, Si, in order to estimate the event

source S. Since uncoded transmission is used, it is well known that minimum mean square error (MMSE)
estimation is the optimum decoding technique [8]. Hence, the estimation, Zi, of the event information
Si is simply the MMSE estimation of Yi, which is given by

Zi =
E[SiYi]
E[Y 2

i ]
Yi (9)

In order to investigate the distortion achieved when smaller number of nodes sending information,
we assume that only M out of N packets are received by the sink, where N is the total number of sensor
nodes in the event area. Since the sink decodes each Yi using the MMSE estimator, the event source can
simply be computed by taking the average of all the event information received at the sink. Then, Ŝ, the
estimate of S, is given as,

Ŝ(M) =
1
M

M∑

i=1

Zi (10)

where Zi can be expressed by

Zi =
σ2

S

σ2
S + σ2

N

(Si + Ni) (11)

The distortion achieved by using M packets to estimate the event S is given as

D(M) = E[(S − Ŝ(M))2] (12)

Using (11) and (10) in (12), the distortion function D(M) is found to be

D(M) = σ2
S −

σ4
S

M(σ2
S + σ2

N )

(
2

M∑

i=1

ρ(s,i) − 1

)
+

σ6
S

M2(σ2
S + σ2

N )2

M∑

i=1

M∑

j 6=i

ρ(i,j) (13)

D(M) shows the distortion achieved at the sink as a function of number of nodes M that send
information to the sink and correlation coefficients ρ(i,j) and ρ(s,i) between nodes ni and nj , and the
event source S and node ni, respectively. Based on the distortion function, we discuss possible approaches
that can be used in the Medium Access Control (MAC) protocols for WSN in Section 3.1.



2.3 Temporal Correlation in WSN

As mentioned in Section 1, the energy-radiating physical phenomenon constitutes the temporal correla-
tion between each consecutive observation of a sensor node [7]. For the periodic sensing applications such
as event tracking, each consecutively taken sensor observations are temporally correlated to a certain
degree. In this section, we establish the theoretical analysis for this temporal correlation, which will
be further elaborated in the context of correlation-based reliable event transport approach discussed in
Section 3.2.

Here, we consider the temporal correlation between the sensor observations and hence we omit the
spatial variation in this analysis. We are interested estimating the signal s(t) in a decision interval of
τ . In our theoretical analysis, we model an event-to-sink distortion metric, where all the information
coming from the sensor nodes in the event area is considered as if it is generated by a single source node
during the decision interval τ .

Assume that the sensed information from the sensors are sent to the sink using a reporting frequency
of f . In this case, we seek to control the reporting frequency f such that a desired distortion level is not
exceeded in the estimation of the event features at the sink. The event signal s(t) is assumed to be a
Gaussian random process with N (0, σ2

s). The sink is interested in finding the expectation of the signal
s(t) over the decision interval τ , i.e., S(τ). Assuming the observed signal s(t) is wide-sense stationary
(WSS), the expectation of the signal over the decision interval τ can be calculated by the time average
of the observed signal [14], i.e.,

S(τ) =
1
τ

∫ t0+τ

t0

s(t)dt , (14)

where t0 is the time the sensor node wakes up for the sampling of the signal. With a change of variables,
S(τ) can be shown as

S(τ) =
1
τ

∫ τ

0

s(t0 + Γ )dΓ . (15)

We define the value of the signal at each sampling interval as

S[n] = s
(
t0 +

n

f

)
, (16)

where f is the sampling frequency and S[n] are JGRV with N (0, σ2
s). For the derivation of the distortion

function, the following definitions are needed:

E{S[n]} = 0 ; E{(S[n])2} = σ2
S ; E{S[n]S[m]} = σ2

S ρ̂S(n,m) ; E{s(t)s(t + δ)} = σ2
SρS(δ) (17)

where ρ̂S(n, m) = ρS(|m− n|/f) is the covariance function that depends on the time difference between
signal samples. Using the power exponential model in the derivation as in Section 2.2, the covariance
function becomes

ρS(δ) = e−|δ|/θ1 (18)

Each sensor node observes the noisy version of the signal given as

X[n] = S[n] + N [n], (19)

following the similar approach as in Section 2.2, the estimated sample from each sensor node can be
expressed by

Z[n] =
σ2

S

σ2
S + σ2

N

(
S[n] + N [n]

)
(20)

After collecting all the samples of the signal in the decision interval τ , the sink estimates the expec-
tation of the signal over the last decision interval by

