
AUGUST 2015 | VOL. 58 | NO. 8 | COMMUNICATIONS OF THE ACM 33

V
viewpoints

C
O

L
L

A
G

E
S

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
/S

H
U

T
T

E
R

S
T

O
C

K

Viewpoint
Learning Through
Computational Creativity
Improving learning and achievement in introductory computer science
by incorporating creative thinking into the curriculum.

knowledge and skills, the more varied
and interesting the possible novel pat-
terns and combinations that might
emerge. To be creative one must broad-
en one’s knowledge by acquiring infor-
mation and skills outside one’s current
domains of study and expertise.

 ˲ Challenging. Novelty emerges from
situations where existing strategies and
behaviors are ineffective. The more dif-
ficult the challenge, the more likely a
creative, novel solution will emerge.

 ˲ Surrounding. Exposure to mul-
tiple, ambiguous situations and
stimuli create environments where
novel strategies and behaviors may
emerge—for example, looking at
things in new ways, interacting with
new people, and considering multiple
sensory representations.

 ˲ Capturing. Novelty is occurring all
the time, but most of it passes with-
out recognition. Creativity requires
attention to and recording of novelty
as it occurs.

These core competencies have a
solid anchoring in contemporary cog-
nitive and neuroscience research.6
Just as Wing10,11 makes a convinc-
ing case for the universality of com-
putational thinking, we argue that
Epstein’s core creative thinking
competencies are also a universally
applicable skill set that provides a
foundation not only for applying
one’s existing knowledge and skills
in creative ways, but also for engaging
in lifelong learning to broaden one’s
capabilities for work in interdisci-

T
HE NATIONAL SCIENCE Founda-
tion’s “Rebuilding the Mosa-
ic” reporta notes that address-
ing emerging issues in all
fields will require utilization

and management of large-scale data-
bases, creativity in devising data-centric
solutions to problems, and application
of computational and computer tools
through interdisciplinary efforts. In
response to these needs, introductory
computer science (CS) courses are be-
coming more than just a course for CS
majors. They are becoming multipur-
pose: designed not just to prepare future
CS scientists and practitioners, but also
to inspire, motivate, and recruit new
students to CS; provide computational
thinking tools and CS skills to students
in other disciplines; and even train fu-
ture CS K–12 teachers. This multifaceted
nature of introductory CS calls for new
ways of envisioning the CS curriculum.
Along with computational thinking, cre-
ativity has been singled out as critical to
addressing important societal problems
and central to 21st century skills (for ex-
ample, the 2012 National Research Coun-
cil report). Driven by these observations,
we see an opportunity to revise introduc-
tory CS courses by explicitly integrating
creative thinking into the curriculum.

Creative Thinking
Creative thinking is not an innate tal-
ent or the province of just a few individ-

a See http://www.nsf.gov/pubs/2011/nsf11086/
nsf11086.pdf.

uals, and it is not confined to the arts.
Rather, it is a process integral to hu-
man intelligence that can be practiced,
encouraged, and developed within any
context.1,2,5,7–9 Epstein’s Generativity
Theory2 breaks creative thinking down
to four core competencies:

 ˲ Broadening. The more diverse one’s

DOI:10.1145/2699391 Leen-Kiat Soh, Duane F. Shell, Elizabeth Ingraham, Stephen Ramsay, and Brian Moore

http://dx.doi.org/10.1145/2699391

34 COMMUNICATIONS OF THE ACM | AUGUST 2015 | VOL. 58 | NO. 8

viewpoints

As an example, in the Everyday Ob-
ject CCE, students are asked to act like
the inventor of an ordinary object that
we might frequently use. The chal-
lenge is to imagine this object does
not exist and to describe in written
language: the mechanical function of
the selected object; what need is ful-
filled by this object; and its physical
attributes and characteristics. The de-
scription must be specific enough so
that someone who had never seen the
object could recognize it and under-
stand how it works and understand
what benefits it provides. (Note: Stu-
dents were given a list of objects—zip-
per, mechanical pencil, binder clip,
Ziploc bag, scissors, tape measure,
stapler, nail clippers, umbrella, flash-
light, can opener, clothespin, sticky
notes, toilet paper holder, revolving
door—from which to choose.) Stu-
dents are then asked to consider and
write their responses to the following
questions. Analysis: (1) Consider your
object as a computer program. Draw a
diagram that shows all its functions as
boxes (name them), and for each func-
tion, its inputs and outputs. Are there
shared inputs and outputs among
the functions? (2) Consider the list of
physical attributes and characteris-
tics. Organize these such that each is
declared as a variable with its proper
type. Can some of these attributes/
characteristics be arranged into a hi-
erarchy of related attributes/charac-
teristics? Reflection: (1) Consider your
response to Analysis 1, are there func-
tions that can be combined so that the
object can be represented with a more
concise program? Are there new func-
tions that should be introduced to
better describe your object such that
the functions are more modular? (2)
Have you heard of abstraction? How
does abstraction in computer science
relate to the process of identifying the
functions and characteristics as you
have done in this exercise?

