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16 Abstract. This paper describes a negotiation model that incorporates real-time issues for autonomous

17 agents. This model consists of two important ideas: a real-time logical negotiation protocol and a case-

18 based negotiation model. The protocol integrates a real-time Belief-Desire-Intention (BDI) model, a

19 temporal logic model, and communicative acts for negotiation. This protocol explicitly defines the logical

20 and temporal relationships of different knowledge states, facilitating real-time designs such as multi-

21 threaded processing, state profiling and updating, and a set of real-time enabling functional predicates in

22 our implementation. To further support the protocol, we use a case-based reasoning model for negotiation

23 strategy selection. An agent learns from its past experience by deriving a negotiation strategy from the

24 most similar and useful case to its current situation. Guided by the strategy, the agent negotiates with its

25 partners using an argumentation-based negotiation protocol. The model is time and situation aware such

26 that each agent changes its negotiation behavior according to the progress and status of the ongoing

27 negotiation and its current agent profile. We apply the negotiation model to a resource allocation problem

28 and obtain promising results.

29 Keywords: real-time negotiation, temporal logic, argumentative negotiation protocol, case-based rea-

30 soning, multi-agent system.

31 1. Introduction

33 While negotiation has been used in the past in problem solving in multi-agent sys-
34 tems, in our work we focus on negotiations and activities that must occur in real
35 time. The introduction of hard real-time constraints in negotiation and action exe-
36 cution complicates the problem greatly, and existing negotiation protocols cannot
37 provide an adequate solution. In this paper we describe a real-time negotiation
38 model that is used in resource allocation problems. As an example domain we use
39 multi-sensor target tracking, where each agent controls a sensor with a limited
40 sensing coverage area. As a target moves across space, agents have to cooperate to
41 track it. Each agent (together with the sensor it controls) consumes resources such as
42 time, battery power, bandwidth of the communication channel, and some percentage
43 of the CPU where the agent resides, and each agent strives to manage and utilize
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44 its resources efficiently and effectively. This motivates the agents to share their
45 knowledge about a problem based on their viewpoints in their effort of arriving at a
46 solution. The problem of global resource allocation becomes a problem of locally
47 negotiated compromises and local constraint satisfaction.
48 We propose a logical negotiation protocol that incorporates a real-time Belief-
49 Desire-Intention (BDI) model [43, 44] to dictate the rules of encounter among our
50 autonomous agents. A feature of our problem involves generating a ‘‘good-enough,
51 soon-enough’’ solution1 to resource allocation. Since time is critical – for example, to
52 make a good triangulation for the location of a target, three different sensors have to
53 make a measurement within 2 seconds of each other – agents use time to guide their
54 negotiation behavior. We base our temporal model on [1] in which logical events or
55 propositions can be ordered consistently along a timeline and durations of events or
56 propositions holding true can be derived from their relationships with others. This
57 temporal logic allows us to define explicitly the transition of a BDI state to another,
58 including causality and co-existence. Equipped with the definition of time, we are
59 able to model our negotiation activity with more accuracy, spelling out how and
60 when a state changes and how and when it changes with other states, such as state s1
61 triggers state s2, s1 has to occur before s2, s1 must hold true for some time during
62 which s2 must hold true as well, and so on. Therefore, states may change their truth
63 values during a reasoning process as long as the states are needed to hold constant
64 during that time period do – releasing other states to be updated or changed by other
65 events or states. This is critical in our agent design as each agent is multi-threaded,
66 meaning that several threads may attempt to access and modify the same variable
67 (state) at the same time. To maintain data integrity, when a thread is accessing or
68 modifying a variable, other threads will be blocked, and this is the common
69 approach. However, software designers must find out how and for how long the
70 threads will be blocked; and this information is very important in a real-time system
71 like ours. With temporal logic, we know for how long threads will be blocked and
72 how these threads will be blocked awaiting which variables (states) to become
73 accessible. This allows us to fine-tune the system to increase the efficiency of the
74 negotiation process. Further, by incorporating temporal logic and BDI models into
75 our negotiation protocol, we can improve the temporal and logical structure that
76 facilitates the completion of a negotiation. We know what states are needed (and
77 when they are needed) for a negotiation to logically complete, and we also can model
78 the time distribution or usage needed for each step of the negotiation to complete
79 within certain time constraints.
80 Note that temporal components have been in place in the BDI model [9, 43] to
81 determine how the three modalities are related over time. For example, taking time
82 into consideration allows one to have persistent intentions, inevitable outcomes, and
83 so on. In our model, we use temporal logic to control the stability of a state, which in
84 turn facilitates our multi-threaded solution.
85 We further define two sets of communicative acts – one for handling incoming
86 messages and one for handling outgoing messages. A communicative act that han-
87 dles incoming messages is a function that turns an event (the arrival of a message) to
88 a set of BDI states. The function parses the incoming message and generates states
89 that are necessary for the agent reasoning during a negotiation process. Similarly, a
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90 communicative act that handles outgoing messages is a function that composes a
91 message based on the agent’s current BDI states and sends it out via a communi-
92 cation channel. We qualify these acts with temporal logic and incorporate them into
93 the negotiation protocol. In addition to the communicative acts, we utilize a suite of
94 real-time enabling functional predicates to assist agents in negotiations. These
95 predicates are events that take time to execute and they also generate or modify
96 states.
97 Since each agent is autonomous and reacts to its environment, each has its own
98 knowledge base and its own monitoring of the world events, including its sensor, its
99 neighbors, and the targets. To increase the fault tolerance of the multi-agent system,

100 each agent is responsible only for the resources it controls (in our example domain,
101 its sensor and associated components), and it controls the minimal set of resources it
102 requires to achieve its task. In our work agents have minimal knowledge and
103 information – they know how to perform their tasks, have a local, limited view of the
104 world provided to them by the equipment they control, and know of the existence of
105 other similar agents, but they do not have an explicit view of the information of the
106 other agents. There is some implicit knowledge, namely that the other agents control
107 a set of resources, that they are willing to cooperate, that they are capable of
108 negotiation for resource sharing, and that they are truthful. To establish a common
109 reasoning basis during a collaborative effort, an agent is required to communicate to
110 its potential partner why it needs to share the resources controlled by the partner.
111 This knowledge exchange can be done via different mechanisms such as a blackboard
112 where agents post information on a common site, or auctions where a contractor-
113 agent oversees the message passing among contractee-agents, or through agent-
114 based negotiations where agents exchange information directly. In our approach, we
115 use negotiations motivated by a global goal – to track as many targets as accurately
116 as possible – guided by a set of local optimization criteria that affect the strategies.
117 During a negotiation agents exchange information of their individual viewpoints of
118 the current (and relevant) world situation. In this manner, the agents are able to
119 argue and attempt to persuade each other explicitly, resulting in efficient knowledge
120 transfer. We thus do away with a centralized information facility that requires
121 constant updates and polling from agents, and, instead, knowledge is exchanged
122 when necessary resulting in less communication traffic. Knowledge inconsistencies
123 are resolved in a task-driven manner, making knowledge management easier.
124 One important part of the negotiation process is the determination of the nego-
125 tiation strategy based on the current task description. To do so, we use a model
126 derived from case-based reasoning (CBR) [23] that is time-constrained and that
127 retrieves the most similar cases, selects the best case based on utility theory, adapts
128 the case to the current situation, and then uses the case’s negotiation strategy to
129 perform negotiations. The CBR approach limits the time needed to decide on a
130 negotiation strategy – selection (through retrieval) and generation (through adap-
131 tation) of a situation-appropriate strategy – and enables the agent to learn auton-
132 omously and adapt itself to different scenarios in the domain. We will only briefly
133 discuss our CBR approach in this paper.
134 In the following, we first describe briefly the characteristics of our agents and
135 multi-agent system and its real-time constraints. In Section 3, we describe in detail
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136 the logical model of our negotiation protocol. Then we describe our implementation
137 of the negotiation protocol, including a suite of real-time enabling functional
138 predicates, in Section 4. Next, we discuss some results of our negotiation model
139 applied to the multi-sensor target-tracking problem. Then we study some related
140 work in agent-based negotiations. Finally, we conclude with some suggestions for
141 further work in the area.

2. Agent characteristics

143 Each agent has the following characteristics:
144 (1) Autonomous – Each agent runs without interaction with human users. It

145 maintains its own knowledge base, makes its own decisions, and interacts with its
146 sensor, neighbors and environment.

147 (2) Rational – Each agent is rational in that it knows what its goals are and can
148 reason and choose from a set of options and make an advantageous decision
149 to achieve its goal [57].

150 (3) Communicative – Each agent is able to communicate with others, by initiating
151 and responding to messages, and carrying out conversations.

152 (4) Reflective (or Aware) – According to [8], a reflective agent reasons based on its
153 own observations, its own information state and assumptions, its communication
154 with another agent and another agent’s reasoning, and its own control or rea-
155 soning and actions. By being reflective, each agent is time aware and situationally
156 aware. When an agent is time aware, it observes time in its decision making and
157 actions. Its reasoning takes time into account, and thus, the outcome of a rea-
158 soning process is partially dependent on time. When an agent is situationally
159 aware, it observes its current situation, the situation of its neighbors, and that of
160 the world and makes decisions based on these observations. In general, an agent
161 that is situationally aware observes the resources that it shares with other agents,
162 its current tasks, messages, profiles and actions of its neighbors, and the external
163 changes in the environment. In this paper, we require a stronger level of situa-
164 tional awareness. An agent also observes its own resources that sustain the being
165 of the agent. For a hardware agent, these resources may be the battery power, the
166 radio-frequency (RF) links, etc. For a software agent, these resources may be
167 CPU, RAM, disk space, communication channels, etc. Note that, for example, in
168 [48], a bounded rationality model is used where each agent has to pay for the
169 computational resources (CPU cycles) that it uses for deliberation, assuming that
170 the resources are available. In our model, however, we require an agent to be
171 aware of whether the resources are available before even starting a negotiation.

172 (5) Honest – Each agent does not knowingly lie or intentionally give false infor-
173 mation. This characteristic is also known as veracity [16].

174 (6) Adaptive – Each agent is able to adapt to changes in the environment and learns
175 to perform a task better, not only reactively but also from its past experience.

176 (7) Cooperative – Each agent is motivated to cooperate if possible with its neighbors
177 to achieve global goals while satisfying local constraints.
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178 Generally, the agents in a multi-agent system may be controlling different
179 resources and use different reasoning and negotiation techniques. In our approach,
180 we require (1) that all agents be capable of negotiation in which they share a com-
181 mon vocabulary that enables message understanding, and (2) that each agent knows
182 what resources may be used or controlled by a non-empty subset of the other agents
183 in the environment so that it can determine whom to negotiate with. In our
184 particular domain of application, each agent controls the same resources, since each
185 one controls the same type of sensor. Also, each agent uses the same negotiation
186 methodology based on CBR, but the individual case bases differ.
187 Formally, our multi-agent system architecture is defined as follows. In our
188 study, a multi-agent system consists of a finite set of autonomous agents, denoted
189 by X. Suppose that we define a neighborhood of an agent ai, Wai such that,
190 Wai � X, Wai 6¼ [ and that the agent ai knows about all other agents in the
191 neighborhood.
192 For the given agent ai and any agent from its neighborhood, Wai , kðai; ajÞ, where
193 k(a,b) means agent a knows about the existence of agent b and can communicate with
194 agent b. A neighborhood is different from a team as defined in [55], which is task-driven
195 and formed among a set of agents to accomplish a task. A neighborhood is a subset of
196 agents of the multi-agent system that could form a team. In our particular domain of
197 application (multi-sensor target tracking), a neighborhood consists of a set of agents
198 that control sensors that are physically close and whose sensing beams overlap. So, in
199 our multi-agent systemX, there is a set of neighborhoods, and each neighborhood can
200 form any number of teams. Neighborhoods do not necessarily have the same number
201 of members, and neighborhoods may share members.
202 When a target is sensed, an agent tracks the target, refers to its neighborhood
203 information, and dynamically forms a negotiation coalition, that is, a subgroup of its
204 neighborhood agents with which it may negotiate to request resources to assist it in
205 its task. For example, when an agent detects a target in its sensing area, the agent
206 immediately obtains an estimate on the position and velocity of the target. It then
207 projects the future positions of the target and identifies the neighbors whose sensors
208 are able to cover the target moving in the projected path. These are agents that
209 control resources (i.e. sensor beams) that it needs to track the target, and these are
210 the agents that will be part of the negotiation coalition.
211 Figure 1 shows the agent architecture. The agent consists of several threads:
212 communication, execution, core, and multiple negotiation threads, allowing parallel
213 processing of multiple tasks. The core thread maintains the lifecycle of the agent,
214 linking all managers together. The execution manager manages the execution thread,
215 scheduling radar-related tasks in a job queue and actuating them to affect the agent’s
216 environment. The communication manager manages the communication thread,
217 sending and receiving messages through sockets, and storing messages in a mailbox
218 that is accessed by other threads. The negotiation manager manages the negotiation
219 threads, spawning, activating, and updating them. The core thread consists of several
220 managers. The profile manager maintains the status of the agent, radar, its neigh-
221 bors, and its environment. The CBR manager maintains the casebase and performs
222 CBR such as retrieval, adaptation, and learning. The Radar manager is a domain-
223 specific module that hosts a geometric model of the tracked target within the radar
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224 coverage of an agent and its neighbors. When the agent encounters an event, the
225 coalition manager forms a coalition, oversees the negotiations to recruit members,
226 and confirms or discards a coalition depending on the status of the event and the
227 outcome of the negotiations. The RTSS manager interacts with a real-time sched-
228 uling service (RTSS) at the kernel level, allowing the agent to monitor and request
229 for its CPU allocation and usage. The reasoner is responsible for the general thinking
230 tasks of the agent. For each negotiation thread, a negotiator shoulders the respon-
231 sibility of carrying out communicative acts, basing its negotiation strategy on the
232 information provided by the profile and CBR managers, monitoring time using the
233 RTSS manager, receiving coalition information from the coalition manager,
234 retrieving negotiation messages by checking the mailbox maintained by the com-
235 munication manager, and, most importantly, executing the real-time argumentative
236 negotiation, the main focus of this paper. Readers are referred to [50] for a detailed
237 description of the agent architecture.2 Note that the multi-threaded design of an
238 agent infrastructure has been implemented elsewhere in MAS research [41, 49, 54].