Ŝ(τ) =
1
τf

τf∑

k=1

Z[k] (21)

where τf is the total number of sensor samples taken within a decision interval with duration of τ . As
a result, the distortion achieved by using τf samples to estimate the event is given as

D = E

[(
S(τ)− Ŝ(τ)

)2
]

(22)
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Figure 2. Observed Event Distortion for different θ1 values according to changing number of representative nodes

Using the definitions above and substituting (15), (20), and (21) into (22); the distortion function can
easily shown to be

D(f) = σ2
S +

σ4
S

τf(σ2
S + σ2

N )
+

σ6
S

τ2f2(σ2
S + σ2

N )2

τf∑

k=1

∑

l 6=k

e−(
|k−l|

f )/θ1 −

− 2σ4
Sθ1

τ2f(σ2
S + σ2

N )

τf∑

k=1

(
2− e−

k
fθ1 − e−(τ− k

f )/θ1

)
(23)

It is observed from (23) that the distortion in the estimation decreases with increasing f . Note that a
distortion level D for the estimation of event features from the sensor observations means the reliability
level of the event-to-sink communication in the WSN. In Section 3.2, this distortion function will be
further explored in the context of reliable event transport in WSN.

3 Exploiting Correlation in WSN

In this section, we discuss possible approaches exploiting spatial and temporal correlation to achieve
energy-efficient medium access and reliable event transport in WSN, respectively.

3.1 Correlation-based Medium Access Control

The shared wireless channel between sensor nodes and energy considerations of the WSN make the
Medium Access Control (MAC) a crucial part of the wireless sensor phenomenon. MAC protocols for
WSN should be developed tailored to the physical properties of the sensed phenomenon and the specific
network properties so that the access to the channel is coordinated with minimum collisions without
effecting the connectivity throughout the network.

In WSN, many individual nodes deployed in large areas sense events and send corresponding infor-
mation about these events to the sink. When an event occurs in the sensor field, all the nodes in an event
area collect information about the event taking place and try to send this information to the sink. Due to
the physical properties of the event, this information may be highly correlated in nature according to the
spatial correlation between sensor nodes. Intuitively, data from spatially separated sensors is more useful
to the sink than highly correlated data from closely located sensors. Hence, it may not be necessary for
every sensor node to transmit its data to the sink; instead, a smaller number of sensor measurements
might be adequate to communicate the event features to the sink within a certain distortion constraint.
As a result, the MAC protocol can reduce the energy consumption of the network by exploiting spatial
correlation in the WSN without compromising on the access latency as well as the distortion achieved.



In order to gain more insight to our intuitions, we performed a case study using the distortion function
(13). In a 500 by 500 grid, we deployed 50 sensor nodes randomly. We use the Power Exponential model
with θ2 = 1 and θ1 = {10, 50, 100, 500, 1000, 5000, 1000} as the covariance model for the covariance
function, Kϑ(·) in (1). The parameter, θ1, controls the relation between the distance of the nodes and
the correlation coefficient. For each value of θ1 we calculate the distortion function (13) varying the
number of sensor nodes sending information. Starting from 50 nodes, we decrease the number of nodes
that send event information to the sink. We refer to these nodes as the representative nodes. The average
distortion calculated from the simulations for each number of representative nodes is shown in Fig. 2.

As shown in Fig. 2, the achieved distortion stays relatively constant when the number of representative
nodes is decreased from 50 to 15. This behavior is due to the highly redundant data sent by the sensor
nodes that are close to each other. In addition, with increasing θ1, the observed event distortion decreases
since close nodes become less correlated with increasing θ1. Based on the results shown in Fig. 2 and the
distortion function (13), the following discussions about the observed distortion at the sink can be made:

Remark 1: The minimum distortion is achieved when all the nodes in the event area send information
to the sink. However, the achieved distortion at the sink can be preserved even though the number of the
representative nodes decreases. As a result, significant energy saving is possible by allowing less number
of nodes send information to the sink about an event.

Remark 2: The correlation coefficient, ρ(s,i), between a node ni sending information and the event
source S effects the distortion function negatively. The distortion increases as the distance between the
event source S and the node ni increases. Intuitively, if a representative node is chosen apart from the
source, it observes relatively inaccurate data resulting in higher distortion at the sink. Furthermore, the
correlation coefficient, ρ(i,j), between each representative node ni and nj effects the distortion positively.
As the distance between nodes increases, distortion decreases. Since further apart nodes observe less
correlated data, the distortion is decreased if these nodes are chosen as the representative nodes.

Figure 3. Spatial Re-usage in Sensor Networks.