Our CCEs are anchored in instruc-
tional design principles shown to im-
pact deep learning, transfer, and devel-
opment of interpersonal skills. They
are designed to provide instruction on
CS concepts by combining hands-on
problem-based learning with written
analysis and reflection. They facilitate
transfer by using computational think-
ing and CS content more abstractly and

plinary environments on increasingly
complex problems.

Computational Creativity Exercises
In our framework, both computation-
al thinking and creative thinking are
viewed as cognitive tools that when
blended form computational creativ-
ity. This blending is not conceived as
a dichotomy, but rather as symbiotic
abilities and approaches. Computa-
tional thinking and CS skills expand
the knowledge and tools that one has
available, thereby broadening the scope
of problem solutions. Challenging
problems force computational tools to
be used in unanticipated and unusual
ways, leading to new computational
approaches to both old and new prob-
lems. Surrounding oneself with new
environments and collaborators cre-
ates novel ways of looking at problems
and attention to different stimuli and
perspectives that may be relevant to ap-
proaching a problem computationally.
Finally, capturing ideas for data repre-
sentations and algorithms can lead to
new data structures and solution pro-
cedures. By merging computational
and creative thinking, students can le-
verage their creative thinking skills to
“unlock” their understanding of com-
putational thinking.6

We have created a suite of Compu-
tational Creativity Exercises (CCEs)
designed to increase students’ compu-
tational creativity. Each CCE has four
common components: Objectives,
Tasks, CS Lightbulbs—explanations

connecting activities to CS concepts,
ideas, and practices—and Learning
Objects that relate the exercise tasks
directly to CS topics. The principles
underlying the design of our Computa-
tional Creativity Exercises are balanc-
ing of attributes between computation-
al and creative thinking and mapping
between computational and creative
concepts and skills as they manifest
in different disciplines. Each CCE re-
quires approximately one to two hours
per student, but students are given two
weeks to work on the exercises because
of the collaboration required. The
CCEs are designed so that the students
have hands-on and group tasks first, in
Week 1, and then reflect on their Week
1 activities in Week 2 by answering
analysis and reflection questions. Both
Week 1 and Week 2 are graded.

We see an
opportunity to
revise introductory
CS courses by
explicitly integrating
creative thinking
into the curriculum.

AUGUST 2015 | VOL. 58 | NO. 8 | COMMUNICATIONS OF THE ACM 35

viewpoints

ment of more CCEs. Furthermore, the
broader impacts of incorporating com-
putational creativity into introductory
CS courses are wide-ranging including
reaching underrepresented groups in
CS, outreach exposing young learners
to computational creativity, improving
learning of CS, and preparing students
to be creative problem solvers in in-
creasingly interdisciplinary domains.
We thus call to action CS (and other
STEM) educators to investigate and
adopt computational creativity in their
courses or curricula.

References
1. Epstein, R. Cognition, Creativity, and Behavior:

Selected Essays. Praeger, 1996.
2. Epstein, R. Generativity theory and creativity. Theories

of Creativity. Hampton Press, 2005.
3. Miller, L.D. et al. Improving learning of computational

thinking using creative thinking exercises in CS-1
computer science courses. FIE 43, (2013), 1426–1432.

4. Miller, L.D. et al. Integrating computational and
creative thinking to improve learning and performance
in CS1. SIGCSE’2014 (2014), 475-480.

5. Robinson, K. Out of Our Minds: Learning to be Creative.
Capstone, 2001.

6. Shell, D.F., Brooks, D.W., Trainin, G., Wilson,
K., Kauffman, D.F., and Herr, L. The Unified
Learning Model: How Motivational, Cognitive, and
Neurobiological Sciences Inform Best Teaching
Practices. Springer, 2010.

7. Shell, D.F. et al. Improving learning of computational
thinking using computational creativity exercises in a
college CS1 computer science course for engineers.
FIE 44, to appear.

8. Shell, D.F. and Soh, L.-K. Profiles of motivated
self-regulation in college computer science courses:
Differences in major versus required non-major
courses. J. Sci. Edu. Tech. Technology (2013).