3. A logical protocol for real-time argumentative agent negotiations

240 In this section, we describe the logical protocol for our real-time argumentative agent
241 negotiations. Argumentative negotiations differ from traditional negotiations
242 because the agents conducting the former negotiate about why one of the agents
243 needs to perform a certain task in addition to what the task is. Therefore, our work is
244 similar to [40]. However, we assume that agents have the same inference rules.
245 Parsons’ work assumes that agents may have different ones, and thus his argu-
246 mentation protocol requires agents to exchange inference rules as well. Moreover, we
247 incorporate real-time issues into our design guidelines.

Figure 1. Our multi-threaded agent architecture.
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248 3.1. Real-time negotiation design guidelines

249 In this section, we outline several design objectives for our argumentative model.
250 Note that in our domain, each agent stores a local viewpoint of the world and
251 information is distributed among the agents. For an agent to convince another it
252 needs to exchange information with the partner during negotiations. In a real-time,
253 dynamic, and distributed environment, the agents do not have sufficient time to
254 perform detailed negotiations, leading to the following design objectives. We believe
255 that these guidelines are general and applicable to real-time argumentative inter-
256 agent negotiations, where time is critical.
257 We also offer a brief discussion of their operationalization in our system:

258 Design objective 1 A negotiation should be bounded by time.
259 In a real-time environment a negotiation should complete (with success or failure)
260 within a predefined window of hard time, requiring time-bounded rationality from
261 the agents. In our model, before a negotiation begins, the agent determines the time
262 allotted for the negotiation based on the speed of the target and the coverage time
263 available. If a negotiation has run beyond the allotted time window, then the agent
264 terminates the negotiation since any deal reached after that and the subsequent task
265 performed will no longer be useful.3 Also, an agent should be able to react to the
266 pace of its negotiation. If the pace of the negotiation is slow, then, an agent counter-
267 offers to narrow the constraints further so that both agents can come to an agree-
268 ment or disagreement more quickly.

269 Design objective 2 Each step of the negotiation should be fast.
270 A negotiation process consists of multiple actions (steps): parsing of and
271 responding to messages, evaluation of offers, submission of offers, etc. Each one of
272 these steps should be performed efficiently and quickly to achieve real-time behavior.

273 Design objective 3 A negotiation should be kept short – the number of iterations
274 minimized.
275 If a negotiation takes more iterations, then it incurs more processing time, more
276 communication latency, more bandwidth usage, and a higher opportunity for noise
277 to distort the messages. Towards this end, we use ranked arguments such that the
278 most important argument is sent over to the responding agent first, hoping to
279 convince it sooner.

280 Design objective 4 A negotiation-related message should be kept short.
281 This is meant to reduce loss and to improve communication speed.

282 Design objective 5 An agent should be able to abort a negotiation unilaterally when
283 communication fails.
284 In a real-time environment, the communication channels may be jammed or
285 simply congested. An agent should be able to recognize when its partner’s channel is
286 no longer receptive, terminate the negotiation immediately, and move on to the next
287 neighbor or task.

A REAL-TIME NEGOTITATION MODEL 7
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288 Design objective 6 A negotiation strategy should be determined quickly and
289 reflectively.
290 A negotiation strategy guides how an agent should conduct its negotiation. It
291 consists of a set of parameters such as the number of negotiation iterations, time
292 allotted, ranking of arguments, etc. These values should be derived quickly such that
293 by the time the negotiation strategy is obtained, it still is reflective of the agent’s
294 status and the target. Slow determination of the negotiation strategy renders the
295 negotiation behavior less situated to the agent’s current status.

296 Design objective 7 A negotiation should only be efficiently reflective.
297 During a negotiation, an agent’s status changes constantly. If we check the agent’s
298 state at each time step4 and dynamically fine-tune the negotiation parameters, then
299 the agent is fully reflective. However, both the monitoring of the agent attributes that
300 might affect the negotiation, and the response to changing attributes, are time
301 consuming and may slow down the negotiation. Hence, there must be a delicate
302 trade-off and a negotiation should only be efficiently reflective, that is, consider only
303 important changes to attributes and ignore others. In our model, an agent reflectively
304 considers only time and the need for a negotiation.

305 3.2. Negotiation protocol

306 Figure 2 shows our negotiation protocol in a state diagram between two agents: a
307 and b. State 0 is the initial state, the double-circle. State 1 is the first handshake state,
308 indicating whether the initiated negotiation will be entertained. State 4 is the initi-
309 ating state while state 5 is the responding state. The initiating state is where the
310 initiating agent, a, returns to, basically the processing loop of the negotiator module.
311 The responding state is where the responding agent, b, returns to, respectively. Agent
312 a initiates a negotiation request to b by sending an INITIATE message (initiate
313 (a,b)), the state transitions to 1. At this juncture, there are four possible scenarios.
314 First, agent b may outright refuse to negotiate by sending a NO_GO message (no_go
315 (b,a)). This results in a final state of failure (state 2, rejected). Second, agent b may
316 outright agree to the requested task by sending an AGREE message (agree (b,a)).
317 This results in a final state of success (state 3). Third, agent b may decide to entertain
318 the negotiation request and thus sends back a RESPOND message (respond (b,a)).
319 This transitions the state to 4. Fourth, there may be no response from agent b. Thus
320 agent a, after waiting for some time, has no choice but to declare a no response
321 (no_response (a)) and moves to a state of failure (state 8, channel _jammed).
322 When the agents move to state 4, the argumentative negotiation begins and iterates
323 between states 4 and 5 until one side opts out or both sides opt out or both sides agree.
324 During the negotiation, (1) agent a provides information or arguments to b by sending
325 INFO messages (info(a,b)), (2) agent b demands information or arguments from a by
326 sending MORE_INFO messages (more_info(b,a)), (3) if agent a runs out of argu-
327 ments, it sends a INFO_NULLmessage to b (info_null(a,b)), (4) if agent b runs out of
328 patience, it counter-proposes by sending a COUNTER message to a (counter(b,a)),
329 and (5) agent a can agree to the counter offer (agree(a,b)) and move to the state of
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330 success (state 3), or provide more information (info(a,b)) as requested, or provide no
331 information (info_null(a,b)) if it has time to do so, hoping that agent bmight come up
332 with a better offer, or simply disagrees (abort(a,b)). Thus, an initiating agent will
333 always negotiate until it has run out of time or when the responding agent opts out.
334 However, an initiating agent may abort a negotiation, and this is where the conditions
335 come into play. If the agent realizes that it has already obtained what it wants from
336 other negotiations happening in parallel, then it aborts the current negotiation; or if
337 the agent realizes that it no longer cares about the current negotiation, then it aborts.
338 These conditions are based on desires and intentions, which in turns are based on
339 beliefs of the agent. When an agent runs out of time, it issues an OUT_OF_TIME
340 message to the other agent and quits the negotiation with a failure (state 6, out_-
341 of_time). When an agent aborts, it issues an ABORT message to the other agent and
342 quits the negotiation with a failure (state 7, abort). Finally, whenever an agent does not
343 hear from the other agent within an allocated time period, it assumes that the com-
344 munication channel has been jammed or congested and quits with a failure (state 8,
345 channel_jammed). Note that we distinguish NO_GO, STOP, OUT_OF_TIME, and
346 ABORT in the above protocol. With the above different end states, agent a can
347 determine whether the negotiation has failed because it has exhausted all its arguments
348 (STOP) or otherwise and subsequently learn from the failure.
349 Note that our work does not attempt to address the issues with AI in Law,
350 especially in the dialectics in legal arguments (e.g., [21, 42]). Our ‘‘persuasion’’ is a

Figure 2. Our negotiation protocol. Squares are final states. The double-circle is the initial state. This state

diagram shows how two negotiating agents interact based on responses to offers, and the real-time

constraints of the environment.
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351 negotiation protocol for information exchange between two agents to reach a deal in
352 which the initiating agent provides arguments to support its request in order to
353 convince the responding agent to agree to the request. Hence, we do not look into
354 the maneuvers found in legal arguments such as defenses, proposals, positions, and
355 attacks for our design.

356 3.3. Logical framework

357 We use an expanded multi-context BDI agents framework of [36, 40] to describe the
358 logical framework of our negotiation protocol. As presented in [44], there are three
359 modalities. First, beliefs (B) represent the states of the environment and the agent.
360 There are also belief states that arise during negotiations, as agents learn each other’s
361 beliefs and intentions. Second, desires (D) represent the motivations of the agent.
362 Third, intentions (I) represent the goals that the agent wants to achieve. We also
363 assume the following axioms [40]:
364 (1) B : Bðp ! qÞ ! ðBðpÞ ! BðqÞÞ
365 (2) B : BðpÞ ! :Bð:pÞ
366 (3) B : BðpÞ ! BðBðpÞÞ
367 (4) B : :BðpÞ ! Bð:BðpÞÞ

368 Axiom 1 states that if one believes that p implies q, then if one believes p, then one
369 believes q as a consequence. Axiom 2 states that if one believes p, then one does not
370 believe the negation of p. Axiom 3 states that if one believes p, then one also believes
371 that it believes p. This ensures that an agent knows and believes in what it believes.
372 Similarly, Axiom 4 states that if one does not believe p, then one believes that it does
373 not believe p. Similar axioms for desires and intentions are:
374 (5) D : Dðp ! qÞ ! ðDðpÞ ! DðqÞÞ
375 (6) D : DðpÞ ! :Dð:pÞ
376 (7) I : Iðp ! qÞ ! ðIðpÞ ! IðqÞÞ
377 (8) I : IðpÞ ! :Ið:pÞ

378 We adopt partially the strong realist BDI agent model of [40] such that (1) an
379 agent only intends to do what it desires, and (2) an agent only desires what it
380 believes. However, we do not adopt other rules presented in [40], regarding the
381 communication unit, because in our case (1) an intention for performing a task does
382 not necessarily imply a communication of the performance of the task – in our
383 domain, a task may sometimes be performed by the agent itself, and (2) we do not
384 require an agent to report a completion of a task to another agent – because in our
385 current design, an agent assumes that if another agent agrees to perform a task, it
386 knows that that agent will try its best to perform and complete the task, and that
387 whether it believes the task has been performed is no longer important. In the future,
388 however, we plan to include a monitoring mechanism in an agent to enrich our real-
389 time modeling of events and agent behavior in making better decisions. At that time,
390 an agent would have to care whether a task has been performed successfully to
391 update its own belief states, but would still not depend on the communicated
392 information for the update.
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393 We incorporate temporal logic into our protocol to explicitly define the various
394 belief, desire, and intention states of an agent and when they are true. This is key to
395 the real-time implementation of the protocol. To satisfy real-time constraints, our
396 agent, as shown in Figure 1, consists of multiple concurrent processing threads. Each
397 thread carries out a set of tasks, and these tasks access and modify the same states at
398 different times. Some states must not be modified before certain actions have been
399 carried out; some states should not be accessed before certain results have been
400 obtained. To implement such a state synchronization across multiple concurrent
401 processes, we use temporal logic to define when a state must be true and the duration
402 for that state to stay true. Without the temporal logic component, it would have been
403 close to intractable to manage the inter-thread, real-time activities.
404 As previously mentioned, Cohen and Levesque [9, 10] and Rao and Georgeff [43,
405 45] have incorporated temporal components into the BDI model. In [9], intentions
406 are defined in terms of temporal sequences of an agent’s beliefs and goals. Each
407 possible world extendable from a current state at a particular time point is a time line
408 representing a sequence of events. As such, the inter-modal relationships are stronger
409 than those in [43]. For example, an agent fanatically committed to its intentions will
410 maintain its goals until either they are believed to be achieved or believed to be
411 unachievable. Thus, intentions are seen as a special class of desires. Rao and
412 Georgeff [43], on the other hand, present an alternative possible-worlds formalism
413 for BDI-architectures. Instead of a time line, they choose to model the world using a
414 temporal structure with a branching time future and a single past, called a time tree,
415 where a particular time point in a particular world is called a situation. There are
416 three crucial elements to the formalism. First, intentions are on a par with beliefs and
417 goals. This allows them to define different strategies of commitment and to model a
418 wide variety of agents such as blinded, single-minded, and open-minded agents.
419 Second, they distinguish between the choice an agent has over the actions it can
420 perform and the possibilities of different outcomes of an action, factoring in the
421 uncertainty that the environment brings into the determination of the outcomes.
422 Third, they specify an interrelationship between beliefs, goals, and intentions that
423 allows them to avoid problems such as commitment to unwanted side effects. Fur-
424 ther, there has been work in for branching-time temporal logic such as the com-
425 putation tree logic (CTL) to carry out temporal resolution [7, 45].
426 In our model, the incorporation of the temporal elements is different. In [9], the
427 temporal component was used to define intentions through commitment and per-
428 sistence, derived from beliefs and goals. In [43], it was used to order possible worlds
429 from a situation in both the time and space dimensions. Each time tree denotes the
430 optional courses of events choosable by an agent in a particular world. For example,
431 an agent has a belief /, denoted B(/), at time point t if and only if / is true in all the
432 belief-accessible worlds of the agent at time t. In our model, however, we use the
433 temporal component to define the temporal duration that a state needs to be stable,
434 or needs to occur in order for another state to take place. Thus, our motivation is to
435 help design and implement agents that are multi-threaded and multi-tasking. We do
436 not use temporal logic to define the BDI modalities.
437 In the following subsections, we formalize our theory of the actions depicted in the
438 state diagram of Figure 2.
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439 3.3.1. Temporal logic To incorporate real-time concerns into our logical negoti-
440 ation protocol, we use several interval relationships outlined in [1, 3]. Each interval t
441 has a start time, ts, and a finish time, tf, and its duration is tf ) ts. If tf ) ts equals the
442 smallest amount within the resolution of the domain problem, then the interval
443 becomes a moment or a point. There are seven basic relations between temporal
444 intervals:
445 (1) Before(i, j) where interval i ends before interval j.
446 (2) Meets(i, j) where as soon as i finishes, interval j starts, i.e., the two intervals are

447 consecutive.
448 (3) Overlaps(i, j) where a portion of interval i overlaps a portion of interval j in time

449 and i starts before j and i ends before j.
450 (4) Starts(i, j) where interval i starts at the same time as interval j but interval i has a

451 shorter duration.
452 (5) Finishes(i, j) where interval i finishes at the same time as interval j but interval i

453 has a shorter duration.
454 (6) During(i, j) where interval i starts after interval j and interval i ends before

455 interval j.
456 (7) Equals(i, j) where both intervals have the same durations and start and end at the

457 same times. We also adopt the homogeneity axiom schema such that a propo-
458 sition is homogeneous if and only if when it holds over an interval t, it also holds
459 over any sub-interval within t. Within the framework of our negotiation proto-
460 col, the BDI states are all homogeneous propositions, hence the use of strong
461 negation :. The predicates such as the communicative acts are anti-homogeneous
462 [2] since, for example, the action of composing and sending a message is a process
463 that does not generally hold unless completed in the end.

