
An Integrated Framework for Improved

Computer Science Education: Strategies,

implementations, and results

Leen-Kiat Soh*, Ashok Samal and Gwen Nugent
University of Nebraska-Lincoln, USA

This paper describes the Reinventing Computer Science Curriculum Project at the University of

Nebraska-Lincoln. Motivated by rapid and significant changes in the information technology and

computing areas, high diversity in student aptitudes, and high dropout rates, the project designed

and implemented an integrated instructional/research framework. The framework is based around

10 general design strategies that incorporated administrative, instructional, and research principles.

The framework consists of a placement examination, three suites of structured laboratory

assignments, multimedia learning objects, and educational evaluation and research designs. The

results of implementing the framework in our introductory courses are encouraging and insightful.

While validating some of our designs, our research also identified areas for further development and

research.

1. Introduction

Continuous and significant changes in computer science (CS) technologies in the

areas of software engineering and information technology (IT) create considerable

pressure on academic institutions to keep the curriculum current and relevant.

Operationally, it requires frequent revisions of course design and adaptations of new

textbooks for CS courses. Educationally, it requires measurements and research on

how students learn new topics and how these topics impact on the students in both

the short and long term. Given the rate of change, it is difficult to implement these

changes, and it is particularly challenging to conduct educational research to assess

how students are adapting to the new changes. With a systematic method to develop,

deliver, and evaluate courses and supplementary activities more students will learn,

and learn more effectively. Furthermore, an approach of delivering these courses

that is particularly sensitive to varying educational and experiential backgrounds

will further promote attracting and retaining students. A CS curriculum that

*Corresponding author. 256 Avery Hall, University of Nebraska, Lincoln, NE 68588-0115, USA.

E-mail: lksoh@cse.unl.edu

Computer Science Education

Vol. 17, No. 1, March 2007, pp. 59 – 83

ISSN 0899-3408 (print)/ISSN 1744-5175 (online)/07/010059-25

� 2007 Taylor & Francis

DOI: 10.1080/08993400701203782



effectively accommodates both change and growth must be able to overcome

intrinsic difficulties associated with rapid change. Concomitantly, it must attract

and retain more students into this field despite the increasing technological

complexity.

Ever-changing technology also makes it difficult to provide high school students

with a consistent and up-to-date coursework foundation. As a result, college level

introductory CS courses are filled with students with diverse knowledge and

exposure. The need to provide varying levels of remediation is a challenge to both

students and educators and is especially challenging with respect to many target

populations, including women and minorities (Dabbagh, 1996; Rebelsky, 2000;

Sturm & Moroh, 1994). High dropout rates are indicative of the problem: 50% or

higher as reported in Allan and Kolesar (1996) and Powers (1999) and 15 – 30% as

reported in Guzdial and Soloway (2002). Difficult to grasp concepts coupled with the

skill levels of the students make existing lecture-based education in CS very

challenging (Cox & Clark, 1998; Urbain-Lurain & Weinshank, 1999).

In 2002 the University of Nebraska-Lincoln (UNL) Department of Computer

Science and Engineering (CSE), in collaboration with the College of Education and

Human Sciences (CEHS) and under the auspices of the National Center for

Information Technology in Education (NCITE), undertook a major revision of its

undergraduate curriculum. Based on a thorough and deliberate process the curri-

culum was significantly updated to promote rigor and practice and to align with the

recommendations in ACM/IEEE Computer Society Computing Curricula 2001. The

goal of this process was to prepare students for the dynamic and challenging

workplace in the CS and IT fields. The work also included development of an overall

framework to conduct systematic research on instructional approaches and their

effectiveness in both the short and long term.

The long-term goal of our project was to improve student learning and engagement

in CS. First, we envision a CS curriculum that can be intrinsically tested, that is

modular, and supported by active learning components such as laboratory assign-

ments and multimedia-based learning objects. Second, we envision that students and

instructors can design their own CS and IT courses by sequencing a subset of

learning objects and laboratory assignments together, for a variety of educational

purposes (e.g. continuing education, distance learning, and post-secondary college

preparation). Such a curriculum must have, within each course (a) embedded

instructional and educational research designs and (b) effective, flexible, customiz-

able, and modular components.

This paper describes our Reinventing Computer Science Project in terms of the

tools, techniques, and instruments developed to improve CS teaching and learning

and build towards our long-term goal. We describe how principles from educational

psychology and CS were combined to create an improved learning experience for

students. While many efforts in the past have developed tools and techniques that

relate to one or more aspects of our project, the comprehensive approach to the

problem as described here is unique. Teams from education, psychology, and CS

working together to improve CS curricula are not common and the collaboration

60 L.-K. Soh et al.



produces innovative learning environments, assessment at all levels, and mechanisms

for revision as necessary.

We first discuss the underlying design strategies that guided the research and

development of courseware for our project. Then we outline an integrated

instruction/research framework for the introductory course sequence in CS (CS0,

CS1, and CS2) that includes a placement examination, structured laboratory

assignments, cooperative learning, web-based learning objects, and embedded

instructional research. We also present our implementation of the introductory CS

courses and discuss the results of the implementation and student assessment.

Finally, we offer conclusions and lessons learned that might be generalizable to other

curriculum reform efforts that aim to use both technology and educational psy-

chology principles.

2. Design Strategies

Design strategies for our project framework were motivated, in part, by several

problems within the CS field. First, rapid and significant changes in software

development and IT have a profound impact on CS education, affecting both content

and pedagogy. A CS curriculum must have a versatile and up-to-date revision process

so that new topics and approaches can be efficiently introduced into the curriculum.

Second, the lack of a standardized K – 12 CS curriculum presents significant

challenges for high schools to provide students with a consistent and current

coursework foundation. From our experience, not only is the level of high school

preparation diverse, but also the form and content are inconsistent. High school

curricula may cover traditional CS topics such as programming and networking or the

focus may be on multimedia and Web page development. As a result, our college

level introductory CS courses are filled with students with diverse knowledge and

exposure, making it difficult to meet individual learning needs. What is called for is a

CS curriculum that can be more effectively customized or tailored to individual

needs. There is also the necessity to deliver different levels of introductory CS

courses, including remedial courses, as well as the need that college level CS

courseware be designed so that it can be delivered to high schools.

Third, in introductory CS courses, especially CS1, dropout rates are generally

high, and despite good faith efforts the gender disparity in recruiting, retention, and

graduation prevails. Numerous studies have been reported to investigate the reasons

for the above, e.g. an inappropriate approach to teaching object-oriented program-

ming in CS1, as reported in Bruce (2004), a lack of engaging projects or assignments,

as reported in Guzdial and Soloway (2002), a lack of adequate technology for online

learning, as reported in Xenos, Pierrakeas, and Pintelas (2002), and anonymity in a

large class with a lack of attention received by the students, as reported in Anderson

and Roxa (2000). However, attitudinal variables, such as motivation and self-efficacy,

have not been consistently studied, especially in introductory CS courses. UNL’s

Computer Science and Engineering (CSE) Department, for example, has had senior

surveys, exit examinations, and an undergraduate advisory panel to provide insights

An Integrated Framework for Computer Science Education 61



into what graduates have learned and experienced. However, like most schools, we do

not have a systematic and institutionalized process in place to track the student’s

progress and provide needed advice and remediation.

With the above motivations, our Reinventing Computer Science Curriculum

Project identified the following strategies for revision and implementation of our

introductory CS courses.

