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Viewpoint  
Learning Through 
Computational Creativity  
Improving learning and achievement in introductory computer science  
by incorporating creative thinking into the curriculum. 

knowledge and skills, the more varied 
and interesting the possible novel pat-
terns and combinations that might 
emerge. To be creative one must broad-
en one’s knowledge by acquiring infor-
mation and skills outside one’s current 
domains of study and expertise. 

 ˲ Challenging. Novelty emerges from 
situations where existing strategies and 
behaviors are ineffective. The more dif-
ficult the challenge, the more likely a 
creative, novel solution will emerge. 

 ˲ Surrounding. Exposure to mul-
tiple, ambiguous situations and 
stimuli create environments where 
novel strategies and behaviors may 
emerge—for example, looking at 
things in new ways, interacting with 
new people, and considering multiple 
sensory representations. 

 ˲ Capturing. Novelty is occurring all 
the time, but most of it passes with-
out recognition. Creativity requires 
attention to and recording of novelty 
as it occurs. 

These core competencies have a 
solid anchoring in contemporary cog-
nitive and neuroscience research.6 
Just as Wing10,11 makes a convinc-
ing case for the universality of com-
putational thinking, we argue that 
Epstein’s core creative thinking 
competencies are also a universally 
applicable skill set that provides a 
foundation not only for applying 
one’s existing knowledge and skills 
in creative ways, but also for engaging 
in lifelong learning to broaden one’s 
capabilities for work in interdisci-

T
HE NATIONAL SCIENCE Founda-
tion’s “Rebuilding the Mosa-
ic” reporta notes that address-
ing emerging issues in all 
fields will require utilization 

and management of large-scale data-
bases, creativity in devising data-centric 
solutions to problems, and application 
of computational and computer tools 
through interdisciplinary efforts. In 
response to these needs, introductory 
computer science (CS) courses are be-
coming more than just a course for CS 
majors. They are becoming multipur-
pose: designed not just to prepare future 
CS scientists and practitioners, but also 
to inspire, motivate, and recruit new 
students to CS; provide computational 
thinking tools and CS skills to students 
in other disciplines; and even train fu-
ture CS K–12 teachers. This multifaceted 
nature of introductory CS calls for new 
ways of envisioning the CS curriculum. 
Along with computational thinking, cre-
ativity has been singled out as critical to 
addressing important societal problems 
and central to 21st century skills (for ex-
ample, the 2012 National Research Coun-
cil report). Driven by these observations, 
we see an opportunity to revise introduc-
tory CS courses by explicitly integrating 
creative thinking into the curriculum.

Creative Thinking
Creative thinking is not an innate tal-
ent or the province of just a few individ-

a See http://www.nsf.gov/pubs/2011/nsf11086/
nsf11086.pdf.

uals, and it is not confined to the arts. 
Rather, it is a process integral to hu-
man intelligence that can be practiced, 
encouraged, and developed within any 
context.1,2,5,7–9 Epstein’s Generativity 
Theory2 breaks creative thinking down 
to four core competencies: 

 ˲ Broadening. The more diverse one’s 
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As an example, in the Everyday Ob-
ject CCE, students are asked to act like 
the inventor of an ordinary object that 
we might frequently use. The chal-
lenge is to imagine this object does 
not exist and to describe in written 
language: the mechanical function of 
the selected object; what need is ful-
filled by this object; and its physical 
attributes and characteristics. The de-
scription must be specific enough so 
that someone who had never seen the 
object could recognize it and under-
stand how it works and understand 
what benefits it provides. (Note: Stu-
dents were given a list of objects—zip-
per, mechanical pencil, binder clip, 
Ziploc bag, scissors, tape measure, 
stapler, nail clippers, umbrella, flash-
light, can opener, clothespin, sticky 
notes, toilet paper holder, revolving 
door—from which to choose.) Stu-
dents are then asked to consider and 
write their responses to the following 
questions. Analysis: (1) Consider your 
object as a computer program. Draw a 
diagram that shows all its functions as 
boxes (name them), and for each func-
tion, its inputs and outputs. Are there 
shared inputs and outputs among 
the functions? (2) Consider the list of 
physical attributes and characteris-
tics. Organize these such that each is 
declared as a variable with its proper 
type. Can some of these attributes/
characteristics be arranged into a hi-
erarchy of related attributes/charac-
teristics? Reflection: (1) Consider your 
response to Analysis 1, are there func-
tions that can be combined so that the 
object can be represented with a more 
concise program? Are there new func-
tions that should be introduced to 
better describe your object such that 
the functions are more modular? (2) 
Have you heard of abstraction? How 
does abstraction in computer science 
relate to the process of identifying the 
functions and characteristics as you 
have done in this exercise?

Our CCEs are anchored in instruc-
tional design principles shown to im-
pact deep learning, transfer, and devel-
opment of interpersonal skills. They 
are designed to provide instruction on 
CS concepts by combining hands-on 
problem-based learning with written 
analysis and reflection. They facilitate 
transfer by using computational think-
ing and CS content more abstractly and 

plinary environments on increasingly 
complex problems.