464 We also introduce a notational convenience [e] as the maximum interval of an
465 event/action, or, in the case of homogeneous positions, as the interval of a propo-
466 sition holding true.

467 3.3.2 Communicative acts In our protocol, we have two sets of corresponding
468 communicative acts. One is for receiving and parsing an incoming message; the other
469 for composing and sending an outgoing message. For example, a communicative act
470 that composes a negotiation request and initiates contact with a potential negotia-
471 tion partner is of the following form:

Cout : initiateði; r;Doðr; qÞ; tÞ
473473 where the predicate initiate is the communicative act (composing and sending), i is
474 the initiating agent, r is the responding agent, Do(r,q) is the requested task, i.e., ‘‘r do
475 task, q’’ and t is the time taken for the communicative act to start and finish.
476 A communicative act is an event that performs a set of tasks consecutively such that
477 the sum of the durations of the tasks is the duration of the communicative act. A
478 communicative actmay generate newpropositions, may cause a new state externally to
479 another agent, andmaybe terminatedby another propositionor event. For example, at
480 the end of the interval t, if the communication is successful, then the responding agent
481 will receive the request,Cin : initiateði; r;Doðr; qÞ; kÞ, where, in theory,Meets(t,k), and
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482 in practice (due to communication latency), Before (t,k). On the other hand, if the
483 communication is unsuccessful (e.g., due to communication channel being jammed),
484 then the predicate initiate of the initiating agent will be terminated by a terminator [56],
485 as will be discussed further in Section 3.3.3. To simplify our discussions, we use
486 Cin : fðhsenderi; hreceiveri; hrequesti; tÞ and Cout : fðhsenderi; hreceiveri; hrequesti; tÞ to
487 differentiate between incoming and outgoing message handling, where f is one of the
488 acts defined in our protocol. Currently, we have the following communicative acts, as
489 depicted in Figure 1: initiate, respond, no_go, agree, abort, out_of_time, counter, mor-
490 e_info, info, info_null, and stop, for a total of 22. An example of a message is
491 Cin : agreeðA1;A2;DoðA1; qÞ;T1Þ, which means that A2 receives as an input message
492 from A1 an agreement that states that A1 will perform the task q, and the receipt and
493 processing of the message occurs at the time interval T1.
494 One of the objects generated by a Cout communicative act is the message. Our
495 message syntax is msgðhsenderi; hreceiveri; htypei; hrequesti; hcontentsiÞ where the
496 type of the message denotes one of the communicative acts and the contents consist
497 of whatever pertinent to the request. In the following discussion, we often mention
498 the messages in the same breath as the communicative acts and use them inter-
499 changeably.

500 3.3.3. Terminator Vere [56] described a proposition as bounded by its holding
501 true over a time interval, with a limited life span terminated by later contradictory
502 assertions. Under Vere’s definition, an assertion T is a terminator for an assertion A
503 if and only if: (1) A and T are contradictory, (2) T follows A in time, and (3) no
504 assertion T¢ exists satisfying the first two conditions such that T follows T¢ in time.
505 Note that the third condition ensures that there are no conditions between A and T
506 that might pre-empt T as a terminator. Basically, Meets([A],[T]).
507 Take our communicative acts for example. Suppose an initiating agent performs
508 initiate. As we shall see later, the agent has a set of BDI states (including its belief that
509 the communication channel is operating, B : Biðchannel good; tÞ) that holds true such
510 that the collective interval,H, of those states overlaps the communicative act’s interval,
511 Overlapsð½H�; ½initiate�Þ. That is, the communicative actmay continue afterHno longer
512 holds. Further, if the communication fails, which in this case means the message is not
513 sent, the agent generates a belief B : :Biðchannel good; kÞ. This becomes a terminator
514 of initiate since one of the preconditions for the communicative act and the new belief
515 state are contradictory and Meets(t,k). As a result, the action is terminated.
516 Note that a proposition or an assertion in our logical negotiation protocol holds
517 until terminated by a terminator, and so does a terminator. A termination may lead
518 to the stoppage of a set of actions or tasks, which in turn may lead to the stoppage of
519 a set of events. An action or task may, however, terminate by itself normally as it
520 completes within a time interval.

521 3.3.4. ‘‘CanDo,’’ ‘‘Do,’’ and ‘‘Doing,’’ and time Here we define the predicates
522 CanDo, Do, and Doing and their association with time. Basically, if an agent believes
523 that it can perform a requested task, then it is willing to be convinced to desire to
524 perform that task. Once the agent has the desire, it intends to perform the task and
525 believes that it will be performing the task soon. Once the agent is performing the
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526 task, it continues to do so until the task is completed or until the agent no longer
527 intends to perform the task or until it does not believe it can perform the task
528 anymore. We present these three predicates since they are related to the underlying
529 motivations of our negotiations.

530 Predicate 1 CanDo
531 When, at time t1, an a agent believes it can do a task q, and it holds this belief until
532 time t2 when a terminator contradicts the belief, we have BaðCanDoða; qÞ; tBÞ where
533 tB is the interval with the start time t1 and the end time t2.

534 Predicate 2 Do
535 When, an agent a desires to do a task q, then we must have BaðCanDoða; qÞ; tBÞ
536 and DaðDoða;qÞ; tDÞ such that DuringðtD;TBÞ. That is, the desire to do must be
537 supported by a CanDo belief. Following a strong realist model, we also must have
538 the following: DaðDoða; qÞ; tD ) IaðDoða; qÞ; tIÞ such that Duringðt1;TDÞ. Note that
539 we simplify this example by assuming that the only way to satisfy the desire to do a
540 task is to perform the task. From this definition, an agent may no longer intend to
541 perform a task even when it desires to. This is because our agents are susceptible to
542 external states such as the communicative acts and the sensory information. In cases
543 where the intended task is one of the many choices available to satisfy a desire, then
544 agents are also susceptible to internal states. For example, suppose an agent desires
545 to be not hungry, and it has two choices: Cook or Go-To-Restaurant. And, suppose
546 initially, the agent chooses to cook at home: Dað:hungryðaÞ; tD ^ IaðCookðaÞ; tIÞ. But
547 after cooking for a time of tc, such that During(tc,tI), the agent realizes that the faucet
548 stops working and there is no water in its kitchen, which constitutes a termination
549 condition to Cook, thus Iað:CookðaÞ; t0IÞ but Dað:hungryðaÞ;TDÞ. This allows the
550 agent to replan and to IaðGo� To� RestaurantðaÞ; t00I Þ.

551 Predicate 3 Doing
552 If an agent a intends to perform a task, then it believes that it is performing the
553 task in the following temporal relationship: IaðDoða; qÞ; tIÞ ) BaðDoingða; qÞ; t0BÞ
554 such that OverlapsðtI; t0BÞ _Duringðt0B; tIÞ. That means, an agent may still believe that
555 it is performing a task that it no longer intends to perform. In Vere’s [56] definition,
556 IaðDoða; qÞ; tIÞ is a trigger pre-condition. For example, an agent first intends to
557 re-orient its sensors. During the re-orientation, it receives other information and
558 decides to no longer intend to do so. However, once a re-orientation is launched,
559 the agent has to wait for it to end. This type of task is considered to be atomic and
560 non-interruptible, and this situation is observed in our domain of application.

561 3.3.5. Coalition formation When an agent, for example, senses a target, it needs to
562 form a coalition from which to ask for help. To do so, it collects all its current BDI
563 states and external information to obtain a list of potentially helpful neighbors. Since
564 each task is new, that means in the beginning of the coalition formation, there exist
565 no belief states such that B : BaðCanDoðn; qÞ; tBÞ where n is a member of the set of all
566 known neighbors, Na, of the agent a and q is the new task. After a domain-specific
567 search process,5 the agent obtains a list of potentially helpful neighbors, N0

a � Na. At
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568 this point, equipped with this list, the agent 8nB : BaðCanDoðn; qÞ; tBÞ where n 2 N0
a.

569 Then the agent checks its needs and creates desires for only a certain number of these
570 neighbors to perform the tasks (since enlisting everybody one knows to help out a
571 task is counter-productive). In our actual agent design, these neighbors are ranked
572 according to their utility values.6 The agent then checks the number of available
573 negotiation threads that it may use to negotiate with these neighbors. That number
574 trims N0

a to obtain N00
a. At this point, the agent 8nD : DaðDoðn; qÞ; tDÞ where n 2 N00

a.
575 Subsequently, as the agent begins to send out requests, with each successful contact,
576 the agent forms I : IaðNegotiateðn;Doðn; qÞÞ; tIÞ with the neighbor n that has made
577 contact. In the end, all neighbors contacted are in the coalition Cað~qÞ such that
578 Cað~qÞ � N00

a and where ~q ¼ fq1; q2; � � � ; qjCað~qÞjg is a set of subtasks that contribute to
579 the original task. In our model, we define subtasks of a task in terms of the resources
580 required. For example, in our application to a distributed sensor network, the task of
581 tracking a target requires three subtasks: each subtask requires an agent to turn on
582 its sensor towards a particular direction at a given start time. In general, though not
583 required in our model, subtasks could be seen as horizontal partitioning of the
584 overall task. In this way, each neighbor is contacted to perform a subtask and a
585 coalition formation drives an agent to negotiate with its neighbors.
586 In terms of the temporal interval relationships, since a negotiation process is
587 stepwise and interruptible, if an agent does not have the desire for a neighbor to
588 perform a task, then it does not intend to negotiate with that neighbor regarding that
589 particular task. Thus, we have the following condition: DuringðtD; tBÞ^
590 DuringðtI; tDÞ.
591 Note that in ourmodel, wehaveN 1-to-1 negotiations but donot conduct direct 1-to-
592 N negotiations. That is, during a negotiation, a negotiation thread does not consult
593 directly other negotiation threads of the same agent. However, the parent agent of the
594 negotiation threads does examine the completion status of its negotiation threads and
595 may change the beliefs, desires, and intentions of the negotiation threads through
596 negotiation-related predicates (Section 3.4) due to the results of other negotiations.
597 This design choice is motivated by real-time concerns. Instead of having the negotiator
598 module of a negotiation threadmonitoring the activities of other negotiation threads of
599 the same agent, the core thread of the agentmonitors the negotiation activities through
600 the coalition manager. The coalition manager determines whether a coalition is still
601 viable, whether a coalition has been achieved, and whether a coalition is to be aborted,
602 and commands each individual negotiation thread accordingly. Thus, each negotiator
603 can concentrate on their negotiation task at hand.
604 Here we briefly describe our coalition formation approach. Interested readers
605 are referred to [50]. Our coalition formation consists of three stages: (1) coalition
606 initialization where an agent obtains a ranked list of potentially helpful neighbors,
607 N0

a � Na based on the current problem, (2) coalition finalization where the agent
608 contacts the neighbors in N0

a � Na to negotiate, and (3) coalition acknowledgment
609 where the agent concludes the success or failure of the coalition and inform
610 neighbors who have agreed to help. In coalition initialization, a neighbor is
611 ranked based on its potential utility in helping with the current problem. This
612 potential utility is based on the past and current relationships between the agent
613 and the neighbor, and the ability of the neighbor with the current problem. For
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614 example, if the target is moving towards the sensor coverage of the neighbor and
615 will be inside the coverage for a long time, then the neighbor has a high potential
616 utility. During the coalition finalization step, the agent negotiates with the ranked
617 neighbors concurrently. To negotiate, each agent uses CBR to derive an appro-
618 priate strategy to deal with each neighbor. As each negotiation thread reports its
619 final status to the core thread (the parent agent), the parent agent decides whether
620 to abort meaningless negotiations or to modify negotiation tactics. After the
621 finalization step, the agent knows whether it has a coalition. If it does, it sends a
622 confirmation message to all the neighbors who have agreed to help. If it does not,
623 it sends a discard message to those who have agreed to help. This is the
624 acknowledgment step.