2.1. Strategy 1

The revision of CS curricula should be phased. Since the introductory course

sequence has a significant impact on recruitment and retention, these courses should

be revised before other core and upper division courses. This process allows the

project to better allocate and manage its resources, evaluate and learn from initial

phases, and implement the changes administratively.

2.2. Strategy 2

The project team should include faculty and researchers from computer science and

education. To better design the courseware, instructional pedagogy and assessment

experts in education are needed to work hand-in-hand with CS faculty.

2.3. Strategy 3

The curriculum should follow authoritative standards, such as the ACM/IEEE

Computer Society Computing Curricula 2001. The two leading professional bodies

in the field of CS, the Association for Computing Machinery (ACM) and the IEEE

Computer Society, have developed guidelines for core topics for a CS degree

programme for the past three decades and the guidelines have consistently evolved to

better fit technologicaladvances in computing.

2.4. Strategy 4

The curriculum should have modular (and even stand alone) courseware for its

courses. This allows curricular modules to be replaced and delivered more

conveniently. It also opens up the possibility of customization to fit student needs.

For example, if a transfer student has a deficiency in subtopic A he or she could take

only the necessary modules on subtopic A, instead of taking an entire course. Some

institutions have also developed online modules with the same rationale (Bradley &

Boyle, 2004; Herrmann, Popyack, Char, & Zoski, 2004; Herrmann et al., 2003).

2.5. Strategy 5

The curriculum should have flexible and adaptable courseware for students of

different aptitudes, motivations, and interests. Modular courseware facilitates

62 L.-K. Soh et al.



flexibility and adaptability. Further, courseware should be flexible in the

way that it is delivered and viewed. For example, online courseware that

could be used via the Internet, at anytime and anywhere, is flexible. Modular

laboratory assignment activities could also be used individually or sequenced

differently.

2.6. Strategy 6

The curriculum should include methods to measure attitudinal variables such as self-

efficacy and motivation. Attitudinal measures ascertain student’s confidence in their

CS knowledge and abilities (self-efficacy) and their intention to continue learning

about CS (motivation). Self-efficacy has been shown to be a key student variable, with

high correlations with achievement (Schunk, 1989), ease of learning (Schunk &

Hanson, 1985), use of active learning strategies (Pintrich & DeGroot, 1990), and

instructional persistence (Schunk, 1981).

2.7. Strategy 7

The curriculum should include methods to obtain objective, valid, and reliable

student outcome measures (Cross, Hendrix, & Barowski, 2002). The objective

assessment allows the curriculum to attain a certain degree of tractability, keeping

track of how and what students learn moving from one course to another, especially

in introductory CS courses.

2.8. Strategy 8

The curriculum should incorporate hands-on activities, teamwork, collaboration, and

cooperation (Gatfield, 1999; Johnson & Johnson 1989; Malinger, 1998; Prey, 1995;

Weber-Wullf, 2000), in its introductory courses. Cooperative learning is defined as

‘‘working together to accomplish shared goals’’ (Jensen, Johnson, & Johnson, 2002,

p. 161). By doing so, students are not only concerned with their own understanding

of the material, but also that of the other group members. The students are working

together to achieve the same goal. An advantage of cooperative learning is the

development of communication and problem-solving skills (Qin, Johnson, &

Johnson, 1995). In pair programming one student is the ‘‘driver’’ (leads the group

and is in control of the keyboard) and the other is the ‘‘observer’’ (observes,

comments upon, assists, and reviews the work of the driver). This instructional

strategy has been shown to have a positive effect on student learning (McDowell,

Werner, Bullock, & Fernald, 2003; Williams & Kessler, 2002). Introducing

teamwork and hands-on activities into the lower division courses should increase

student interest, motivation, and retention and provide preparation for the team-

oriented demands of the workforce. When we started the project our CS students in

upper division courses had been the only ones who had worked in groups for their

team projects.

An Integrated Framework for Computer Science Education 63



2.9. Strategy 9

The instructional framework should incorporate educational research. Experiments

should be conducted to evaluate different methods of instruction. Research design

should be in place to collect empirical data as well as to draw statistically significant

conclusions. Formative and summative assessments should also be part of the

research design to inform faculty, students, and administrators.

2.10. Strategy 10

The curriculum and its components should be institutionalized, particularly the

monitoring and refinement processes, to ensure continuity and quality. Software

tools and courseware are kept online, institutional knowledge is updated, instructors

are informed of the processes, teaching assistants are briefed to observe and record

feedback on the courseware, and the department is committed to implement the

designs. It is also important to obtain the support of the various administrative units

that oversee the curriculum design and changes.

3. Integrated Framework

Our Reinventing Computer Science Curriculum Project is an integrated framework

of courseware and software tools, combined with educational research design.

Presently, it includes a placement examination, a suite of structured laboratory

assignments, web-based learning objects, evaluation and research designs, and a

revision process. The current phase of our project focuses on introductory CS

courses, i.e. CS0, CS1, and CS2. Each of these components is described below, along

with the embedded research and evaluation designs and results.

3.1. Placement Examination

The primary purpose of the placement examination is to appropriately place students

into one of two introductory CS courses offered by our CSE department. The first

option is CS0, intended for students who lack prior exposure to logic constructs and

fundamental CS terminology and students who are not CS majors but who want to

gain a basic understanding of the field of CS, including programming. The second

option is CS1, intended for students who have a basic understanding of computing

concepts and who are likely to major in CS. Having these two courses allows our CSE

department to serve students with diverse backgrounds and different goals.

The contents of the placement examination are guided by the description of the

CS1 course in ACM/IEEE Computing Curricula 2001. Table 1 shows the topics

covered in the placement examination. The first five groups of topics are used as the

placement criteria; the second five are used in the pre- and post-test analysis for CS1.

The examination covers each of the major topics recommended by the Computing

Curricula 2001 guidelines and tests the students’ knowledge of each topic at multiple

64 L.-K. Soh et al.



levels, based on the cognitive model of Bloom’s taxonomy (Bloom, 1956). Bloom

identified six categories of the cognitive model: knowledge or recall, comprehension,

application, analysis, synthesis, and evaluation. Questions on our placement

examination cover only the first four categories.

The placement examination has undergone two major revisions and has now

stabilized. The revisions were based on several statistics. Item difficulty is determined

by the percentage of test takers who answer the question correctly. Questions that are

too easy or too difficult do not provide meaningful discrimination. Our target mean

for each question was between 0.4 and 0.85. The item total correlation for a question

shows the correlation between the students’ response to a question and their total

score. A good question should have a high positive correlation, i.e. students who have

high overall scores should be less likely to answer easy questions incorrectly and

students who have low overall scores should be less likely to answer difficult questions

correctly. While a value of 0.3 is generally regarded as a good target, we chose a value

of 0.2 as acceptable. For multiple choice questions the frequency of response for the

choices can also be used to measure the overall quality of a question. For example,

choices that are not picked should be redesigned or removed.