Consequently, due to the spatial correlation between sensor observations, significant energy saving
can be achieved by choosing representative nodes among the nodes in the event area without degrading
the achieved distortion at the sink. It is clear that reduced number of nodes transmitting information
decreases contention in the wireless medium resulting in decreased energy consumption. Energy con-
sumed from both transmission of packets and collision penalties can be reduced drastically if the spatial
correlation is exploited. As a result, it is important to find the minimum number of representative nodes
that achieve the distortion constraint given by the sensor application.

It is important to note that the minimum number of representative nodes, M∗, depends on the
locations of the representative nodes. It follows from our previous discussions that, for a fixed number
of representative nodes, the minimum distortion can be achieved by choosing these nodes such that (i)
they are located as close to the event source as possible and (ii) are located as farther apart from each
other as possible.

As an example, as illustrated in Fig. 3, choosing representative nodes such that they are spread
over the event area results in a decrease in distortion, due to less redundant data sent by these nodes.
Note that, such a formation also improves the medium access performance during the transmission of
the information. Since the representative nodes are not located close to each other, the probability of
collision in the wireless medium decreases. As a result, exploiting spatial correlation not only improves



the distortion but also utilizes the wireless channel due to the spatial reuse property of the wireless
medium.

In a recent work [15], the authors proposed a MAC protocol that exploits the spatial correlation
between closely located sensor nodes that regulates medium access and prevents redundant transmissions
from closely located sensors. Based on the spatial correlation among sensor nodes, the MAC protocol
collaboratively regulates medium access so that redundant transmissions from correlation neighbors are
suppressed. In addition, necessary mechanisms for the efficient transmission of the information from
the sensor nodes to the sink has been proposed. The experimental results in [15] reveal that significant
performance gains are obtained from exploiting spatial correlation in the MAC layer.

3.2 Correlation-based Reliable Event Transport

In order to realize the potential gains of the WSN, it is imperative that desired event features are reliably
communicated to the sink. To accomplish this, a reliable transport mechanism is required in addition to
an efficient media access scheme as discussed in Section 3.1. The main objective of the transport layer
mechanism in WSN is to achieve reliable collective transport of event features from the sensors within
the coverage of the phenomenon, i.e., event area, to the sink. In order to provide reliable event detection
at the sink, possible congestion in the forward path should also be addressed by the transport layer. Once
the event is sensed by a number of sensor nodes within the event area, significant amount of traffic is
triggered by these sensor nodes, which may easily lead to congestion in the forward path. Furthermore,
the error and congestion control objectives must be achieved with minimum possible energy expenditure.
Energy efficiency must be also considered in transport mechanism design by shifting the burden to the
high-powered sink in the WSN in order to conserve limited sensor resources.

Unlike traditional communication networks, the sensor network paradigm necessitates that the event
features are estimated within a certain distortion bound, i.e., required reliability level, at the sink as
discussed in Section 2. Reliable event detection at the sink is based on collective information provided by
source nodes and not on any individual report. Hence, conventional end-to-end reliability definitions and
solutions are inapplicable in the WSN regime and would only lead to over-utilization of scarce sensor
resources. On the other hand, the absence of reliable transport altogether can seriously impair event
detection which is the main objective of WSN deployment. Hence, the WSN paradigm necessitates a
collective event-to-sink reliability notion rather than the traditional end-to-end notion [12]. Such event-
to-sink reliable transport notion based on collective identification of data flows from the event to the sink
is illustrated in Figure 4 and depends on following definitions:

SinkEvent radius

Figure 4. Typical sensor network topology with event and sink. The sink is only interested in collective infor-
mation of sensor nodes within the event radius and not in their individual data.

Definition 1 : The observed event distortion Di is the distortion achieved, i.e., as in (23), when the
sink performs estimation of the signal S being tracked in decision interval i.

Definition 2 : The desired event distortion D∗ is the maximum distortion allowed to assure reliable
event detection in the estimation performed by the sink. This upper bound for the distortion level is
determined by the application and based on the physical characteristics of the signal S being tracked.

Based on the packets generated by the sensor nodes in the event area, the sink estimates the event
features to determine the necessary action and observes Di at each decision interval i. Note that a
distortion level D for the estimation of event features from the sensor observations corresponds to the
reliability level of the event-to-sink communication in the WSN. If observed event distortion is less than
the distortion bound, i.e., Di < D∗, then the event is deemed to be reliably detected. Else, appropriate
action needs to be taken to assure the desired reliability level in the event-to-sink communication.