625 3.3.6. Implicit assumptions As discussed in Section 2.1, our agents are cooperative
626 and are also directed to satisfy global goals. Each is motivated to look for help from
627 its neighbors and to entertain negotiation requests from its neighbors, and each
628 genuinely wishes to have a successful negotiation. First, we have the implicit
629 assumption D : DaðCooperate; talwaysÞ where talways;s ¼ time0 is the start time and
630 talways;f ¼ 1 is the finish time, meaning that the desire is always true. Second, we
631 have D : DaðSatisfy� Global� Goal; talwaysÞ. These assumptions are the meta-level
632 knowledge in an agent’s context.
633 When an initiating agent, i, negotiates with a neighbor, r, the agent has the fol-
634 lowing BDI states, as shown in the previous section:

D : DiðCooperate; talwaysÞ ^ B : BiðCanDoðr; qÞ; tBÞ^
D : DiðDoðr; qÞ; tDÞ ^ I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ:

636636 Note that in [36, 40, 44], the mental states were layered or divided into different
637 levels: beliefs, desires, and intentions, and bridge rules were used to transition across
638 these levels. Here we simply outline a set of propositions, linking the multiple con-
639 texts together in conjunctions. The key here is that each proposition is also quan-
640 tified by a time interval. So, in a way, our model indicates that at certain time
641 intervals, there are certain mental states (beliefs, desires, or intentions) that are true
642 simultaneously (if their time intervals overlap). Thus, the above conjunction simply
643 means that for some time interval there is a belief of CanDo, for some other interval,
644 there is a desire of Do, and so on.
645 Combining the above states with D : DiðSatisfy� Global� Goal; talwaysÞ, we as-
646 sume that each agent:

I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; tIÞ:
648648 The above intention motivates an initiating agent to continue negotiating. In the
649 later discussion, we use this intention to explicitly drive the negotiation axioms, while
650 keeping other BDI states implicit.
651 When a responding agent, r, receives a request to negotiate from an initiating
652 agent, i, the agent parses the message and examines its own current states. If it
653 believes it can perform the requested task yet does not have the desire to do so, then
654 because of the desire to cooperate, it has the following BDI states:
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D : DrðCooperate; talwaysÞ ^ B : BrðCanDoðr; qÞ; tBÞ^
:9D : DrðDoðr; qÞ; tDÞ ^ I : IrðNegotiateði;Doðr; qÞÞ; tIÞ:

656656 Similarly, combining the above states with D : DrðSatisfy� Global� Goal; talwaysÞ,
657 we have the following that keeps the agent negotiating:

I : IrðsucceedðNegotiateði;Doðr; qÞÞÞ; tIÞ:
659659 A completely successful negotiation results in D : DrðDoðr; qÞ; tDÞ. The negotiating
660 strategy of an initiating agent is to help the responding agent achieve
661 D : DrðDoðr; qÞ; tDÞ while that of the responding agent is to let itself be persuaded by
662 the initiating agent’s arguments in order to achieve D : DrðDoðr; qÞ; tDÞ. As we will
663 see in the next two sections, there are partially successful negotiations and different
664 types of failures.
665 Furthermore, we have to deal with the duration of a BDI state. A BDI state
666 holds true only sufficiently long: (1) no longer than the duration of the task to be
667 performed, or (2) until ended by a terminator. For the implicit assumptions, the
668 tasks Cooperate and Satisfy-Global-Goal have infinite duration. So, in
669 D : DrðDoðr; qÞ; tDÞ, the agent r only desires to do the task for at most the
670 duration of the task q. Thus, we have DuringðtD; ½Doðr; qÞ�Þ where ½Doðr; qÞ� is the
671 time interval for r performing the task. This assumption applies to all BDI states
672 related to performing a task. On the other hand, when a negation of performing
673 a task is involved, such as D : Drð:Doðr; qÞ; tDÞ, the agent cannot rely on
674 ½Doðr; qÞ� to quantify tD. In our design, instead of making tD a moment or a point,
675 we let it be until terminated by another assertion/proposition (e.g., generated by a
676 later coalition process). These assumptions allow an agent to negotiate regarding
677 the same task at two different times as long as the task negotiated first has
678 completed since the BDI states of performing a task are self-terminating and
679 those of not performing a task are terminated by assertions generated by other
680 agent activities.
681 Finally, we have to deal with arguments since our negotiation approach is argu-
682 mentation-based. Suppose the request is for the responding agent r to perform the task
683 q : Doðr; qÞ. The responding agent has a set of internal arguments, cr, for and against
684 performing the task. If the agent believes it can perform the task but
685 Cr Dr ðDoðr; qÞ; tDÞ (meaning the arguments do not support the desire for performing
686 the task), then it has to rely on the initiating agent for more arguments. The initiating
687 agent has its own set of arguments, ci, for the responding agent performing the task.
688 The underlying approach is to send over a subset C0

i of ci to the responding agent until

Cr [ C0
i � DrðDoðr; qÞ; tDÞ ðin which case the negotiation succeedsÞ;

690690 or until

Cr [ Ci Dr ðDoðr; qÞ; tDÞ ðin which case the negotiation failsÞ;
692692 where C0

i � Ci is the set of arguments already communicated to the responding agent
693 from the initiating agent. This assumption is a critical element in our negotiation
694 protocol as it facilitates a stepwise evaluation of arguments to move closer to a

A REAL-TIME NEGOTITATION MODEL 17



UN
CO

RR
EC
TE
D
PR
OO

F

695 conclusion of the negotiation. An example of arguments supporting a requested task
696 in the sensor network application includes the approximate direction of the target
697 detected, the current, activated sensor sector, and the helpfulness of the agent to its
698 neighbors. The approximate direction of the detected target would help the
699 responding agent deliberate whether it has available sensor sector for the task, for
700 example.

701 3.3.7. Initiating behavior Here we outline the axioms that link an agent’s commu-
702 nication and its internal states for conducting negotiations as an initiating agent.
703 Before moving further, we would like to note that the implications in the following
704 axioms are basically bridge rules. The pre-conditions of these rules do give the
705 impression that multiple contexts are present. As previously described in Section 3.3.6,
706 we mean to have them as separate contexts which happen to be conditions required to
707 be present to trigger the rules. The formulation of these contexts in the pre-conditions
708 allows us to develop a time schedule for the various mental states to hold true.
709 Initiate: When an initiating agent (i) believes that it intends to negotiate with the
710 responding agent (r) to perform a task q, it initiates a negotiation request to the
711 responding agent.

I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ ) Cout : initiateði; r;Doðr; qÞ; tcout;initiateÞ
713713 where Duringðtcout;initiate; tIÞ. The predicate initiate encapsulates the act of composing
714 an INITIATE-type message and sending the message to agent r.
715 Failure 1: When an initiating agent (i) receives a NO_GO message from a
716 responding agent (r), it believes that the responding agent r cannot perform the
717 requested task q and stops intending r to perform the task.

Cin : no goðr; i;Doðr; qÞ; tcin;no goÞ ^ I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ )
I : Iið:Negotiateðr;Doðr;qÞÞ; t0IÞ ^ B : Bið:CanDoðr; qÞ; tBÞ^

D : Dið:Doðr; qÞ; tDÞ ^ rejected

719719 where Duringðtcin;no go; tIÞ ^MeetsðtI; t0IÞ ^MeetsðtI; tBÞ ^ StartsðtB; tDÞ. The no_ go
720 communicative act is the encapsulation of receiving and parsing a NO_GO (an
721 outright refusal to negotiate) message. This rule allows an agent to move on to the
722 next neighbor after the responding agent has outright refused to negotiate. This is
723 real-time motivated:7 instead of trying to come up with a lesser task and trying to
724 establish a negotiation with the responding agent, the initiating agent simply gives up
725 and shifts its focus to other neighbors.
726 The proposition rejected indicates the failure of a negotiation.
727 Note also that in the above rule, the changes in the internal states of the agent are
728 triggered by the incoming message. This is one of our design characteristics and
729 goals: agents communicate only when necessary since the environment is real-time
730 and resource constrained, and information is exchanged only during negotiation.

731 Success 1 When an initiating agent (i) receives an AGREE message from a
732 responding agent (r), it believes that the responding agent r intends to perform and
733 will perform the requested task q.
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Cin : agreeðr; i;Doðr; qÞ; tcin;agreeÞ ^ I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ )
B : BiðDrðDoðr; qÞÞ; tBÞ ^ I : Iið:Negotiateðr;Doðr; qÞÞ; t0IÞ^
D : Dið:Doðr; qÞ; tDÞ ^ success

735735 where Duringðtcin;agree; tIÞ ^MeetsðtI; t0IÞ ^MeetsðtI; tBÞ ^ StartsðtB; tDÞ. The agree
736 communicative act is the encapsulation of receiving and parsing an AGREE mes-
737 sage. In this axiom, if an agent receives an AGREE message from the responding
738 agent, then (1) it believes that the responding agent desires to perform the task, (2) it
739 intends no longer to negotiate, and (3) it desires no longer that the responding agent
740 perform the task. This third desire may seem counter-intuitive at first glance. Its
741 purpose is to say ‘‘If I believe that you have the desire to do the task, then I don’t
742 have to desire you to do the task anymore,’’ and that does not prevent the agent to
743 desire the responding agent to perform the task in the future.
744 The proposition success indicates the success of a negotiation.

745 Info 1 When an initiating agent (i) receives a RESPONDmessage from a responding
746 agent (r), it (1) believes that the responding agent r intends to negotiate and (2) intends
747 to obtain a successful negotiation. Consequently, the initiating agent i intends to help r
748 to desire to perform the task by supplying available necessary information.

Cin : respondðr; i;Doðr; qÞ; tcin;respondÞ ^ I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ^
B : BiðIrðNegotiateði;Doðr; qÞÞÞ; tBÞ
^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ ^ 9p : ðp 2 Ci ^ p j2C0

iÞ
) Cout : infoði; r;Doðr; qÞ; tcout;infoÞ

750750 where

Duringðtcin;respond; tIÞ ^ Finishesðt0I; tIÞ ^ EqualsðtB; t0IÞ^
Startsðtcout;info; t0IÞ ^ Beforeðtcin;respond; tcout;infoÞ:

752752 The communicative act respond is the encapsulation of receiving and parsing a
753 RESPOND message, and the communicative act info is the encapsulation of com-
754 posing and sending an INFO message, including selecting a p from the set of
755 arguments, ci, that is not a member the set of arguments already sent, C0

i to r. Clause
756 1 of the axiom explicitly derives the motivation for the initiating agent to continue
757 negotiating as it intends to have a successful negotiation since it now believes that the
758 responding agent intends to negotiate as well. Clause 2 of the axiom drives the agent
759 to send over more arguments to help bring a successful conclusion to the negotiation.
760 Note that as discussed in Section 3.3.2, the syntax of a message is
761 msgðhsenderi; hreceiveri; htypei; hrequesti; hcontentsiÞ. When sending out an INFO-
762 type message, the hcontentsi holds the arguments.

763 Info_null 1 When an initiating agent (i) receives a RESPOND message from a
764 responding agent (r), it (1) believes that the responding agent r intends to negotiate
765 and (2) intends to obtain a successful negotiation. However, if i has run out of
766 information or arguments, then it notifies r that it can no longer provide arguments.
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Cin : respondðr; i;Doðr; qÞ; tcin;respondÞ ^ I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ
^ B : BiðIrðNegotiateði;Doðr; qÞÞÞ; tBÞ
^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ ^ 9p : ðp 2 Ci ^ p j2C0

iÞ
) Cout : info nullði; r;Doðr; qÞ; tcout;info nullÞ

768768 where

Duringðtcin;respond; tIÞ ^ Finishesðt0I; tIÞ ^ EqualsðtB; t0IÞ
^ Startsðtcout;info null; t

0
IÞ ^ Beforeðtcin;respond; tcout;info nullÞ:

770770 This rule is the counterpart to Info 1 previously discussed. When an agent runs out of
771 arguments, it notifies the responding agent about it. Instead of giving up on the
772 negotiation right away – since obviously the initiating agent knows that it has not
773 been able to persuade the responding agent and now it has run out of arguments, the
774 initiating agent informs the responding agent of its situation and hopefully the
775 responding agent will be able to counter-offer. So, in a way, this shifts the respon-
776 sibility of achieving a successful negotiation to the responding agent from the ini-
777 tiating agent. Up until this point, the initiating agent has been responsible for
778 keeping the negotiation going by supplying arguments/information to the respond-
779 ing agent, trying to convince it. Finally when the initiating agent can argue no
780 further, the decision shifts to the responding agent.

781 Info 2 When an initiating agent (i) receives a MORE_INFO message from a
782 responding agent (r), it simply supplies more unused arguments.

Cin : more infoðr; i;Doðr; qÞ; tcin;more infoÞ
^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ

^ 9p : ðp 2 C ^ p j2C0
iÞ ) Cout : infoði; r;Doðr; qÞ; tcout;infoÞ

784784 where Duringðtcin;more info; t
0
IÞ ^Duringðtcout;info; t0IÞ ^ Beforeðtcin;more info; tcout;infoÞ. This

785 axiom is similar to Info 1.

786 Info_null 2 When an initiating agent (i) receives a MORE_INFO message from a
787 responding agent (r), if it does not have any more arguments, then it notifies r of its
788 status.