We also focused on internal consistency reliability, which is a measure of the item-

to-item consistency of a subject’s responses within a single test. We used Cronbach’s

Table 1. Selected Curricula 2001 topics covered in the placement examination

G Topics to be covered Expected competence

1 Functions, sets, relations [DS1] Application

Basic logic [DS2] Analysis

2 Fundamental data structures [PF3] Application

3 Fundamental programming constructs [PF1] Application

4 Algorithms and problem-solving [PF2] Application

Fundamental computing algorithms [AL3] Comprehension

Recursion [PF4] Comprehension

5 Machine level representation of data [AR2] Comprehension

General knowledge Comprehension

Computer Architecture [AR1] Comprehension

Programming Languages [PL1] Knowledge

Software design [ES1] Knowledge

Software tools and environments [SE3] Knowledge

6 Mastery of fundamental data structures [PF3] Application

7 Mastery of fundamental programming constructs [PF1] Application

8 Object-oriented programming [PL6] Application

9 Fundamental computing algorithms [AL3] Comprehension

Recursion [PF4] Analysis

10 Event-driven programming [PF5] Application

Software engineering Comprehension

Object-oriented design, reusable classes [SE1] Comprehension

Testing fundamentals [SE6] Comprehension

An Integrated Framework for Computer Science Education 65



a to assess the internal consistency reliability of our test. Our examination achieved

reliability measures of 0.70 – 0.74, which is considered reliable.

We also computed two predictive validity measures for our examination. First, the

overall predictive validity for our examination was determined by correlating a

student’s total score on the placement examination with his/her examination

scores on the course (r¼ .77, p5 .001). Second, the placement predictive validity

is computed by correlating students’ scores on the first 25 questions with their total

points on the course (r¼ .63, p5 .001). A good placement examination should have

a high predictive validity value.

Presently we are in the process of installing the placement examination to place

students in one of three options: CS0, CS1, and CS2. Students who perform poorly

in the first five groups of questions are placed in CS0. Students who perform well in

the first five groups but not in the second set of five groups are placed in CS1. Finally,

students who perform well in all 10 groups of questions are placed in CS2, essentially

‘‘testing out’’ CS1.

Readers are referred to Nugent et al. (2006) for a detailed discussion of the design

of our placement examination.

3.1.1. Research design and results for the placement examination. We use the placement

examination in a pre-test/post-test research design. At the end of the semester

students on CS1 take the examination as part of their final. Thus we are able to

measure gains at the individual student level and at the topic level for the class as a

whole. We are also able to calculate subscale scores, reported by content area and

level of Bloom’s taxonomy. The Bloom’s taxonomy scores showed that students

generally performed best on the comprehension and knowledge questions and lowest

on the higher level analysis questions. This result is to be expected, because com-

prehension knowledge is a precursor to higher level analysis skills. Differences in

scores on the comprehension and application pre-test problems across the reported

semesters were likely due to the revisions of the examination. For example, in the

autumn 2004 semester, application questions involving pseudocode were replaced by

problems using actual Java code. In addition, some of the easier comprehension

questions from the earlier semesters were made more difficult in an effort to improve

discrimination.

On examining content area scores it was observed that students consistently scored

highest on object-oriented programming and fundamental programming constructs

and lowest on programming constructs involving semantics/syntax and algorithms

and problem solving. The low scores on algorithms and problem solving are likely

due to the higher order thinking and analysis required for this difficult topic. Pre-test

scores on object oriented programming showed an upward trend, suggesting greater

coverage of this topic in high school. The high scores on fundamental data structures

reflect the lower level knowledge and comprehension skills inherent in this area.

It is also important to note that the scores from pre-test to post-test increased

across all levels of Bloom’s taxonomy and content area. Results from pre-test to post-

test for the CS1 course across two semesters showed a significant increase in

66 L.-K. Soh et al.



achievement, validating the instructional effectiveness. In autumn 2003 the overall

mean for the pre-test was 27.45 (SD¼ 5.32), which improved to 34.30 for the post-

test (SD¼ 5.34). A t-test for the significance of difference between these two mean

values was highly significant [t(63)¼ 11.04, p5 .001, r2¼ .32]. Similar results were

found for spring 2004 [t(68)¼11.81, p5 .001, r2¼ .45]. The overall mean for the

pre-test was 27.09 (SD¼5.75), which improved to 33.61 for the post-test

(SD¼ 5.61).

The greatest increases were in content areas emphasized in the CS1 course. In

general, we believe the scores provide evidence of measurement validity because they

show consistent patterns reflecting what we know about the content knowledge of

students entering the programme and what was emphasized in our CS1 course.

3.2. Structured Laboratory Assignmentss

Unlike open laboratory assignments, which tend to be an informal environment

provided for students to practice their skills with optional attendance, closed or

structured laboratory assignments have mandatory meeting times which support the

lecture component of the course. Structured laboratory assignments have several

advantages. Students learn at the beginning of their majors to be active learners

through goal-oriented problem solving in a laboratory setting (Parker & McGregor,

1995). Laboratory assignments also promote students’ cognitive abilities in

comprehension and application (Doran & Langan, 1995). Qualitative improvement

in student learning in the closed laboratory assignment sections for the CS1 course

has also been reported (Kumar, 2003; Thweatt, 1994). Exploration opportunities

also help first time programmers overcome common hurdles, such as misconceptions

about the nature of computers and programs (Lischner, 2001). The laboratory

environment also facilitates cooperative learning among students (Oliver & Dalbey,

1994) and can also help increase student retention (Geitz, 1994).

We have developed a suite of CS0, CS1, and CS2 laboratory assignments. Table 2

shows the central topics covered in the laboratory assignments for these courses.

Each laboratory assignment includes (1) a student handout, (2) a laboratory

worksheet, (3) an instructional script, (4) a pre-test, and (5) a post-test.

The student handout serves both as a preparation guide and the laboratory script. It

includes the laboratory assignment objectives, a description of the activities that will

be performed during the laboratory assignment (including the source code where

appropriate), a list of references to supplementary materials that should be studied

prior to the laboratory assignment and a list supplementary references that can be

reviewed after the student has completed the assignment. The student handout also

provides optional activities that can be completed during or following the laboratory

assignment to give students an opportunity for extra practice.

During each laboratory assignment students are expected to answer a series of

questions for each activity and record their answers on a worksheet (paper).

Worksheets contain questions specifically related to the laboratory assignment

activities and provide the students with an opportunity to find the answers by

An Integrated Framework for Computer Science Education 67



programming-based exploration. These worksheets also serve as an assessment tool

to gauge the student’s comprehension of topics learned and practiced in the

laboratory assignment.

In addition to the student handout, the laboratory assignment instructor is

provided with an instructional script that provides supplementary material that may

not be covered during lectures, special instructions for the laboratory assignment

activities, hints, resource links, and notes from previous experience with the

assignment. Additional space is provided at the end of the instructions for each

activity to allow the instructor to record his or her comments regarding the activity

and suggestions for improving the laboratory assignment.