The main rationale behind such event-to-sink reliability notion is that the data generated by the
sensors are temporally correlated which tolerates individual packets to be lost to the extent where
the desired event distortion D∗ is not exceeded. Let f be the reporting frequency of a sensor node
defined as the number of samples taken and hence packets sent out per unit time by that node for a
sensed phenomenon. This reporting frequency can be attributed to increase in sampling rate, increase in
number of quantization levels, number of sensing modalities etc. Hence, the reporting frequency f controls
the amount of traffic injected to the sensor field while regulating the number of temporally-correlated
samples taken from the phenomenon. This, in turn, affects the observed event distortion, i.e., event
detection reliability. Thus, the reliable event transport problem in WSN is to determine the reporting
rate (f) of source nodes so that the maximum event estimation distortion bound D∗ is not exceeded, i.e.,
required event detection reliability is achieved at the sink, with minimum resource utilization.
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Figure 5. Observed event distortion for varying normalized reporting frequency.

The determination of an appropriate reporting frequency f in order to assure the desired event
distortion with minimum energy expenditure and without causing congestion is a challenging issue. As
derived in Section 2.3, the distortion Di observed in the estimation of the signal S being tracked depends
on the reporting frequency f used by the sensor nodes sending their readings to the sink in the decision
interval i. A case study with the same network configuration and parameters in Section 3.1 is also
performed to observe the variation of the observed event distortion at the sink for varying reporting
frequency f . It is observed from (23) and Fig. 5 that the observed event distortion at the sink decreases
with increasing f . This is because the number of samples received in a decision interval i increases
with increasing f conveying more information to the sink from the event area. Note that after a certain
reporting frequency f , the observed event distortion cannot be further reduced. Therefore, a significant
energy saving can be achieved by selecting small enough f which achieves desired event distortion D∗

and does not lead to an overutilization of the scarce sensor resources.
On the other hand, any f chosen arbitrarily small to achieve a certain distortion bound D∗ using (23)

may not necessarily achieve the desired distortion level and hence assure the event transport reliability.
This is mainly because all of the sensor samples generated with this chosen reporting frequency may not
be received because of packet losses in the sensor network due to link errors and network disconnectivity.
Similarly, as very high values of f do not bring any additional gain in terms of observed event distortion as
shown in Fig. 5; on the contrary, it may endanger the event transport reliability by leading to congestion
in the sensor network. Let fmax be the maximum reporting frequency which the network capacity can
accommodate. Thus, f > fmax leads to congestion and hence packet losses resulting in an increase in
the observed event distortion.

This has been also observed in the preliminary simulation experiments in [12]. In these experiments,
the normalized event transport reliability, i.e., η = Mi/M

∗ where Mi and M∗ are respectively the received
and desired number of sensor samples in a decision interval, is observed to first increase with reporting



frequency until f = fmax is reached. After this point, increasing reporting frequency is observed to impair
the number of samples Mi received at the sink. This is because excessive packet transmissions result in
network congestion and hence packets are discarded at the routing sensor nodes. Moreover, in the worst
case, the event transport reliability is not achieved at all because of the high distortion in the estimation
of the tracked signal S due to reception of inadequate number of sensor observations at the sink.

To address the reliable event transport problem, an event-to-sink reliable transport (ESRT) protocol
is also proposed in [12] based on the event-to-sink reliability notion for WSN. The objective of this
scheme is to achieve reliable event transport with minimum energy expenditure and congestion control
by exploiting the correlation and the collaborative nature of the WSN. To help accomplish this, the
protocol uses a congestion control mechanism that serves the dual purpose of reliable detection and
energy conservation. Based on the congestion level in the network and the observed event reliability, i.e.,
observed event distortion, the protocol regulates the reporting frequency f [12]. Simulation experiments
and analytical study in [12] show that ESRT protocol indeed achieves event-to-sink reliability with
minimum energy consumption with the help of the correlation and collaborative nature of the WSN. As
a result, temporal correlation conveyed in the physical characteristics of the phenomenon is exploited in
addressing reliable event transport problem in WSN.

4 Conclusions

In addition to the collaborative nature of the WSN, the existence spatial and temporal correlations
among the sensor observations are significant and unique characteristics of the WSN. In this paper, we
introduced a theoretical framework to capture the spatial and temporal correlations in wireless sensor
networks. Our theoretical framework constitutes a basis for the development of such energy-efficient
communication protocols for WSN. Moreover, based on our framework, we discussed possible efficient
medium access and reliable event transport approaches taking advantage of the spatial and temporal
correlations in WSN, respectively. We showed via mathematical analysis, their results, case studies and
discussions that correlation can be exploited to significantly improve the energy-efficiency in WSN.
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