Cin : more infoðr; i;Doðr; qÞ; tcin;more infoÞ^
I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ

^ :9p : ðp 2 Ci ^ p j2C0
iÞ ) Cout : info nullði; r;Doðr; qÞ; tcout;info nullÞ

790790 where Duringðtcin;more info; t
0
IÞ ^Duringðtcout;info null; t

0
IÞ ^ Beforeðtcin;more info; tcout;info nullÞ.

791 This axiom is similar to Info_null 1.

792 Info 3 When an initiating agent (i) receives a counter-offer ðq0Þ from a responding
793 agent (r), i believes that r desires to perform q0. However, if q0 is not acceptable, then
794 the agent i continues to send unused arguments to r.
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Cin : counterðr; i;Doðr; qÞ; tcin;counterÞ ^ B : BiðDrðDoðr; q0ÞÞ; tBÞ
^ B : Bið:acceptableðq0Þ; t0BÞ
^ 9p : ðp 2 Ci ^ p j2C0

iÞ ^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ
) Cout : infoði; r;Doðr; qÞ; tcout;infoÞ

796796 where

Duringðtcin;counter; t0IÞ ^Meetsðtcin;counter; tBÞ ^Duringðt0B; t0IÞ
^ Finishesðt0B; tBÞ ^MeetsðtB; tcout;infoÞ
^Duringðtcout;info; t0IÞ:

798798 This axiom is similar to Info 1. The communicative act counter is the encapsulation of
799 receiving and parsing a COUNTER-type message, in which hcontentsi holds the
800 counter-offer q0. Clause 1 states that when an initiating agent receives a counter-offer
801 from the responding agent, it believes that the responding agent desires to perform the
802 counter-offer. Now, the initiating agent checks the acceptability of the counter-offer
803 (see Section 5). If the counter-offer is not acceptable and the agent still has unused
804 arguments, then it sends over more arguments. This is how an initiating agent counter-
805 offers a counter-offer: sending over more arguments in hope that the responding agent
806 will come back with a better counter-offer, closer to the original request.
807 Note also the temporal relationships among tcout;info, tB, and t0B. As soon as the
808 initiating agent realizes that the counter-offer is not acceptable, both its beliefs that
809 the responding agent desires to perform the counter-offer and that the counter-offer
810 is unacceptable terminate and trigger the communicative act info. In other words,
811 when the initiating agent counters a counter-offer, all beliefs regarding the counter-
812 offer no longer hold.

813 Info_null 3 When an initiating agent (i) receives a counter-offer ðq0Þ from a
814 responding agent (r), i believes that r desires to perform q0. However, if q0 is not
815 acceptable and the agent does not have any more unused arguments, it notifies r that
816 it can no longer provide arguments.

Cin : counterðr; i;Doðr; qÞ; tcin;counterÞ ^ B : BiðDrðDoðr; q0ÞÞ; tBÞ
^ B : Bið:acceptableðq0Þ; t0BÞ^
:9p : ðp 2 Ci ^ p j2C0

iÞ ^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ
) Cout : info nullði; r;Doðr; qÞ; tcout;info nullÞ

818818 where

Duringðtcin;counter; t0IÞ ^Meetsðtcin;counter; tBÞ ^Duringðt0B; t0IÞ
^ Finishesðt0B; tBÞ ^MeetsðtB; tcout;info nullÞ ^Duringðtcout;info null; t

0
IÞ:

820820 This axiom is the counterpart of Info 3.

821 Success 2 When an initiating agent (i) receives a counter-offer ðq0Þ from a responding
822 agent (r), i believes that r desires to perform q0. If q0 is acceptable, then i agrees.
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Cin : counterðr; i;Doðr; qÞ; tcin;counterÞ ^ B : BiðDrðDoðr; q0ÞÞ; tBÞ
^ B : Biðacceptableðq0Þ; t0BÞ ^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ
) Cout : agreeði; r;Doðr; qÞ; tcout;agreeÞ ^ B : Bið:CanDoðr;qÞ; t00BÞ
^D : Dið:Doðr; qÞ; tDÞ^
I : Iið:Negotiateðr;Doðr; qÞÞ; t00I Þ ^ I : Iið:succeedðNegotiateðr;Doðr; qÞÞÞ; t00I Þ
^ success

824824 where

Duringðtcin;counter; t0IÞ ^Duringðt0B; t0IÞ ^ Finishesðt0B; tBÞ ^MeetsðtB; tcout;agreeÞ
^Meetsðt0I; t00I Þ ^MeetsðtB; t00BÞ ^ StartsðtD; t00I Þ ^Duringðtcout;agree; t00I Þ:

826826 The communicative act agree is the encapsulation of composing and sending an
827 AGREE message, in which hcontentsi holds the counter-offer q0. With this axiom, as
828 soon as the initiating agent agrees to a counter-offer by the responding agent, it (1)
829 believes that the responding agent cannot do the originally requested task, (2) desires
830 no longer that the responding agent performs the task, (3) intends to negotiate no
831 further regarding the task, and (4) intends no longer to have a successful negotiation
832 regarding the task. However, the negotiation still ends with a success tag because
833 even though the initiating agent does not get what it wanted originally, it does obtain
834 a portion of its original request.

835 Failure 2 When an initiating agent (i) receives a STOP message from a responding
836 agent (r), it believes that the responding agent r does not desire to perform the
837 requested task q and thus stops negotiating with r to perform the task, and the
838 negotiation fails.

Cin : stopðr; i;Doðr; qÞ; tcin;stopÞ ^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ )
B : Bið:CanDoðr; qÞ; tBÞ ^D : Dið:Doðr; qÞ; tDÞ
^ I : Iið:Negotiateðr;Doðr; qÞÞ; t00I Þ
^ I : Iið:succeedðNegotiateðr;Doðr; qÞÞÞ; t00I Þ ^ rejected

840840 where Duringðtcin;stop; t0IÞ ^Meetsðt0I; tBÞ ^Meetsðt0I; tDÞ ^Meetsðt0I; t00I Þ. The commu-
841 nicative act stop is the encapsulation of receiving and parsing a STOP message. This
842 rule is similar to Failure 1. In addition, it also states that the agent intends to not
843 negotiate. In our current design we do not differentiate between an outright failure
844 (failure type 1) and an opt-out failure (failure type 2) – both end with a rejected tag.

845 Failure 3I This rule is similar to Failure 2 except for that it deals with an ABORT
846 message and ends with an abort tag. See Appendix A.

847 Failure 4I This rule is similar to Failure 2 except for that it deals with an OUT_-
848 OF_TIME message and ends with an out_of_time tag. See Appendix A.

849 Abort I When an initiating agent (i) no longer intends to negotiate with a
850 responding agent (r) to perform a requested task q, it aborts the negotiation.
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I : Iið:Negotiateðr;Doðr; qÞÞ; t0IÞ ) Cout : abortði; r;Doðr; qÞ; tcout;abortÞ^
D : Dið:Doðr; qÞ; tDÞ ^ I : Iið:succeedðNegotiateðr;Doðr; qÞÞÞ; t00I Þ ^ abort

852852

853 where Duringðtcout;abort; t0IÞ ^Duringðtcout;abort; tDÞ ^Duringðtcout;abort; t00I Þ ^ Finishesðt00I ;
854 t0IÞ. The communicative act abort is the encapsulation of composing and sending an
855 ABORT message. This rule says that if an initiating agent aborts a negotiation, then
856 it informs the responding agent.

857 Out_of_time I When an initiating agent (i) runs out of its allocated time for the
858 negotiation with a responding agent (r) to perform a requested task q, it aborts the
859 negotiation.

B : Bið:timeðNegotiateðr;Doðr;qÞÞÞ; tBÞ
^ I : IiðsucceedðNegotiateðr;Doðr;qÞÞÞ; t0IÞ )
Cout : out of timeði; r;Doðr;qÞ; tcout;out of timeÞ ^ I : Iið:Negotiateðr;Doðr;qÞÞ; t00I Þ^
I : Iið:succeedðNegotiateðr;Doðr;qÞÞÞ; t00I Þ ^ out of time

861861 where DuringðtB; t0IÞ ^Duringðtcout;out of time; t
00
I Þ ^Meetsðt0I; t00I Þ. The time predicate

862 encapsulates the acts of obtaining and comparing the time elapsed for the negotia-
863 tion against the time allocated for the negotiation (Section 3.4). The communicative
864 act out_of_time predicate is the encapsulation of composing and sending an
865 OUT_OF_TIME message to the responding agent. This rule states that when the
866 agent has run out of time allocated for the negotiation, it no longer intends to
867 negotiate. This is real-time motivated.

868 No_response I When an initiating agent (i) detects receives no response from a
869 responding agent (r) during a negotiation, then it unilaterally quits the negotiation
870 with a failure.

B : Biðno responseðrÞ; tBÞ ^ I : IiðsucceedðNegotiateðr;Doðr; qÞÞÞ; t0IÞ )
I : Iið:Negotiateðr;Doðr; qÞÞ; t00I Þ ^ I : Iið:succeedðNegotiateðr;Doðr; qÞÞÞ; t00I Þ
^ channel jammed

872872 where DuringðtB; t0IÞ ^Meetsðt0I; t00I Þ. The no_response predicate is one of our real-
873 time enabling functional predicates to be discussed in Section 3.4. This axiom allows
874 an agent to bail out of a negotiation when the negotiation partner fails to respond.
875 Figure 3 shows the time lines of the initiating agent’s behavior when faced with an
876 outright rejection or agreement. These are the simple cases of the axioms above. The
877 length of the process is based on tcout;initiate, tcin;no go, and tcin;agree. During such time,
878 I : IiðNegotiateðr;Doðr; qÞÞ; tIÞ holds true. After that, the intention can be removed
879 or modified.
880 Figure 4 shows the negotiation process, from the initiating agent’s point of view
881 once the responding agent agrees to negotiate. The negotiation process is a mani-
882 festation of the axioms discussed above, proving a flow of communicative acts and
883 BDI states that drives the completion of the negotiation. It is with the temporal BDI
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884 axioms that we are able to produce Figure 4, an explicit outline of the interactions of
885 the communicative acts with various BDI states – specifying when and how longs
886 certain states must hold true, cannot be modified, can change, can be accessed, or are
887 of no concern. It is also through the axioms that we are able to guarantee the
888 completion of a negotiation process within a certain time. For example, if the ini-
889 tiating agent goes through the following steps: initiate, parse respond, info, parse
890 more_info, info, parse more_info, info_null, parse counter, check to see whether the
891 counter-offer is acceptable, and agree, then we know how much time it takes to do so
892 by summing up the temporal intervals associated with each step. The acceptability of
893 the counter-offer has to be held constant throughout the agreement step. This
894 explicit declaration of time constraints is important since each of our agents is

Figure 3. Time lines of the initiating agent’s behavior when faced with an outright rejection or agreement.

Figure 4. Time lines of the negotiation from the initiating agent’s point of view (a simplified version).

Temporal intervals under brackets are options. Note that once the initiating agent receives a RESPOND

message from the responding agent, it is committed to negotiate successfully since it believes that the

responding agent desires to negotiate.
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895 multi-threaded, where several threads may access and need to modify the same
896 variable at the same time. Without the axioms, a variable such as the acceptability of
897 the counter-offer might accidentally be modified by another negotiation thread,
898 rendering the current negotiation process ambiguous. Moreover, with the temporal
899 intervals, we are able to fine-tune the system by observing the time usage of each
900 communicative act for speedup. For example, with the BDI states, we know the
901 minimal time we need to hold the value of a variable constant. The shorter the time
902 needed for a variable to be held constant, the more frequent the variable can be
903 updated and accessed, allowing other threads to proceed.

904 3.3.8. Responding behavior Here we outline axioms that link an agent’s commu-
905 nication and its internal states for conducting negotiations as a responding agent.

906 No_go When a responding agent (r) believes that it cannot perform a requested
907 task q from an initiating agent i, it outright refuses to negotiate.

Cin : initiateði; r;Doðr; qÞ; tcin;initiateÞ ^ B : Brð:CanDoðr; qÞ; tBÞ )
Cout : no goðr; i;Doðr;qÞ; tcout;no goÞ ^ exit

909909 where Meetsðtcin;initiate; tBÞ ^Duringðtcout;no go; tBÞ. The communicative act no_go
910 encapsulates the act of composing a NO_GO message and sending the message to
911 agent i. Agents are responsible in that if a responding agent refuses to negotiate, it
912 informs the initiating agent.

913 Agree 1 When a responding agent (r) (1) believes that it is already performing a
914 requested task q or (2) desires to perform q, it agrees to perform the task.

Cin : initiateði; r;Doðr;qÞ; tcin;initiateÞ ^ ðB : BrðDoingðr; qÞ; tBÞ _D : DrðDoðr; qÞ; tDÞÞ
) Cout : agreeðr; i;Doðr; qÞ; tcout;agreeÞ ^D : DrðDoðr; qÞ; t0DÞ ^ success

916916 where

ðOverlapsðtcin;initiate; tBÞ ^ Beforeðtcin;initiate; tcout;agreeÞ ^Duringðtcout;agree; tBÞ
^Meetsðtcout;agree; t0DÞÞ
_ ðOverlapsðtcin;initiate; tDÞ ^ Beforeðtcin;initiate; tcout;agreeÞ ^ Finishesðtcout;agree; tDÞ
^MeetsðtD; t0DÞÞ:

918918 The communicative act agree encapsulates the acts of composing an AGREE
919 message and sending the message to the initiating agent. The rule extends temporally
920 the desire of the agent to continue performing the task. As previously discussed in
921 Section 3.3.4, an agent may be still performing a task while it no longer desires to do
922 so because a task may be atomic and non-interruptible. So, when the responding
923 agent realizes the initiating agent requests for the same task to be performed, then it
924 re-asserts its desire to ensure the continuation of the task. We also use the relation
925 MeetsðtD; t0DÞ to transition the desire.
926 Note also that with this rule, the responding agent agrees to help only because it is
927 already performing the task, but the agree predicate does not reveal that to the
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928 initiating agent. This simplifies our agent design in two ways: (1) the responding
929 agent does not have to explain to the initiating agent why it agrees to perform a
930 requested task, and (2) the initiating agent does not have to remember why the
931 responding agent agreed to a requested task.

932 Respond When a responding agent (r) believes that it can perform a requested task
933 q, and there is no desire to perform q nor belief that it is performing q, it responds to
934 the negotiation request, i.e., it agrees to negotiate.