The laboratory assignment pre-tests are administered online and students are

required to pass them prior to commencing the assignment, however, students may

take each pre-test as many times as necessary to achieve a passing score (80%). The

pre-test is in open book and open note format and includes multiple choice, short

answer and true/false questions. The goals of the laboratory assignment pre-test are to

encourage students to prepare for the laboratory assignment and to allow them to test

their understanding of the assignment objectives and concepts prior to commencing

it. Questions for the pre-test are taken from a variety of sources, including the course

Table 2. Laboratory topics for CS0, CS1 and CS2

CS0 CS1 CS2

Introduction to

computer account

Introduction to interactive

design environment (IDE)

Introduction to the UNIX operating

system and the make utility

Pseudocode and

algorithms

Documentation SQL queries

First C program

and dissection

Simple class Advanced SQL queries

Expressions and I/O Testing and debugging I Writing and compiling simple

programs (in Cþþ)

Functions and

procedures

File I/O Classes and operator overloading

(in Cþþ)

Conditionals Applets Pointers and references (in C/Cþþ)

Debugging Event-driven programming 1 Standard template libraries (in Cþþ)

Loops Exception Debugging (in Cþþ, with gdb)

Loops 2 GUI/swing The Web and scripting languages

(HTML and PHP or JSP)

Parameter passing Event-driven programming 2 Creating web forms (PHP or JSP)

Arrays Inheritance Creating an interface to a database

(PHP or JSP)

Strings Testing and debugging 2 Creating an interface to a

database (JAVA)

Debugging

and testing

Simple UML Web security

Recursion Unified Modeling Language (UML)

68 L.-K. Soh et al.



textbook, other textbooks, and questions found on the web. Questions are cate-

gorized according to Bloom’s taxonomy (Bloom, 1956).

During the last 10 minutes of each assignment, students take an online post-test as

another measure of their comprehension of laboratory assignment topics. Like the

pre-test, questions are taken from a variety of sources and are also categorized

according to Bloom’s taxonomy. It should be noted that the goal of the post-test is to

assess how well students learned the concepts after they have performed the activities

specifically designed to reinforce the concepts.

The design of our laboratories is modular and flexible and embeds methods for

collecting data on student learning. Each laboratory assignment has a set of activities

which can be replaced and refined over time. Each laboratory assignment is stand

alone and can also be replaced and refined. Indeed, we have added several new

laboratory assignments over the past few semesters (Testing and Debugging 2 and the

UML laboratory assignments are such examples). Since the laboratory assignment

documents are self-contained and do not need additional instruction, each laboratory

assignment is flexible and can be delivered in situ in a computer laboratory or at a

distance. The pre-test and post-test are also available online.

We are currently in the process of completing the laboratory assignments for

the CS0 course. By the end of autumn 2005 we will have a suite of 14 structured

laboratory assignments for CS0.

Details of our CS1 laboratory assignments and the embedded instructional

research design can be found in Soh, Samal, Person, Nugent, and Lang (2005a).

3.2.1. Research design and results for laboratory assignments. Because there are mul-

tiple laboratory assignment sections for CS1 we are able to implement different

laboratory assignment designs or delivery methods in different laboratory assign-

ment sections and test to see which are most effective. We have conducted

experiments on completion of laboratory assignments by individuals versus

cooperative groups.

To examine the impact of cooperative learning we designed three types of

laboratory settings to incorporate differing levels of cooperation within the in-class

exercises: (a) cooperative structured groups, in which students had formally defined

roles; (b) cooperative unstructured groups, in which students did not have defined

roles; (c) direct instruction groups, in which students worked individually.

In both cooperative groups students worked in groups of approximately three or

four students and the laboratory instructor served as a facilitator to encourage

group problem solving, as well as being available to answer questions. The primary

difference between the two cooperative groups was whether the structure of the group

was formally or informally defined. Students in the cooperative structured group had

formally defined roles, which alternated each week. Within this setting the laboratory

instructor was responsible for monitoring which student took the role of driver and

led the group work and keyed the information into the computer. The other students

acted as observers and were expected to be active in problem solving and to share

ideas within the group. The goal of the cooperative structured group design was to

An Integrated Framework for Computer Science Education 69



develop an interdependence among the group members based on the environment

(shared computer) and to break the tasks into smaller parts with each member being

responsible for a part. By doing so, the group succeeded if and only if each individual

contributed his or her part. There were 55 students in the cooperative group with

structure, 65 students in the cooperative group without structure, and 64 students in

the direct instruction group.

The cooperative unstructured group was the same as the cooperative structured

group except that the students were responsible for assigning roles and completing

tasks without intervention by the laboratory instructor. Thus, the roles were assigned

informally rather than formally.

The final group served as the control group, in which students worked individually.

We randomly assigned the pedagogic treatment (cooperative structured, cooperative

unstructured, or direct instruction) to three individual laboratory assignment

sections. While this method does not have the advantage of random selection of

individual students, equivalence of the sections was verified by examining the mean

scores for each section on the course pre-test. Between group tests showed that

average score in the placement examination was not significantly different between

the three sections [F(2,63)¼ 2.54, p¼ .09].

An initial study was conducted in autumn 2003 to test the impact of cooperative

learning in CS1 laboratory assignments. In this study both cooperative learning

groups performed significantly better than the direct instruction group [F(2,66)¼
6.33, p5 .05], as measured by the final laboratory assignment grade. The mean score

difference between the cooperative structured group and cooperative unstructured

group was, however, not significant (see Figure 1). In a subsequent study conducted

in spring 2004 there was no significant difference between treatment groups

[F(2,64)¼ 2.41, p¼ .10]. There was, once again, a trend for the students working in

Figure 1. Total laboratory scores (means) for two studies and three types of groups: cooperative

group with structure; cooperative group without structure; direct instruction

70 L.-K. Soh et al.



groups to perform better than the students who worked individually. Thus, we see

that cooperative learning is a more effective learning approach than individual

learning in our laboratory assignment setting.

Details of this study can be found in Lang et al. (2006).

As part of the ongoing evaluation of our laboratory assignments we also measured

students’ self-efficacy and motivation before and after the CS1 course (Soh et al.,

2005a). This Likert-type survey (Table 3) has statements with five choices: strongly

agree (5), agree (4), neutral (3), disagree (2), and strongly disagree (1). Questions 1,

3, 7, and 8 are used to gauge a student’s self-efficacy, while questions 2, 4, 5, and 6

are used to measure a student’s motivation. These questions were adapted from the

Motivated Strategies for Learning Questionnaire (MSLQ), developed by Pintrich and

DeGroot (1990). This survey is administered at the beginning of the semester and

then again at the end of the semester (pre-test/post-test research design) to measure

changes in student self-efficacy and motivation using paired samples t-tests. Table 4

shows a consistent decrease in both measures from pre-test to post-test. We also

noticed that the self-efficacy measure showed a significant decrease in autumn 2003

Table 3. Survey questions given to the students before and after the CS1 course to measure self-

efficacy and motivation

Self-efficacy/motivation survey question

1. I am confident in my CS knowledge and abilities.

2. I am motivated to learn more about CS/technology.

3. I did an excellent job on the problems and tasks assigned for this class.

4. I valued the opportunity to apply what was taught in lecture in a lab setting.

5. I valued the opportunities to interact and collaborate with other students in the class.

6. I was academically prepared to take this course.

7. Compared to other students in the class, I did well.

8. I think I will receive a good grade in this class.

Table 4. Student mean scores on self-efficacy and motivation before and after the semester

Fall 2003 Spring 2004

Before After Before After

Self-efficacy 3.76 3.48a 3.63 3.44a

Motivation 4.22 3.50b 4.19 3.24b

ap5 .05.
bp5 .001
Mean scores on the content and Bloom subscales can range from 0 to 1. A mean score of 1.0 would

indicate that all students responded correctly to the questions in this content area. The ranges for

self-efficacy and motivation scores are 1 – 5, with five indicating high efficacy and motivation.