Computational Creativity Exercises
In our framework, both computation-
al thinking and creative thinking are 
viewed as cognitive tools that when 
blended form computational creativ-
ity. This blending is not conceived as 
a dichotomy, but rather as symbiotic 
abilities and approaches. Computa-
tional thinking and CS skills expand 
the knowledge and tools that one has 
available, thereby broadening the scope 
of problem solutions. Challenging 
problems force computational tools to 
be used in unanticipated and unusual 
ways, leading to new computational 
approaches to both old and new prob-
lems. Surrounding oneself with new 
environments and collaborators cre-
ates novel ways of looking at problems 
and attention to different stimuli and 
perspectives that may be relevant to ap-
proaching a problem computationally. 
Finally, capturing ideas for data repre-
sentations and algorithms can lead to 
new data structures and solution pro-
cedures. By merging computational 
and creative thinking, students can le-
verage their creative thinking skills to 
“unlock” their understanding of com-
putational thinking.6

We have created a suite of Compu-
tational Creativity Exercises (CCEs) 
designed to increase students’ compu-
tational creativity. Each CCE has four 
common components: Objectives, 
Tasks, CS Lightbulbs—explanations 

connecting activities to CS concepts, 
ideas, and practices—and Learning 
Objects that relate the exercise tasks 
directly to CS topics. The principles 
underlying the design of our Computa-
tional Creativity Exercises are balanc-
ing of attributes between computation-
al and creative thinking and mapping 
between computational and creative 
concepts and skills as they manifest 
in different disciplines. Each CCE re-
quires approximately one to two hours 
per student, but students are given two 
weeks to work on the exercises because 
of the collaboration required. The 
CCEs are designed so that the students 
have hands-on and group tasks first, in 
Week 1, and then reflect on their Week 
1 activities in Week 2 by answering 
analysis and reflection questions. Both 
Week 1 and Week 2 are graded. 

We see an 
opportunity to 
revise introductory 
CS courses by 
explicitly integrating 
creative thinking 
into the curriculum.
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ment of more CCEs. Furthermore, the 
broader impacts of incorporating com-
putational creativity into introductory 
CS courses are wide-ranging including 
reaching underrepresented groups in 
CS, outreach exposing young learners 
to computational creativity, improving 
learning of CS, and preparing students 
to be creative problem solvers in in-
creasingly interdisciplinary domains. 
We thus call to action CS (and other 
STEM) educators to investigate and 
adopt computational creativity in their 
courses or curricula. 
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without using programming code to ad-
dress problems seemingly unrelated to 
CS. The CCEs foster development of cre-
ative competencies by engaging multi-
ple senses, requiring integrative, imagi-
native thought, presenting challenging 
problems and developing interpersonal 
skills using individual and collabora-
tive group efforts. The CCEs engage 
the cognitive/neural learning processes 
of attention, repetition, and connection 
identified in the Unified Learning Mod-
el6 on synthesis of research in cognitive 
neuroscience, cognitive science, and 
psychology. They enhance learning and 
retention of course material by focus-
ing attention on computational think-
ing principles, provide additional rep-
etition of computational thinking and 
computing concepts from the class, and 
provide connections of the material to 
more diverse contexts and applications 
at a higher level of abstraction.

Some Evidence
Four CCEs were deployed in four dif-
ferent introductory computer science 
courses during the Fall 2012 semester 
at the University of Nebraska, Lincoln. 
Each course was tailored to a different 
target group (CS majors, engineering 
majors, combined CS/physical scienc-
es majors, and humanities majors). 
Findings from 150 students showed 
that with cumulative GPA controlled, 
the number of CCEs completed was 
significantly associated with course 
grade (F(3, 109) = 4.32, p = .006, partial 
Eta2 = .106). There was a significant 
linear trend (p = .0001) from 2 to 4 exer-
cises completed. The number of CCEs 
completed also was significantly asso-
ciated with a computational thinking 
knowledge test score (F(3, 98) = 4.76,  
p = .004, partial Eta2 = .127), again with 
a significant linear trend (p < .0001) 
from 0–1 to 4 exercises completed 
with no differences for CS and non-
CS majors.3,4 These findings indicated 
a “dosage” effect with course grades 
and test scores increasing with each 
additional CCE completed. The in-
creases were not trivial. Students in-
creased by almost a letter grade and 
almost one point on the knowledge 
test per CCE completed. 

In a second evaluation,7 we em-
ployed a quasi-experimental design 
comparing CCE implementation in 
the introductory computer science 

course tailored for engineers during 
Spring 2013 (N = 90, 96% completing 
three or four exercises) to a control se-
mester (N = 65) of no implementation 
in Fall 2013. Using Analysis of Cova-
riance (ANCOVA), we found that stu-
dents in the implementation semester 
had significantly higher computational 
thinking knowledge test scores than 
students in the control semester (M = 
7.47 to M = 5.94) when controlling for 
students’ course grades, strategic self-
regulation, engagement, motivation, 
and classroom perceptions. (F(1, 106) 
= 12.78, p <.01, partial Eta2 = .108). CCE 
implementation students also report-
ed significantly higher self-efficacy 
for applying their computer science 
knowledge and skills in engineering 
than non-implementation students 
(M = 70.64 to M = 61.47; F(1, 153) = 
12.22, p <.01, partial Eta2 = .074). 

Overall, in relation to traditional 
findings for classroom educational 
interventions, these are strong effects 
that demonstrate meaningful “real-
world” impact. The exercises appear 
to positively affect the learning of core 
course content and achievement for 
both CS majors and non-majors. The 
findings support our contention that 
the Computational Creativity Exercises 
can bring CS computational concepts to 
CS and non-CS disciplines alike and im-
prove students’ understanding of compu-
tational thinking. 

Call to Action
Encouraged by our evaluation findings, 
we are currently working on adapting 
the CCEs to secondary schools, design-
ing a course based on a suite of CCEs, 
as well as continuing with the develop-

These core 
competencies have 
a solid anchoring 
in contemporary 
cognitive and 
neuroscience 
research.