Cin : initiateði; r;Doðr; qÞ; tcin;initiateÞ ^ B : BrðCanDoðr; qÞ; tBÞ^
:9D : DrðDoðr; qÞ; tDÞ ^ :9B : BrðDoingðr; qÞ; t0BÞ

) Cout : respondðr; i;Doðr;qÞ; tcout;respondÞ^
I : IrðNegotiateði;Doðr; qÞÞ; tIÞ ^ I : IrðsucceedðNegotiateði;Doðr; qÞÞÞ; t0IÞ

936936 where

Meetsðtcin;initiate; tBÞ ^DuringðtB; tDÞ ^DuringðtB; t0BÞ
^Duringðtcout;respond; tBÞ^
Meetsðtcout;respond; tIÞ ^Meetsðtcout;respond; t0IÞ ^ Finishesðt0I; tIÞ
^ Beforeðtcin;initiate; tcout;respondÞ:

938938 The communicative act respond encapsulates the acts of composing a RESPOND
939 message and sending the message to the initiating agent. If the responding agent be-
940 lieves it can perform the task, and yet it currently does not have a desire to do so, and
941 does not believe it is performing the task, then it decides to negotiate. Note that the
942 implicit assumptions discussed in Section 3.3.6 are at play here. Because of the coop-
943 erativeness of the agent, it intends to negotiate and intends to negotiate successfully.
944 These two intentions motivate the responding agent to continue negotiating.

945 More_info When a responding agent (r) receives arguments from an initiating
946 agent (i) for a requested task q, it processes the arguments to update evidence
947 support for the task. If the support is still lacking, and the negotiation is on pace or
948 the task is discrete, then it asks for more arguments.

Cin : infoði; r;Doðr; qÞ; tcin;infoÞ ^ I : IrðsucceedðNegotiateði;Doðr; qÞÞÞ; t0IÞ
^ I : IrðupdateðC0

iÞ; t00I Þ^
:9D : DrðDoðr; qÞ; tDÞ ^ ðB : Brð:slowðNegotiateði;Doðr; qÞÞÞ; tBÞ
_ B : BrðdiscreteðqÞ; t0BÞÞ

) Cout : more infoðr; i;Doðr; qÞ; tcout;more infoÞ

950950 where

Meetsðtcin;info; t00I Þ ^Duringðtcin;info; t0IÞ ^Duringðt00I ; t0IÞ
^Meetsðt00I ; tDÞ ^DuringðtD; t0IÞ
^DuringðtD; tBÞ ^DuringðtD; t0BÞ ^Duringðtcout;more info; tDÞ
^ Beforeðtcin;info; tcout;more infoÞ:
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952952
953 Auxiliary to More_info The action update examines the arguments collected, C0

i

954 during tevidence (Section 3.3.6) where Finishesðtevidence; t00I Þ, to see if the proposition
955 C0

i [ Cr � D : DrðDoðr; qÞ; tDÞ. If so, then D : DrðDoðr;qÞ; tDÞ where Meetsðt00I ; tDÞ.
956 First, the communicative act info encapsulates the actions of receiving and
957 parsing an INFO-type message from the initiating agent, in which the hcontentsi
958 holds the arguments p 2 Ci during tcomm and p j2C0

i during tcomm where
959 Beforeðtcomm; tcin;infoÞ. The responding agent then examines the arguments by
960 invoking the predicate update. Since update is an action, it is self-terminating and
961 Equalðt00I ; ½updateðC0

iÞ�Þ. If the arguments are sufficient, then update results in
962 D : DrðDoðr; qÞ; tDÞ; otherwise, the negotiation continues. If at the meantime the
963 agent believes that the pace of the negotiation is not slow or that the task is
964 discrete, then it continues to ask for more information from the initiating agent.
965 Note that in our protocol, a responding agent can only make a counter-offer when
966 the requested task is non-discrete. There are two conditions that prompt a
967 responding agent to counter-offer: (1) when the initiating agent does not have any
968 more arguments (as discussed later), or (2) when the pace of the negotiation is
969 slow. The predicate slow measures the pace of a negotiation. The predicates update,
970 slow, and discrete are part of our real-time enabling functional predicates and will
971 be discussed further in Section 3.4.

972 Agree 2 When a responding agent (r) receives arguments from an initiating agent
973 (i) for a requested task q, it processes the arguments to update evidence support for
974 the task. If the support is enough, then it agrees to perform q.

Cin : infoði;r;Doðr;qÞ;tcin;infoÞ^ I : IrðsucceedðNegotiateði;Doðr;qÞÞÞ;t0IÞ^
I : IrðupdateðC0

iÞ;t00I Þ^D :DrðDoðr;qÞ; tDÞ)Cout : agreeðr; i;Doðr;qÞ; tcout;agreeÞ^
I : Iið:Negotiateði;Doðr;qÞÞ;t000I Þ^ I : Iið:succeedðNegotiateði;Doðr;qÞÞÞ;t000I Þ
^ success

976976 where

Meetsðtcin;info; t00I Þ ^Duringðtcin;info; t0IÞ ^Duringðt00I ; t0IÞ ^Meetsðt00I ; tDÞ^
DuringðtD; t0IÞ ^Duringðtcout;agree; tDÞ ^Duringðtcout;agree; t000I Þ ^Meetsðt0I; t000I Þ:

978978979 This axiom is a counterpart of More_info. If it turns out that the arguments are
980 sufficient, then the responding agent agrees to the request. It uses the communicative
981 act agree to compose and send an AGREE-type message to the initiating agent. The
982 negotiation ends with a success tag. Also, the agent also stops intending to negotiate
983 and to negotiate successfully.

984 Counter 1 When a responding agent (r) receives arguments from an initiating agent
985 (i) for a requested task q, it processes the arguments to update evidence support for
986 the task. If the support is not enough, the pace of the negotiation is slow, and q
987 involves non-discrete resource/task, then r makes a counter-offer ðq0Þ.
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Cin : infoði; r;Doðr;qÞ; tcin;infoÞ ^ I : IrðsucceedðNegotiateði;Doðr; qÞÞÞ; t0IÞ^
I : IrðupdateðC0

iÞ; t00I Þ ^ :9D : DrðDoðr; qÞ; tDÞ ^ B :

BrðslowðNegotiateði;Doðr; qÞÞÞ; tBÞ^
B : Brð:discreteðqÞ; t0BÞ ) Cout : counterðr; i;Doðr; qÞ; tcout;counterÞ

989989 where

Meetsðtcin;info; t00I Þ ^Duringðtcin;info; t0IÞ ^Duringðt00I ; t0IÞ ^Meetsðt00I ; tDÞ^
DuringðtD; t0IÞ ^ FinishesðtD; tBÞ ^ FinishesðtD; t0BÞ ^Duringðtcout;counter; tDÞ:

991991 The communicative act counter encapsulates the acts of finding a counter-offer ðq0Þ,
992 composing a COUNTER-type message, and sending the message to the initiating
993 agent. The counter-offer q0 is stored in the hcontentsi of the message. This is a
994 companion rule to More_info as discussed above. If the negotiation is off pace, then
995 instead of asking for more information/arguments, the responding agent counter-
996 offers. This is motivated by the intention of the agent to achieve a successful outcome
997 to the negotiation. Note that, as mentioned earlier, when a task involves a discrete
998 resource (see also Section 3.4.3), our protocol does not allow for a counter-offer.
999 Thus, the More_info rule overwrites the Counter 1 rule. Further, even though the

1000 responding agent makes a counter-offer, it does not have the desire to perform the
1001 task counter-offered. It only has the desire to do so after the initiating agent agrees to
1002 it. This is represented later in axiom Success 3.
1003 Note that the motivation behind a counter-offer is to speed up the pace of the
1004 negotiation or as a last-ditch effort to salvage a failing negotiation. We do not
1005 perform counter-offer as part of the normal interaction – to evaluate and re-plan
1006 proposals at each negotiation step would have slowed down our negotiations and
1007 that is not applicable to a real-time problem.

1008 Stop When a responding agent (r) is notified by an initiating agent (i) that it has no
1009 more arguments for a requested task q, and the task is discrete, the agent r stops the
1010 negotiation, and the negotiation fails.

Cin : info nullði; r;Doðr; qÞ; tcin;info nullÞ ^ I : IrðsucceedðNegotiateði;Doðr; qÞÞÞ; t0IÞ^
I : IrðupdateðC0

iðDoðr; qÞÞÞ; t00I Þ ^ :9D : DrðDoðr; qÞ; tDÞ ^ B : BrðdiscreteðqÞ; t0BÞ
) Cout : stopðr; i;Doðr; qÞ; tcout;stopÞ ^ I : Irð:Negotiateði;Doðr; qÞÞ; t000I Þ^

I : Irð:succeedðNegotiateði;Doðr; qÞÞÞ; t000I Þ ^ stop

10121012 where

Meetsðtcin;info null; t
00
I Þ ^Duringðtcin;info null; t

0
IÞ ^Duringðt00I ; t0IÞ

^Meetsðt00I ; tDÞ ^DuringðtD; t0IÞ^
FinishesðtD; tBÞ ^ FinishesðtD; t0BÞ ^Duringðtcout;stop; tDÞ ^Meetsðt0I; t000I Þ
^ Startsðtcout;stop; t000I Þ:
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10141014 The communicative act info_null is the encapsulation of receiving and parsing an
1015 INFO_NULL-type message from the initiating agent, while the communicative act
1016 stop encapsulates the actions of composing a STOP-type message and sending the
1017 message to the initiating agent. This is when the responding agent gives up on the
1018 negotiation, after being informed that no more arguments are on the way. As a
1019 result, it no longer intends to negotiate, and it opts out by informing the initiating
1020 agent as a responsible gesture.
1021 The proposition stop indicates the failure of a negotiation because the responding
1022 agent is not convinced to perform the requested task.

1023 Counter 2 When a responding agent (r) is notified by an initiating agent (i) that it
1024 has no more arguments for a requested task q, and the task is discrete, the agent r
1025 makes a counter-offer ðq0Þ.

Cin : info nullði; r;Doðr; qÞ; tcin;info nullÞ ^ I : IrðsucceedðNegotiateði;Doðr;qÞÞÞ; t0IÞ^
I : IrðupdateðC0

iÞ; t00I Þ ^ :9D : DrðDoðr; qÞ; tDÞ ^ B : Brð:discreteðqÞ; t0BÞ
) Cout : counterðr; i;Doðr; qÞ; tcout;counterÞ

10271027 where

Meetsðtcin;info; t00I Þ ^Duringðtcin;info; t0IÞ ^Duringðt00I ; t0IÞ ^Meetsðt00I ; tDÞ^
DuringðtD; t0IÞ ^ FinishesðtD; tBÞ ^ FinishesðtD; t0BÞ ^Duringðtcout;counter; tDÞ:

10291029 This axiom is a counterpart of Stop, and closely resembles Counter 1. Driven by the
1030 intention to succeed in the negotiation, the responding agent, after being notified of
1031 no more arguments coming in from the initiating agent, voluntarily makes a counter-
1032 offer if the task is non-discrete.

1033 Failure 3R This axiom is similar to Failure 3I. See Appendix A.

1034 Failure 4R This axiom is similar to Failure 4I. See Appendix A.

1035 Abort R This axiom is similar to Abort I. See Appendix A.

1036 Out_of_time R This axiom is similar to Out_of_time I. See Appendix A.

1037 Success 3 When a responding agent (r) receives an AGREE message from an
1038 initiating agent (i) to its counter-offer ðq0Þ, the responding agent desires to perform
1039 the counter-offer, and the negotiation ends with success.

Cin : agreeði; r;Doðr; qÞ; tcin;agreeÞ ^ I : IrðsucceedðNegotiateði;Doðr; qÞÞÞ; t0IÞ
) D : DrðDoðr; q0Þ; tDÞ ^ I : Iið:Negotiateði;Doðr; qÞÞ; t00I Þ^
I : Iið:succeedðNegotiateði;Doðr; qÞÞÞ; t00I Þ ^ success

10411041 where Finishesðtcin;agree; t0IÞ ^Meetsðt0I; tDÞ ^Meetsðt0I; t00I Þ. The communicative act
1042 agree predicate encapsulates the acts of receiving and parsing an AGREE-type
1043 message, in which hcontentsi holds the information regarding q0. This rule says that if
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1044 the initiating agent agrees to the counter-offer, then the responding agent (1) desires
1045 to perform the counter-offered task and (2) intends no longer to continue with the
1046 negotiation regarding the originally requested task.

1047 No_response R This is similar to No_response I. See Appendix A.
1048 Figure 5 shows the time lines of the initiating agent’s behavior when faced with an
1049 outright rejection or agreement. These are the simple cases of the axioms above. See
1050 for example that when the responding agent agrees to a request, it extends the desire
1051 to do the requested task.
1052 Figure 6 shows the negotiation process, from the responding agent’s point of view
1053 once it agrees to negotiate. Similar to Figure 4, Figure 6 allows us to explicitly
1054 describe the temporal relationships among the BDI states and the communicative
1055 acts. That description, in turn, allows us to guarantee the behavior of the negotiation
1056 and to fine-tune its efficiency. See Section 3.3.7. Note that when a responding agent
1057 has a desire to perform the requested task, it will monitor its negotiation progress, as
1058 triggered by the responding agent’s intention to update its belief of whether the task
1059 requested should be agreed to. Also, when the task is non-discrete and the progress is
1060 slow, the responding agent will make a counter-offer.

1061 3.4. Functional predicates

1062 In this section, we describe the functional predicates mentioned in the previous
1063 section that present the logical framework for the rules of encounter between two
1064 agents. These predicates are the infrastructure to our real-time negotiation protocol.
1065 To simplify the discussion, we have touched upon 11 communicative acts such as
1066 initiate, respond, no_go, agree, etc. (discussed in Section 3.3) and six negotiation-
1067 related functional predicates: slow, time, discrete, no_response, acceptable, and up-
1068 date. Here we will elaborate further on the six predicates as they are an integral part
1069 that enables the real-time negotiation between the agents.