An Integrated Framework for Computer Science Education 71



[t(71)¼ 2.08, p5 .05], with similar results in the spring [t(62)¼ 1.99, p¼ .05]. The

motivation variable exhibited even greater decreases [autumn, 2003, t(71)¼ 4.1

p5 .001; spring 2004, t(62)¼ 5.16, p5 .001].

These results clearly show that motivation and self-efficacy decreased in students

from the beginning of the semester to the end. This was an unexpected outcome, and

we believe it may be due to students’ inflated idea of self-efficacy on starting the

course. One question from the self-efficacy instrument specifically assessed students’

perception of their preparation to take the course. Results from this question

indicated that students started the course believing that they were academically

prepared, but exited it realizing that they were not.

We were also discouraged that students left the class less motivated to continue in

the field of CS and engineering. This result may be confounded by the fact that we

did not distinguish CS majors from non-majors. Many non-majors take CS1 to fulfil

a science requirement and have no intention of taking more CS classes. This is

especially true for the spring semester students. It is possible, therefore, that non-

majors were more susceptible to reduced motivation than majors.

We have also developed a second survey to obtain additional feedback from the

students about the various components of each laboratory assignment, to determine

how, for example, supplementary links provided in each laboratory assignment

handout have been used, whether students carried out the pre-laboratory assignment

activities, and so on. With this survey we investigated the relationships (a) between

what students think of the laboratory assignment content/format and students’

motivation to prepare before laboratory assignments and pursue the topic further

afterwards, (b) between what students think of how much they have learned and the

usefulness of the laboratory assignments, and (c) between the students’ motivation

and their view of the laboratory assignments, by estimating student motivation based

on the amount of time they spent before each assignment and what they thought of

the assignment relative to their overall success on the course, and so on.

Based on the surveys, we observed the following. The laboratory design is useful

and appropriate in format and content. The laboratory assignment materials

are informative and help students learn. Students who were motivated thought that

the laboratory assignment materials were useful and were willing to go through the

content before each assignment. This indicates that our laboratory assignment design

did not have negative effects on student motivation to attend the laboratory

assignments (although in another study we found that student motivation to pursue a

CS major decreased after taking CS1). However, students who were not motivated to

prepare before the laboratory assignment failed to appreciate it. Thus, it seems that

the laboratory assignments were unable to increase student motivation for those who

did not want to prepare. This insight has prompted us to investigate ways to

‘‘enliven’’ some of the assignments. We were encouraged by the observation that

student performance in the laboratory assignments correlated with their performance

in examinations and homework assignments. This indicates that our design of these

components was aligned. The correlation between student performance in the

laboratory assignments and on the placement examination is generally not significant.

72 L.-K. Soh et al.



This matches our expectation, since the placement examination emphasizes a

student’s comprehension and problem solving, while the laboratory assignments

emphasize a student’s programming skills. However, we did see that students who

performed better in our placement examination are more likely to perform better in

laboratory assignments involving more problem solving. These results of the surveys

are detailed in Soh, Samal, Person, Nugent, and Lang (2005b).

3.3. Learning Objects

From an instructional standpoint, learning objects are small, stand alone, mediated,

content ‘‘chunks’’ that can be reused in other instructional contexts, serving as

building blocks to develop lessons, modules, or courses. The value of learning objects

has been advanced by the Department of Defense (Advanced Distributed Learning,

2003), business and industry (Longmire, 2000), public schools (Nugent, 2005;

Pasnik & Nudell, 2003; Pugliese, 2002), and institutes of higher education (Koppi &

Lavitt, 2003; Wiley, 2000). Research on learning object approaches has verified its

instructional value (Boster, Meyer, Roberto, & Inge, 2002; Bradley & Boyle, 2004).

Although learning objects have been in use for more than a decade and much effort

has focused on the development of technology and standards, few formal approaches

have concentrated on the actual design of learning objects.

Our instructional design approach focused on appropriate use of multimedia

elements, student practice, feedback, and guidance, with the goal of encouraging

students to be cognitively active while minimizing cognitive load demands (Mayer,

2001). Our learning objects were also designed to be compliant with the Shareable

Content Object Reference Model (SCORM; see Advanced Distributed Learning

2004), operated within the University of Nebraska’s BlackBoard course management

system. Learning objects included the following four basic components, each of

which served a specific instructional function: (1) a brief tutorial or explanation

provided definitions, rules, and principles; (2) a set of real world examples illustrated

key concepts and included worked examples, problems, models, and sample code;

(3) a set of practice exercises, including immediate, elaborative feedback, provided

important active experiences; (4) a set of problems graded by the computer provided

a final assessment.

To date we have built two learning objects: simple class and recursion. Figure 2

shows a screen shot of the module on recursion, which involved a practice exercise.

We have delivered the objects as a replacement for two CS1 laboratory assignments

and we have required all CS1 students to review these objects to help them prepare

for class examinations. Being SCORM-compliant, our learning objects can be

deployed within any SCORM-compliant course management system, such as

Blackboard. At present we are planning on delivering these learning objects to high

school students and collecting data on achievement, motivation, and self-efficacy.

3.3.1. Research design and results for learning objects. To determine the effectiveness

of the learning objects we used a control – treatment design. All students in each

An Integrated Framework for Computer Science Education 73



experimental condition completed the same laboratory post-test, which tested

students’ understanding of the concept of simple class. Assignment to one of the two

treatment groups was made by laboratory assignment section. One laboratory

assignment section participated in the traditional laboratory activities; the other spent

the laboratory assignment time completing the Web-based learning object. Because

individual students were not randomly assigned to the treatment conditions (learning

object versus traditional laboratory assignment), equivalence of student CS knowl-

edge and abilities between laboratory assignment sections was especially important.

To test for group equivalency we examined the pre-test scores. There was no

significant difference between mean placement examination scores for the two

laboratory assignment sections [traditional laboratory assignment mean¼ 26.42,

learning object mean¼26.88, t(48)¼ .20, p¼ .84]. Mean score for the learning

object group was 7.88 (SD¼1.51); mean score for the traditional laboratory group

was 8.29 (SD¼1.23). However, the difference between the two means was not

significant [t(48)¼ 1.04, p¼ .30], indicating the approximate equivalence of the

learning object to the traditional laboratory experience. These series of evaluation and

research results confirm our belief that modular learning objects can be used

successfully for independent learning of complex subject matter and are a viable

option for distance delivery of course components.

Figure 2. Screen shot of practice exercises component

74 L.-K. Soh et al.



4. Discussion

Here we summarize what we have accomplished over the past 3 years with respect to

the design strategies. We discuss the impact of the strategies and whether they were

effective or not. Readers interested in an educational and student cognitive

perspective are referred to Samal, Nugent, Soh, Lang, and Person (2005).

4.1. Strategy 1. Revision of the CS curriculum should be in phases

We chose to focus on CS1 as our first phase since it is the first core course for our CS

and computer engineering majors, as well as being a required course for many non-

majors. The course, with a majority of CS majors and with its large numbers,

provided us with a large enough sample size to carry out our research studies, which

in turn allowed us to refine our instructional designs and materials. The experience

we gained from revising our CS1 course provided a valuable insight into the changes

needed for CS0 and CS2. We did not need as many revisions of these two courses as

was needed for CS1. Following our revision of the introductory courses we have

introduced two new upper division courses: CS Senior Design Project and CS

Internship. The CS Senior Design Project course, which requires students to work in

teams and practice their communication skills, both writing and presentation, has

been offered once and will be required for new students. The Internship course will

be offered in spring 2006 and will provide students with hands-on experience in a

workplace environment and provide opportunities for decision-making, planning,

and design of real world solutions.