9. Tharp, T. The Creative Habit: Learn it and Use it for
Life. Simon & Schuster, 2005.

10. Wing, J. Computational thinking. Commun. ACM 49, 3
(Mar. 2006), 33–35.

11. Wing, J. Computational thinking: What and why. Link
Magazine (2010).

Leen-Kiat Soh (lksoh@cse.unl.edu) is an associate
professor in the Computer Science and Engineering
Department at the University of Nebraska.

Duane F. Shell (dshell2@unl.edu) is a research professor
at the University of Nebraska.

Elizabeth Ingraham (eingraham2@unl.edu) is an
associate professor of art at the University of Nebraska.

Stephen Ramsay (sramsay.unl@gmail.com) is the
Susan J. Rosowski Associate Professor of English at the
University of Nebraska.

Brian Moore (brian.moore@unl.edu) is associate
professor of music education and music technology at the
University of Nebraska.

This material is based upon work supported by the
National Science Foundation under grant no. 1122956.
Additional support was provided by a University
of Nebraska-Lincoln (UNL) Phase II Pathways to
Interdisciplinary Research Centers grant. Any opinions,
findings, conclusions, or recommendations expressed
in our materials are solely those of the authors and do
not necessarily reflect the views of the National Science
Foundation or UNL.

Copyright held by authors.

without using programming code to ad-
dress problems seemingly unrelated to
CS. The CCEs foster development of cre-
ative competencies by engaging multi-
ple senses, requiring integrative, imagi-
native thought, presenting challenging
problems and developing interpersonal
skills using individual and collabora-
tive group efforts. The CCEs engage
the cognitive/neural learning processes
of attention, repetition, and connection
identified in the Unified Learning Mod-
el6 on synthesis of research in cognitive
neuroscience, cognitive science, and
psychology. They enhance learning and
retention of course material by focus-
ing attention on computational think-
ing principles, provide additional rep-
etition of computational thinking and
computing concepts from the class, and
provide connections of the material to
more diverse contexts and applications
at a higher level of abstraction.

Some Evidence
Four CCEs were deployed in four dif-
ferent introductory computer science
courses during the Fall 2012 semester
at the University of Nebraska, Lincoln.
Each course was tailored to a different
target group (CS majors, engineering
majors, combined CS/physical scienc-
es majors, and humanities majors).
Findings from 150 students showed
that with cumulative GPA controlled,
the number of CCEs completed was
significantly associated with course
grade (F(3, 109) = 4.32, p = .006, partial
Eta2 = .106). There was a significant
linear trend (p = .0001) from 2 to 4 exer-
cises completed. The number of CCEs
completed also was significantly asso-
ciated with a computational thinking
knowledge test score (F(3, 98) = 4.76,
p = .004, partial Eta2 = .127), again with
a significant linear trend (p < .0001)
from 0–1 to 4 exercises completed
with no differences for CS and non-
CS majors.3,4 These findings indicated
a “dosage” effect with course grades
and test scores increasing with each
additional CCE completed. The in-
creases were not trivial. Students in-
creased by almost a letter grade and
almost one point on the knowledge
test per CCE completed.

In a second evaluation,7 we em-
ployed a quasi-experimental design
comparing CCE implementation in
the introductory computer science

course tailored for engineers during
Spring 2013 (N = 90, 96% completing
three or four exercises) to a control se-
mester (N = 65) of no implementation
in Fall 2013. Using Analysis of Cova-
riance (ANCOVA), we found that stu-
dents in the implementation semester
had significantly higher computational
thinking knowledge test scores than
students in the control semester (M =
7.47 to M = 5.94) when controlling for
students’ course grades, strategic self-
regulation, engagement, motivation,
and classroom perceptions. (F(1, 106)
= 12.78, p <.01, partial Eta2 = .108). CCE
implementation students also report-
ed significantly higher self-efficacy
for applying their computer science
knowledge and skills in engineering
than non-implementation students
(M = 70.64 to M = 61.47; F(1, 153) =
12.22, p <.01, partial Eta2 = .074).

Overall, in relation to traditional
findings for classroom educational
interventions, these are strong effects
that demonstrate meaningful “real-
world” impact. The exercises appear
to positively affect the learning of core
course content and achievement for
both CS majors and non-majors. The
findings support our contention that
the Computational Creativity Exercises
can bring CS computational concepts to
CS and non-CS disciplines alike and im-
prove students’ understanding of compu-
tational thinking.

Call to Action
Encouraged by our evaluation findings,
we are currently working on adapting
the CCEs to secondary schools, design-
ing a course based on a suite of CCEs,
as well as continuing with the develop-

These core
competencies have
a solid anchoring
in contemporary
cognitive and
neuroscience
research.