1070 3.4.1. Slow This predicate takes the form of slow actionð Þ, and given an action (or
1071 a task), it measures the pace of the action and returns true or false. An action has
1072 two temporal intervals: the actual real-time interval, action½ �, and the planned/pre-
1073 dicted interval, actionk k. Suppose that action½ � has a duration between ts;action and
1074 tf;action, and the set of states as a result of the action is Saction ¼ s0;action; . . . ; sN;action

� �
.

Figure 5. Time lines of the responding agent’s behavior when faced with an outright rejection or

agreement.
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1075 Each state, sn;action, holds during an actual interval sn;action

� �
such that (1)

1076 During sn;action
� �

; action½ �
� �

, (2) Overlaps sn;action
� �

; snþ1;action

� �� �
, and (3) the temporal

1077 interval of two such states has a duration between the start of sn;action and the latest
1078 finish time of the two states, sn;action snþ1;action

� �
. Similarly, we can obtain

1079 sn;action snþ1;action

�� ��
1080 When slow actionð Þ is invoked, it retrieves the current state of the action,
1081 scurrent;action 2 Saction. If

s0;action scurrent;action
� �

action½ � >
s0;action scurrent;action
�� ��

actionk k
10831083 is true, then slow actionð Þ returns true; otherwise, it returns false. Note that this
1084 predicate is binary since we use it to trigger a counter_offer act. A more general
1085 approach is to use a degree of slowness that would not only trigger a counter_offer
1086 but also dictate how conceding the responding agent should be.

1087 3.4.2. Time This predicate takes the form of time actionð Þ and indicates whether
1088 an agent has run out of the allocated time for the action. Borrowing the notations
1089 from Section 3.4.1, suppose we have action½ � and actionk k. When an agent invokes
1090 time actionð Þ, the predicate measures the time elapsed so far, telapsed ¼ tcurrent � ts;action.
1091 If telapsed � actionk k, then time actionð Þ returns true; otherwise it returns false.

Figure 6. Time lines of the negotiation from the responding agent’s point of view (a simplified version).

Temporal intervals under brackets are options. Note that once the responding agent sends out a

RESPOND message to the initiating agent, it is committed to negotiate successfully.
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1092 3.4.3. Discrete A discrete task is when the task cannot be broken up or attenu-
1093 ated. For example, if the initiating agent asks the responding agent to turn on a
1094 sensor, then the responding agent may only respond with yes or no. However, if the
1095 initiating agent asks the responding agent to turn on a sensor in five seconds, then
1096 the responding agent, in addition to yes or no, may also counter with ‘‘yes, but in 10
1097 seconds’’. The introduction of the time factor makes the task a non-discrete one,
1098 allowing the responding agent to counter-offer. In our negotiation protocol, a task q
1099 may be qualified by time and resource amount. The predicate discrete returns true if
1100 both qualities are absent, otherwise, it returns false. Note that we intentionally leave
1101 out the qualification of tasks in Section 3.3 to simplify our discussions.

1102 3.4.4. No_response This predicate takes one argument – the agent from which the
1103 current agent is waiting for a message. In general, when an agent i invokes
1104 no response rð Þ on another agent r, it is after agent i has performed a communicative
1105 act, C. Hence, Before C½ �; no response rð Þ½ �ð Þ. If agent i does not receive a response in
1106 the interval twindow (and During twindow; tIð Þ given that the intention I is to negotiate),
1107 then no response rð Þ returns true; otherwise, it returns false.

1108 3.4.5. Acceptable This predicate is only invoked by an initiating agent, I, and
1109 takes as argument a task. Suppose the agent i desires to achieve goal G. To achieve
1110 G, there is a set of subtasks ~q ¼ q1;q2; . . . ; q Ci ~qð Þj j

n o
, and as mentioned in Section

1111 3.3.5, a coalition, Ci ~qð Þ, exists to distribute the subtasks among the coalition
1112 members. As a result,

Di G; tDð Þ ) Di Do Ci ~qð Þ;~qð Þ; tDð Þ;
11141114 whereDi Do Ci ~qð Þ;~qð Þ; tDð Þ ¼ Di Do r1; q1ð Þ; tD1ð Þ; . . . ;Di Do r

Ci ~qð Þj j ; q Ci ~qð Þj j

� 	
; tD Ci ~qð Þj j

� 	n o
.

1115 As the agent progresses in real time, G may become G¢ such that
1116 Di G

0; t0D
� �

) Di Do Ci ~q
0� �
;~q0

� �
; t0D

� �
where During t0D; tD

� �
. For example, an agent has

1117 received commitments for some negotiated resources, so it no longer desires the
1118 original set of resources if asked for. So, when the initiating agent receives a counter
1119 offer q0 from the responding agent, it invokes acceptable q0ð Þ to compare the counter-
1120 offered task q0 with the corresponding q0r where Di Do r; q0r

� �
; t0D

� �
. If q0 2 q0r then

1121 acceptable q0ð Þ returns true; otherwise, it returns false.
1122 Whether a resource request is agreeable by a responding agent and whether a
1123 counter-offer is acceptable by an initiating agent depend on how the request is
1124 determined in the first place by the initiating agent. And this determination of which
1125 and the amount of resources to request from which responding agents is task allo-
1126 cation in our coalition. Note that in [50], we detail how task allocation is carried out
1127 in our coalition. Briefly, the initiating agent makes use of the potential utilities to
1128 carry out task allocations and assignments. Based on the overall potential utility of
1129 the initial coalition, the initiator may want to lower its demands to improve the
1130 chance of forming a coalition. By the same token, if the potential utility of a can-
1131 didate is high, then the initiator may want to increase its demand with that candi-
1132 date. We are currently investigating various algorithms such as greedy, lazy, worried,
1133 and weary. An initiating agent becomes greedy during a negotiation when (1) it
1134 tries to minimize its own rationalization and computing process, (2) it selects the
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1135 candidate with the higher overall utility values to approach hoping for a successful
1136 negotiation, (3) it cares mostly about high-priority tasks, (4) it tries to maximize its
1137 chance of getting a particular task done – by including sub-utilities in the focused
1138 utility evaluation, and (5) it hopes to shift its responsibility (partially) to the can-
1139 didates via successful negotiations – expecting the candidates to spawn their own
1140 coalitions to help respond to the problem at hand. In a lazy algorithm, the initiator
1141 prefers to concentrate its effort on a few candidates, as it does not want to spend
1142 resources or time on too many. In a worried algorithm, the agent asks for more than
1143 it needs to ensure, that if some of the candidates refuse to help, it will get what it
1144 needs. This translates to insurance policies. Finally, in a weary algorithm, the ini-
1145 tiator prefers not to upset a candidate – especially one that has a high uniqueness –
1146 by being over-demanding. This leads to demand caps that make sure that an addi-
1147 tional demand does not hurt the negotiation.

1148 3.4.6. Update This functional predicate is invoked only by a responding agent r,
1149 as previously mentioned in an auxiliary to theMore_info axiom. See the discussion in
1150 Section 3.3.7.

4. Implementation

1152 The driving application for our system is multi-sensor target tracking, a distributed
1153 resource allocation and constraint satisfaction problem. The objective is to track as
1154 many targets as possible and as accurately as possible using a network of sensors.
1155 Each sensor has a set of consumable resources, such as beam-seconds (the amount of
1156 time a sensor is active), battery power, and communication channels, that each
1157 sensor desires to utilize efficiently. Each sensor is at a fixed physical location and, as a
1158 target passes through its coverage area, it has to collaborate with neighboring sen-
1159 sors to triangulate their measurements to obtain an accurate estimate of the position
1160 and velocity of the target. As more targets appear in the environment, the sensors
1161 need to decide which ones to track, when to track them, and when not to track them,
1162 always being aware of the status and usage of sensor resources. Each sensor can at
1163 any time scan one of three sectors, each covering a 120-degree swath. Sensors are
1164 connected to a network of CPU platforms on which the agents controlling each
1165 sensor reside. The physical sensors are 9.35 GHz Doppler MTI radars that com-
1166 municate using a 900 MHz wireless, RF transmitter. The agents (and sensors) must
1167 communicate over an eight-channel RF link, leading to potential channel jamming
1168 and lost messages. Our agents may reside on the same CPU platform or different
1169 platforms.
1170 We are using a tracker module that receives radar measurements and returns to
1171 the agent the estimated position and velocity of a target. These estimates are im-
1172 proved with more measurements from different sensors within a short time interval,
1173 since this allows better target triangulation. The tracker software is not an agent, and
1174 simply implements a target tracking algorithm. The communication between the
1175 tracker module and an agents is via socket connections.
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1176 We have implemented the real-time, case-based negotiating agents described in the
1177 previous sections and tested them using real sensors and targets moving in a physical
1178 environment. The agents exhibit all of the behavior described: they use CBR to select
1179 and adapt a negotiation strategy, use a RTSS to request CPU resources and to have
1180 time and system awareness, negotiate for radar use, and learn the new negotiation
1181 strategies they have developed. See [50] for more details.

1182 4.1. Agents and environments

1183 We have implemented our multi-agent system in the C++ programming language.
1184 Each agent has 3+n threads: (1) a core thread that performs the reasoning, message
1185 checking, task handling chores of the agent and thus is always active, (2) a com-
1186 munication thread that is responsible for polling for incoming messages and sending
1187 out messages and thus is always active, (3) an execution thread that performs sensor-
1188 related tasks such as calibration, target searching, and tracking, and thus is some-
1189 times active and sometimes dormant, and (4) n negotiation threads that each waits to
1190 be awaken to perform a negotiation and goes back to a dormant state after the
1191 negotiation is over. This setup allows an agent to carry out various lines of tasks
1192 concurrently. It also allows an agent to conduct multiple negotiations in parallel.
1193 Each negotiation thread can be an initiating thread or a responding thread,
1194 depending on the dynamic, real-time instructions given by the core thread.
1195 The current implementation of our agents is able to (1) detect a target, (2) form a
1196 coalition, perform CBR to determine its negotiation strategy, initiate or respond to
1197 negotiations, (3) argue to persuade its partner to perform a task or reasons to
1198 whether to agree to perform a task, (4) monitor its own status such as its sensor,
1199 noise, tasks, and CPU resource usage, (5) interact with either a software simulation
1200 or the actual physical hardware setup, and (6) obtain real-time data from the
1201 operating system supporting its execution. More importantly, each agent is auton-
1202 omous and can sense and react to real-time events in the environment. Moreover,
1203 there is no hierarchy within the multi-agent system – all agents are peers.
1204 We have also implemented the complete real-time argumentative negotiation
1205 protocol in the negotiator module of an agent. With the formalisms encoded, the
1206 negotiator conducts a negotiation with high efficiency and autonomy. We have
1207 implemented all communicative acts: parsing messages and converting them to belief
1208 states and converting belief states and composing messages out of them. We have
1209 also implemented the belief, desire, and intention states as functions, procedures, and
1210 clauses. As for the temporal definitions and constraints of those states, we have
1211 implemented recursive mutexes (semaphore-like designs) to manage read/write
1212 accesses: when to acquire the value of a state, when to release a lock on the value of a
1213 state, when must a state be ready in order for a certain task to start, and so on. For
1214 example, an agent may be tracking a target and negotiating at the same time. While
1215 tracking, the agent may realize that the target is no longer visible. This directly
1216 affects the on-going negotiation since now the agent’s sensor has become available,
1217 leading to a lower threshold, for example, of a counter-offer. But, the negotiator
1218 module of a negotiation thread cannot afford to constantly check the states of the
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1219 tracking. It does so occasionally and only when it is necessary, and can only be
1220 interrupted at certain points over the course of the negotiation. This is dictated by
1221 the temporal definitions of the states found in Section 3.

1222 4.2. Real-time scheduling service

1223 We have implemented a RTSS in the C programming language, on top of the KU
1224 Real-Time system (KURT) [53] that adds real-time functionality to Linux. First, the
1225 RTSS provides an interface between the agents and the system timers, allowing
1226 agents to (1) query the operating system about the current time; (2) ask the RTSS to
1227 notify them after the passage of certain length of time; and (3) ask the RTSS to ping
1228 them at fixed time intervals. This allows agents to know when to, for example,
1229 conclude a negotiation process or turn on a radar sector. Second, the agents may ask
1230 the RTSS to notify them when certain system-level events occur, such as process
1231 threads being activated, or communication messages going out or coming into the
1232 system. Third, the agents can ask the RTSS to allocate them a percentage of the CPU
1233 for each one of their threads (such as the ones controlling the radar and tracking or
1234 the ones used in negotiations) and to schedule this allocation within an interval of
1235 time. This RTSS allows an agent to monitor the progress of its own negotiations and
1236 the usage status of its allocated CPU resource.