4.2. Strategy 2. The project team should include faculty and researchers from computer

science and education

Our project team consists of students and faculty from the Computer Science and

Engineering Department, the College of Education and Human Sciences, and the

National Center for Information Technology in Education. This combination of

faculty provided a comprehensive perspective regarding content, pedagogical, and

assessment issues. To facilitate the collaboration, we started our Reinventing

Computer Science Curriculum Project with a semester-long, weekly series of

seminars (in spring 2003) involving researchers and students of CS and education.

This seminar proved to be beneficial to the participants: both sides learned about

each other’s terminologies, theories, and strategies, allowing the team to collaborate

and understand each other.

4.3. Strategy 3. The curriculum should follow authoritative standards

Our placement examination and the laboratory assignment topics are based primarily

on the ACM/IEEE Computer Society Computing Curricula 2001. However, the CS

curriculum is constantly evolving. For example, the 2005 version has just recently

An Integrated Framework for Computer Science Education 75



been released. Further, due to constraints on departmental resources (faculty,

students, etc.), not all topics can be covered to the extent required or recommended

by Curricula 2001. As a department we have had to exercise judgement in identifying

what topics to cover and at what depth. We also further translated the expected level

of understanding of a topic from Curricula 2001 to the equivalent Bloom’s taxonomy

for assessment.

4.4. Strategy 4. The curriculum should have modular (and even stand alone) courseware

We have produced modular structured laboratory assignments for CS0, CS1, and

CS2. We have also built two learning objects. Within each module the design is also

modular. For example, individual activities (such as tutorials, examples, and

problems) in a laboratory assignment or a learning object can be replaced and

resequenced. These modules can also allow other audiences (high school students,

community college students, and business and industry employees) to take advantage

of course content. Although breaking down a course into modules is not difficult (one

could use Computing Curricula 2001 as a guide), initially building a batch of these

modules to ‘‘fill’’ a course can be exceedingly resource taxing and time consuming.

However, once a base set is developed, adding new, individual modules is

significantly easier.

4.5. Strategy 5. The curriculum should have flexible and adaptable courseware

for students of different aptitudes, motivations, and interests

We designed learning objects so that students who knew the material could progress

quickly while those who needed more practice had the opportunity to obtain

additional practice. Although our courseware was built with the goal of flexibility, we

did not give students or faculty the opportunity to ‘‘customize’’ courses. The main

reason was that we do not have a large enough repository to allow this degree of

flexibility. However, we note two different instances that demonstrate the flexibility

and adaptation of our courseware. In spring 2004, after noticing that students were

not proficient at debugging, even after one Debugging and Testing assignment, we

were able to quickly build another Debugging and Testing laboratory assignment for

that semester and substitute it into the course. In autumn 2005 several students were

unable to attend their laboratory assignment section because of a holiday. We simply

required them to take the simple class learning object, which coincided with the

laboratory assignment topic for that week. As a result, these students were able to

keep pace with the rest of the class.

4.6. Strategy 6. The curriculum should have methods to measure attitudinal variables such

as self-efficacy and motivation

We have designed several surveys to assess student self-efficacy and motivation,

recognizing that a positive attitude is critical for retention and student success. This is

76 L.-K. Soh et al.



one area where our research has shown disappointing results; students’ motivation

and self-efficacy actually decreased from the beginning to the end of the CS1 course.

For our future work in this area we plan to distinguish CS majors from non-majors. A

CS major will be more likely approach course CS1 with greater seriousness than a

non-major, who may be required to take an introductory CS course. We also plan to

utilize qualitative research strategies using interviews to obtain more in-depth

understandings of students’ CS1 experiences.

4.7. Strategy 7. The curriculum should include methods to obtain objective,

valid and reliable measures of student outcomes

We have been careful to use instruments with established reliability and validity, and

the instruments we have designed ourselves have undergone thorough pilot testing

and revision to establish acceptable psychometric properties. We have also used the

placement examination, laboratory assignment post-tests, worksheets, and course

examations as assessment mechanisms. The placement examination is essentially our

workhorse. It not only serves as our placement examination, placing students on

either CS0 or CS1, but also serves as the normalization factor for our research

studies. One future goal is to develop mechanisms to track students throughout their

CS degree sequence, allowing us to better assess the role of the introductory courses

in building a foundation for future student success.

4.8. Strategy 8. The curriculum should incorporate hands-on activities, teamwork,

collaboration, and cooperation

We have combined teamwork and pair programming into our structured laboratory

assignments. After evaluating the impact of cooperative learning on the laboratory

assignments for three semesters, we now require all students to work in groups in

the assignments. Each of our laboratory assignments also involves hands-on explo-

ration of programming and problem solving.

4.9. Strategy 9. The curriculum should incorporate instructional and educational research

From the conception to the implementation of our integrated framework we have

paid particular attention to research. All of our questions (in the placement

examination and laboratory assignment post-tests) were rated in Bloom’s taxonomy,

so that we could determine what types of questions the students are best at solving.

Our research designs are based on pre-post (repeated measures) comparisons or

comparisons between control and treatment groups. We have also utilized sound

statistical methods to validate the reliability and predictive validity of our results.

Learning was measured by the placement examination, course examinations, and

scores on laboratory assignment worksheets and post-tests. We also conducted

qualitative interviews as part of a mixed method approach to obtain more in-depth

results concerning the courseware, learning, and instruction. As a result of

An Integrated Framework for Computer Science Education 77



incorporating instructional and educational research we have (1) revised and

instituted a more valid and reliable placement examination, (2) revised the structure

of our laboratory assignments, including now incorporating cooperative learning in

all our CS1 laboratory assignments, (3) identified areas that need more emphasis in

regular lectures (since post-test examination scores can be broken down by content

area and Bloom’s competence levels), and (4) documented that students enjoyed and

benefited from the learning objects and are now working on delivering them to high

school students for recruitment.

4.10. Strategy 10. The curriculum and its components should be institutionalized,

particularly the monitoring and refinement processes to ensure continuity and quality

At present we have a project web site to store all documents and courseware. We

have written technical papers to document our findings. Moreover, the Computer

Science Education Department, the National Center for Information Technology in

Education, and the College of Education and Human Sciences are committed to

continue to fund and seek further funding to support this effort. The project team

has direct access to the instructors and teaching assistants of the CS0, CS1, and

CS2 courses. The entire process is documented and open and the department and

faculty are informed of progress and status. To encourage faculty buy-in we have an

instructional script for each laboratory assignment, and have put pre-tests and post-

tests for each laboratory assignment online, for example. Delivering our tests and

placement examination online also allow us to deliver these assessment mechanisms

consistently over time, and make them convenient for an instructor to grade and

tally scores. Online access is also convenient for the students. For example, high

school seniors enrolling on CS1 can now take our placement examination remotely

in the summer before attending school in the autumn semester. Further, we have

had three different laboratory assignment instructors and two different course

instructors for CS1 and three different laboratory assignment instructors and two

different instructors for CS2. However, due to the institutionalization of the our

placement examination and laboratory assignments, we have observed the

following: (1) new instructors can ease into teaching CS1 and CS2 without too

much of a ‘‘workload shock’’; (2) faculty have been more willing to teach

these courses; (3) instructors can now concentrate on their regular lectures

instead of getting involved in the design and logistics of the laboratory assign-

ments; (4) the department and students feel more confident in the consistency of

the quality of the courses over different semesters and taught by different

instructors.

Summary and Future Directions

We have presented a set of design strategies to address the needs of adapting to rapid

and significant changes in the areas of IT and computing, of creating flexible,

customizable, adaptable courseware, and of embedding educational research design

78 L.-K. Soh et al.



into the CS curriculum. Based on these strategies we have implemented an integrated

framework that consists of a placement examination, three suites of structured

laboratory assignments, learning objects, and evaluation/research designs. For

each component we have described its design and implementation, as well as the

results.

Our research showed positive achievement gains, across levels of Bloom’s

taxonomy and within specific content areas, for our reinvented CS1 course. The

use of cooperative learning techniques within a CS laboratory environment increased

student achievement. The learning objects were also shown to be an effective strategy

to deliver CS content and to provide students with individualized practice

opportunities.

The project has developed a process by which research experiments can be

designed and conducted, students can be placed on different introductory CS

courses, laboratory assignments can be monitored, revised, and replaced, course

content can be flexibly delivered online, and valuable data can be collected via surveys

and objective assessment mechanisms. With online materials and the support of the

department the project will be able to impose tractability and continuity over time,

allowing the curriculum to be further refined and evaluated and the students to be

continuously assessed.

Our ongoing and future work includes the following. We are presently in the

process of completing our design of the CS0 structured laboratory assignments. By

the end of autumn 2005 we will have a complete set. This will complete all three

suites of laboratory assignment materials. Our success with the online learning objects

has led to plans to develop a suite of such objects, as well as online authoring tools to

turn course content into SCORM-compliant learning objects. We are also in the

process of using the placement examination to place students on CS0, CS1, or CS2.

Once that is installed, we will conduct tests similar to those for placing students on

CS0 or CS1, with the intent of also determining the validity and reliability of the

examination in placing students on CS2. We also plan to conduct further

experiments on student self-efficacy and motivation, to distinguish between majors

and non-majors, to better determine whether majors are motivated and have more

confidence in their knowledge of CS after each course. Our placement examination

and structured laboratory assignments have been reviewed and revised during each

semester. We have also outlined plans to deploy the two learning objects in high

schools to recruit students into CS, to evaluate the learning objects, and to assess

student knowledge.

In summary, the work conducted under the Reinventing Computer Science Project

has resulted in three significant outcomes. First, the revised curriculum is effective;

informal assessment by CS instructors indicates that students who take CS1 show a

stronger background in problem solving using programming concepts on subsequent

courses. Students who have taken these courses have also indicated that they have a

greater confidence in their problem solving and programming abilities. Second, the

project has produced substantial courseware and software tools that could be shared

within the CS education community. (Readers are referred to our project web site,

An Integrated Framework for Computer Science Education 79



http://cse.unl.edu/reinventCS, for downloads of the documents and materials

described in this paper.) Third, the project has also put in place research components,

including specific measures and educational research methods, to evaluate and

validate new approaches used within the CS curriculum.

Acknowledgement

This work was supported in part by funding from the National Center for

Information Technology in Education. We would like to thank Art Zygielbaum,

Suzette Person, Rich Sincovec, Chuck Riedesel, Joseph Bernadt, Chao Chen, Kye

Halsted, Brandon Hauff, Smitha Kasinadhuni, Andy Kosenander, Jeff Lang, Xuli

Liu, Joyita Mallik, Saket Das, and Traci Fink for their invaluable help in imple-

menting this project.

References

Advanced Distributed Learning (ADL). (2003, December 15). DoD affirms SCORM’S role in

training transformation [Press release]. Retrieved May 12, 2004, from http://www.adlnet.org

Advanced Distributed Learning (ADL). (2004). Sharable content object reference model (SCORM):

2004 overview. Retrieved May 12, 2004, from http://www.adlnet.org/

Allan, V. H., & Kolesar, M. V. (1996). Teaching computer science: A problem solving approach

that works. Proceedings of the Annual National Educational Computing Conference (ERIC

Document Reproduction Service No. ED393878).

Anderson, R., & Roxa, T. (2000). Encouraging students in large classes. Proceedings of the 31st

SIGCSE Technical Symposium on Computer Science Education (SIGCSE’2000), 176 – 179. New

York: ACM Press.

Bloom, B. S. (1956). Taxonomy of educational objectives, Book 1, Cognitive domain, New York:

Longman.

Boster, F. J., Meyer, G. S., Roberto, A. J., & Inge, C. C. (2002). A report on the effect of the united

streaming application on educational performance. Farmville, VA: Longwood University.

Retrieved November 8, 2004 from http://caret.iste.org/index.cfm?StudyID¼852&fuseaction¼
studySummary

Bradley, C., & Boyle, T. (2004). The design, development, and use of multimedia learning objects.

Journal of Educational Multimedia and Hypermedia, 13(4), 371 – 389.

Bruce, K. B. (2004). Controversy on how to teach CS 1: A discussion on the SIGCSE-members

mailing list. The SIGCSE Bulletin, 36(4), 29 – 34.

Cox, K., & Clark, D. (1998). The use of formative quizzes for deep learning. Computers and

Education, 30(3/4), 157 – 167.

Cross, J. H., Hendrix, T. D., & Barowski, L. A. (2002). Using the debugger as an integral part of

teaching CS1. In D. Budny & G. Bjedov (Eds.), Proceedings of the 32nd ASEE/IEEE Frontiers in

Education Conference, F1G-1 – FIG-6. Piscataway, NJ: IEEE Press.

Dabbagh, N. (1996). Creating personal relevance through adapting an educational task,

situationally to a learners individual needs. Proceedings of the National Convention of the

Association for Educational Communications and Technology (ERIC Document Reproduction

Service No. ED397787).

Doran, M. V., & Langan, D. D. (1995). A cognitive-based approach to introductory computer

science courses: lessons learned. Proceedings of the 26th SIGCSE Technical Symposium on

Computer Science Education (SIGCSE’95), 218 – 222. New York: ACM Press.

80 L.-K. Soh et al.



Gatfield, T. (1999). Examining student satisfaction with group projects and peer assessment.

Assessment and Evolution in Higher Education, 24(4), 365 – 377.

Geitz, R. (1994). Concepts in the classroom, programming in the lab. Proceedings of the 25th

SIGSE Symposium on Computer Science Education (SIGCSE’94), 164 – 168. New York: ACM

Press.

Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to program. Communications

of the ACM, 45(4), 17 – 21.

Herrmann, N., Poppyack, J, Char, B, Zoski, P., Cera, C, Lass, R., et al. (2003). Redesigning

introductory computer programming using multilevel online modules for a mixed

audience. In S. Grissom, D. Knox, D. Joyce, & W. Dann (Eds.), Proceedings of the 34th

SIGCSE Technical Symposium on Computer Science Education (pp. 196 – 200). New York:

ACM Press.

Herrmann, N., Poppyack, J, Char, B., & Zoski, P. (2004). Assessment of a course redesign:

Introductory computer programming using online modules. In D. Joyce, D. Knox, W. Dann,

& T. L. Naps (Eds.), Proceedings of the 35th SIGCSE Technical Symposium on Computer Science

Education, 66 – 70. New York: ACM Press.

Jensen, M., Johnson D. W., & Johnson, R. T. (2002). Impact of positive interdependence during

electronic quizzes on discourse and achievement. Journal of Educational Research, 95(3),

161 – 166.

Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition: Theory and research. Edina,

MS: Interaction Books.

Koppi, T., & Lavitt, N. (2003). Institutional use of learning objects three years on lessons.

In E. Duval, W. Hodgins, D. Rehak, & R. Robson (Eds.), ED-MEDIA 2003, Proceedings of

Learning Objects Symposium: Lessons learned questions asked (pp. 33 – 43). Norfolk, VA:

Association for the Advancement of Computing in Education. Retrieved November 8, 2004,

from http://www.aace.org/conf/edmedia/LO2003Symposium.pdf

Kumar, A. N. (2003). The effects of closed laboratory assignments in computer science I: an

assessment. Journal of Computing Sciences in Colleges, 18(5), 40 – 48.

Lischner, R. (2001). Explorations: structured laboratory assignments for first-time programmers.

Proceedings of the 32nd SIGCSE Technical Symposium on Computer Science Education

(SIGCSE’2001), 154 – 158. New York: ACM Press.

Longmire, W. (2000). A primer on learning objects. Learning Circuits: ASTD’s Online Magazine

about E-learning. Retrieved November 25, 2003, from http://learningcircuits.org

Lang, J., Nugent, G., Samal, A., & Soh, L.-K. (2006). Implementing CS1 with embedded

instructional research design in laboratories. IEEE Transactions on Education, 49(1), 157 – 165.

Malinger, M. (1998). Collaborative learning across borders: Dealing with student resistance.

Journal of Excellence in College Teaching, 9(1), 53 – 68.

Mayer, R. (2001). Multimedia learning. New YorkCambridge University Press.

McDowell, C., Werner, L., Bullock, E., & Fernald, J. (2003). The impact of pair programming on

student performance, perception and persistence. In A. Jacobs & F. Titsworth (Eds.),

Proceedings of the 25th International Conference on Software Engineering, 602 – 607. Los Alamitos,

CA: IEEE Computer Society.

Nugent, G. C. (2005). The use of learning objects in K – 12: a public television perspective. Tech

Trends, 49(4), 61 – 66.

Nugent, G., Soh, L.-K., Samal, A., & Lang, J. (2006). A placement test for computer science:

design, implementation, and analysis. Computer Science Education, 16(1), 19 – 36.

Oliver, S. R., & Dalbey, J. (1994). A software development process laboratory for CS1 and CS2.

Proceedings of the 25th SIGSE Symposium on Computer Science Education (SIGCSE’94),

169 – 173. New York: ACM Press.

Parker, B. C., & McGregor, J. D. (1995). A goal-oriented approach to laboratory development and

implementation. Proceedings of the 26th SIGCSE Technical Symposium on Computer Science

Education (SIGCSE’95), 92 – 96. New York: ACM Press.

An Integrated Framework for Computer Science Education 81



Pasnik, S., & Nudell, H. (2003). PBS K-12 digital classroom pilot evaluation report. New York: Center

for Children and Technology.

Pintrich, P. R., & DeGroot, E. V. (l990). Motivation and self-regulated learning com-

ponents of classroom academic performance. Journal of Educational Psychology, 83(1),

33 – 40.

Powers, K. (1999). A self-fulfilling prophecy: Online distance learning for introductory computing.

Proceedings of the National Educational Computing Conference 1999. Washington, DC: ISTE.

(ERIC Document Reproduction Service No. ED432994).

Prey, J. C. (1995). Cooperative learning in an undergraduate computer science curriculum

[Electronic version]. In G. Bjedov & J. B. Perry (Eds.), Proceedings of ASEE/IEEE 1995 Frontiers

in Education Conference (Session 3c23) (vol. 2, pp. 3c2.11 – 3c2.14). Retrieved November 8,

2004, from http://fie.engrng.pitt.edu/fie95/3c2/3c23/3c23.htm

Pugliese, L. C. (2002). The transformation of educational publishing: Emergence and growth of a

teacher-centered, learning-object environment. Technos, 11(3), 22 – 26.

Qin, Z., Johnson, D. W., & Johnson, R. T. (l995). Cooperative versus competitive efforts and

problem solving. Review of Educational Research, 65, 129 – 143.

Rebelsky, S. (2000). A web of resources for introductory computer science [Technical report].

(ERIC Document Reproduction Service No. ED445881).

Samal, A., Nugent, G., Soh, L.-K., Lang, J., & Person, S. (2005). Reinventing computer science

curriculum at University of Nebraska. In L. M. PytlikZillig, M. Bodvarsson, & R. Bruning

(Eds.), Technology-based education: Bringing researchers and practitioners together (ch. 4,

pp. 63 – 82). Greenwich, CT: Information Age Publishing.

Schunk, D. H. (l981). Modeling and attributional effects on children’s achievement: a self-efficacy

analysis. Journal of Educational Psychology, 73, 93 – 105.

Schunk, D. H. (l989). Self efficacy and cognitive skills learning. In R. Ames & C. Ames (Eds.),

Research on motivation in education: Goals and cognitions (pp. 13 – 43). San Diego, CA: Academic

Press.

Schunk, D. H., & Hanson, A. R. (1985). Peer models: Influence on children’s self-efficacy and

achievement. Journal of Educational Psychology, 77, 313 – 322.

Sturm, D., & Moroh, M. (1994). Encouraging enrollment and retention of women in computer

science classes. Proceedings of the Annual National Educational Computing Conference.

Washington, DC: ISTE. (ERIC Document Reproduction Service No. ED396688).

Soh, L.-K., Samal, A., Person, S., Nugent, G., & Lang, J. (2005a). Closed laboratories with

embedded instructional research design for CS1. Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (SIGCSE’2005), St. Louis, MO, February 23 – 27,

297 – 301.

Soh, L.-K., Samal, A., Person, S., Nugent, G., & Lang, J. (2005b). Analyzing relationships between

closed laboratory assignments and course activities in CS1. Proceedings of the 10th Annual

SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE’2005),

183 – 187. New York: ACM Press.

Thweatt, M. (1994). CS1 closed laboratory assignment vs. open laboratory assignment

experiment. Proceedings of the 25th SIGSE Symposium on Computer Science Education,

80 – 82. New York: ACM Press.

Urban-Lurain, M., & Weinshank, D. J. (1999, April). Mastering computing technology: A new

approach for non-computer science majors. Paper presented at the Annual Meeting of the

American Educational Research Association, Montreal, Quebec. (ERIC Document Repro-

duction Service No. ED347917).

Wiley, D. (2000). Learning objects: Difficulties and opportunities [Online publication], Retrieved May

12, 2004, from http://wiley.ed.usu.edu/articles.html

Williams, L. A., & Kessler, R. R. (2002). Pair programming illuminated. Boston: MA: Addison-

Wesley.

82 L.-K. Soh et al.



Weber-Wullf, D. (2000). Combating the code warrior: A different sort of programming instruction.

In D. Joyce (Ed.), Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE Conference on

Innovation and Technology in Computer Science Education (pp. 85 – 88). New York, NY: ACM

Press.

Xenos, M., Pierrakeas, C., & Pintelas, P. (2002). A survey of student dropout rates and dropout

causes concerning the students in the Course of Informatics of the Hellenic Open University.

Computers and Education, 39(4), 361 – 377.

An Integrated Framework for Computer Science Education 83