1237 4.3. Case-based argumentative negotiation

1238 We have implemented the CBR Manager to maintain the case base of an agent. The
1239 implementation includes similarity-based retrieval, both difference- and outcome-
1240 driven adaptations, and the incremental and refinement learning. The CBR Manager
1241 retrieves a case for each negotiation. A case provides the appropriate negotiation
1242 strategy for the agent. For a responding agent, the negotiation strategy also includes
1243 the persuasion threshold. When the responding agent receives an argument from the
1244 initiating agent supporting its request, it measures the support of this argument using
1245 CLIPS8 rules and compares the support collected so far against the persuasion
1246 threshold. We have implemented the entire negotiation protocol, as depicted in
1247 Figure 1, into each negotiation thread (the number of threads in an agent is static for
1248 a specific agent implementation. In our experiments we used two negotiation threads
1249 per agent). Each thread is capable of monitoring the pace of its own negotiation,
1250 retrieving messages via the communication thread, parsing incoming messages,
1251 making decisions and reasoning, composing an outgoing message and sending
1252 messages via the communication thread. Each thread is autonomous in a way that
1253 the core thread of the agent does not have to tell the thread how to conduct a
1254 negotiation once it has gotten underway.
1255 Each thread forks off a child process that automatically invokes CLIPS. The com-
1256 munication between a negotiation thread and its child CLIPS process is through pipes.
1257 After receiving an acknowledge signal from the CLIPS child process, the negotiation
1258 thread informs the core thread that it is ready to accept a negotiation task and waits.
1259 When it finally receives an activation signal, the negotiation thread downloads the
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1260 relevant information regarding the negotiation task. From the information, the thread
1261 decides its identity – either an initiating thread or a responding thread. Then the
1262 negotiation thread negotiates following the negotiation protocol described in Section
1263 3. Once the negotiation is done, the thread updates its status andwaits for a signal from
1264 the core thread before resetting itself for the next negotiation task.Meanwhile, the core
1265 thread of the agent periodically checks the status of the active negotiation threads. If a
1266 negotiation is completed, the core thread downloads the updated data and signals the
1267 negotiation thread that it is okay to reset.
1268 In our case-based strategy selection approach, a negotiation strategy dictates a set
1269 of tactics for a negotiation. For example, an initiating agent needs to know which
1270 arguments are more important to send over first to the responding agent. We use
1271 CBR to help us determine that. When an agent encounters a negotiation problem, it
1272 searches its casebase for the most similar case, in which the problem description in
1273 that case resembles the current negotiation problem. Then, based on the differences
1274 between the two problem descriptions, the CBR module of the agent performs an
1275 adaptation on the solution. The modified solution becomes the negotiation strategy
1276 (details are provided in [51]).

1277 4.4. Real-time enabling functional predicates

1278 In Section 3.4, we presented the logical model of our real-time enabling functional
1279 predicates. Here, we describe the implementation that, even though is domain- and
1280 application-specific, may serve as a useful example to other designs of the predicates.
1281 In this section, we also describe how our agents make a counter-offer in real-time.
1282 Note that in our implementation, we employ CBR to derive a negotiation strategy
1283 for an agent for each negotiation task. A case has a set of belief states (situated input
1284 parameters), a set of desires (a parametric negotiation strategy), and the outcome of
1285 the negotiation. In addition, in our agent design, a negotiation is handled by one of
1286 the negotiation threads that an agent dispatches. So, in the following, we will use the
1287 term ‘‘negotiation thread’’ quite often and make use of the belief and desire states.

1288 4.4.1. Slow In a case, the desires include the number of negotiation steps allowed
1289 and the time allowed. That is, a negotiation thread desires to complete a particular
1290 negotiation in n iterations and s seconds. A small n means that fewer messages are
1291 exchanged and the negotiation may avoid incurring too much overhead cost per
1292 transmission. A small s means that the negotiation is to be completed in a short time.
1293 Suppose we denote the number of negotiation steps allowed as stepallowed, the time
1294 allowed as timeallowed, the number of steps performed so far as stepsofar, and the time
1295 elapsed so far as timesofar. We define the slow predicate for a responding agent a’s
1296 negotiation (intending to achieve the desire for performing a requested task q) as

slow Ia Da Do a; qð Þð Þð Þ; tð Þ ¼ timesofar
stepsofar

>
timeallowed
stepallowed


 �

12981298 This definition is an example of the logical model discussed in Section 3.4.1.
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1299 4.4.2. Time To implement this predicate, a negotiation thread registers its process
1300 ID with a real-time system-level service and makes use of a time-based notification
1301 mechanism. A negotiation asks the notification mechanism to signal the thread after
1302 s seconds. One unique characteristic of the mechanism is that the negotiation thread,
1303 after registration, may find out how much of the s seconds has elapsed after the
1304 notification was first registered (for example, 25, 50, 75, 100%) by consulting the
1305 notification flag: tflag. The value of s is determined by the timeallowed of the desire
1306 states of a case.
1307 In our current design, we define the time predicate for an agent a’s negotiation as

time negotiationð Þ ¼ tflag < 1
� �

13091309 When tflag=1, that means the time elapsed has reached 100% of timeallowed.

1310 4.4.3. Discrete First, we denote the set of discrete tasks Hdis and the set of non-
1311 discrete tasks Hcon. Then we define the discrete predicate of a requested task q as

discrete qð Þ ¼ qrequest 2 Hdis

� �
13131313 where qrequest 2 q is part of the requested task.

1314 4.4.4. No_response Our implementation is the following: After an agent sends out
1315 a message, it polls its message queue for a response before moving on. After tpolling
1316 seconds, if the negotiation thread receives no messages from a particular negotiation
1317 partner, then no_response returns true. If there is a consistently typed message, then
1318 the negotiation thread reacts to it based on the negotiation protocol outlined in
1319 Section 3.3.

1320 4.4.5. Acceptable This predicate is used only by an initiating agent when it re-
1321 ceives a counter-offer from a responding agent and refers to non-discrete (continu-
1322 ous) tasks, hcon. Let us denote a continuous task as ~r 2 Rcon: There are three key
1323 parameters in qcon : qcon ¼ fqcon;name; qcon;res; qcon;amountg where qcon,name is the name of
1324 the task, qcon,res designates the resource involved in the task, and qcon,amount indicates
1325 the amount of the resource involved.
1326 In our design, when an agent a realizes B : Ba qneededcon;amount

� 	
where qneededcon;amount is

1327 non-zero, it initiates negotiations – each with a different qrequestedcon;amount, to the coalition
1328 members – attempting to obtain enough qcon,amount from the members to meet
1329 qneededcon;amount, i.e.,

P
Ca ~qð Þ

qrequestedcon;amount � qneededcon;amount. At each agent cycle, the agent a updates its

1330 B : Ba qneededamount

� �
and B : Ba

P
Ca ~qð Þ

qrequestedcon;amount

 !
. If B : Ba qneededcon;amount ¼ 0

� 	
then it has

1331 achieved its target, and it can abort all current negotiations associated with that
1332 particular resource. The process checks (1) the current usage, (2) the anticipated
1333 usage, (3) the current allocation, and (4) the agreed additional allocation. As
1334 qneededcon;amount gets smaller, the remaining negotiations become less demanding in their
1335 requests, and vice versa. As each negotiation completes gradually,

P
Ca ~qð Þ

qrequestedcon;amount

1336 changes.
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1337 Suppose that the kth negotiation thread of the agent a is negotiating to obtain
1338 qrequestedcon;amount;k from a responding agent and the responding agent has just counter-offered
1339 q0k with an offered amount of q0con;amount;k. Then the acceptability of the counter-offer q

0
k

1340 is defined as

acceptable q0k
� �

¼
X
Ca ~qð Þ

qrequestedcon;amount � qrequestedcon;amount;k þ q0con;amount;k � qneededcon;amount

0
@

1
A

13421342

1343 4.4.6. Update The update predicate is used when a responding agent receives
1344 information or arguments from an initiating agent. The objective of this predicate is to
1345 find out whether the evidence support for a requested task is convincing enough for the
1346 responding agent to perform it. One key parameter of a negotiation strategy of a
1347 responding agent, r, is the persuasion threshold,Tpersuasion;Do r;qð Þ, for a requested task q.
1348 This is a value created by the responding agent r for q; to agree to Do(r,q), the argu-
1349 ments sent by the initiating agent must provide for q that is greater than Tpersuasion,q.
1350 Suppose we denote the evidence support for Do r; qð Þ, with a persuasion threshold,
1351 Tpersuasion;Do r;qð Þ, at temporal interval t as Support q;Tpersuasion;Do r;qð Þ; t

� �
, and

1352 Support q;Tpersuasion;Do r;qð Þ; time0
� �

¼ 0. The objective of the initiating agent is to
1353 obtain Support q;Tpersuasion;Do r;qð Þ; t

� �
� Tpersuasion;Do r;qð Þ in order to convince the

1354 responding agent to perform the requested task. Thus we have the following axiom:

1355 Axiom desire to do If a responding agent r is negotiating with an initiating agent i
1356 regarding a requested task q, and at temporal interval t, it has
1357 Support q;Tpersuasion;Do r;qð Þ; t

� �
� Tpersuasion;Do r;qð Þ then D : Dr Do r; qð Þ; tð Þ. (This sup-

1358 plements the More_info, Agree 2, Counter 1, Stop, and Counter 2 axioms discussed in
1359 Section 3.3.)
1360 When arguments are received by the responding agent, the support value changes
1361 based on the following definitions of an agent behavioral model:
1362 (1) Agents that have cooperated before will tend to cooperate again.
1363 (2) A responding agent is willing to trust an initiating agent’s perception.
1364 (3) An agent is more inclined to help another agent if that another agent has relied

1365 on the agent for help before.
1366 (4) An agent is more inclined to help another agent if it knows that it is one of the

1367 few possible solutions to the requested task.
1368 (5) An agent is more inclined to help another agent if it knows that that another

1369 agent is busy.

1370 Note that the persuasion threshold and the evidence support work together to imi-
1371 tate a joint intention9 between the two negotiating agents. On one hand, the
1372 responding agent is helpful and desires to help the initiating agent, but it also intends
1373 to help when it is worthwhile. This implies cooperativeness with a touch of selfish-
1374 ness in a local sense that translates into global optimization of resource allocation.
1375 To make sure that the requested task is worthwhile to do, the responding agent uses
1376 a persuasion threshold, derived from its past experience and its current status. On the
1377 other hand, the initiating agent intends that the responding agent help with its task.
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1378 It collects its belief states and sends over whatever it thinks are useful as arguments
1379 for its intention. These arguments modify an evidence support value. Therefore,
1380 Definition 4 (‘‘An agent is more inclined to help another agent if that another agent
1381 has relied on the agent for help before.’’) merges the two intentions, seen from two
1382 different perspectives, and the joint intention is to achieve a successful negotiation.
1383 This deviates from the model proposed by Cohen and Levesque [9, 10] but if we view
1384 achieving a successful negotiation as a team action, then both members of the team
1385 (the two negotiating agents) are jointly committed to completing the so-called team
1386 action, with the agent that performs the task believing that it performs the task while
1387 the other agent believes that the same performs the task as well.
1388 We have implemented the update function as a CLIPS-based operation. Evalua-
1389 tion heuristics are coded as CLIPS rules and arguments received from an initiating
1390 agent are fed into the CLIPS process (associated with each negotiation thread) to re-
1391 compute the evidence support for a requested task. The CLIPS process then sends
1392 back the updated evidence support to its negotiation thread and waits for another set
1393 of arguments. The negotiation thread and the CLIPS process communicate via a
1394 synchronized pipe connection. The negotiation thread compares the updated evi-
1395 dence support with its persuasion threshold. If the former is greater than or equal to
1396 the latter, then the negotiation thread agrees to the requested task, composes a
1397 message to notify the initiating agent of the deal, and completes its own negotiation.
1398 The core thread of the agent then schedules the requested task in its activity.
1399 Here we list one example of the CLIPS rules used. The first rule indicates that if
1400 the initiating agent has been helping the responding agent in the past with a rate of
1401 66.7%, then the evidence support is incremented by 0.05 of that rate in favor of the
1402 initiating agent with its current request.

ðdefruleworld�help�rate

ðworldðhelpRate?y&:ð>?y0:6667ÞÞÞ
¼>

ðbind?�evidenceSupport�ðþð�0:05?yÞ?�evidenceSupport�ÞÞ
ðbind?�world�help�rate�count�ðþ?�world�help�rate�count�1ÞÞÞ

14041404 In all, we have 15–20 rules in our CLIPS rulebase.

1405 4.4.7. Counter offer When dealing with continuous resources, the responding
1406 agent has a persuasion function, modified by two parameters: (1) kappa – a will-
1407 ingness factor, and (2) beta – a conceding factor, and bounded by the maximum
1408 resource that it is willing to give up, qmax

con;amount. An agent can use any function10 to
1409 express the continuous persuasion value; in our implementation, we examined two: a
1410 linear and an exponential persuasion function.
1411 In our model, the linear persuasion function is:

Plinear sð Þ ¼ beta � sþ kappa

14131413 and, the exponential persuasion function is:

PexpðsÞ ¼ kappa � es=beta
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14151415 The variable s is the evidence support collected so far, i.e., s ¼ Support
1416 q;Tpersuasion;Do r;qð Þ; t

� �
� Tpersuasian;Do r;qð Þ. So, in the beginning, at ts when the support

1417 is zero, a responding agent is willing to give up Plinear 0ð Þ ¼ kappa or Pexp 0ð Þ ¼ kappa.
1418 That is why kappa is called the willingness factor. Then for s >0, the conceding rate
1419 depends on beta: the larger this value is, the more conceding the persuasion function
1420 is. The key differences between our persuasion functions and others are (1) the
1421 conceding and willingness factors are determined by past experiences, and adapted
1422 to fit the current situation, (2) each function applies to an evidence support based on
1423 arguments, (3) each function is implicitly bounded by timeallowed for a negotiation,
1424 and (4) each function is bounded by qmax

con;amount, the maximum amount of a resource
1425 that the agent is willing to give up.
1426 Thus, when a responding agent is about to make a counter-offer, it checks s, and
1427 the counter-offer, q0con;amount is given as

q0con;amount ¼
PðsÞ
qmax
con;amount if P sð Þ > qmax

con;amount

�

14291429

1430 5. Experiments and results We conducted a set of experiments with a varying
1431 number of real sensors and vehicles (as described in Section 4). The most complex
1432 experiment involved eight 9.35 GHz Doppler MTI radars and two targets moving in
1433 oval trajectories (Figure 7). During the experiments we used three different types of

Figure 7. Experimental setup. The two ovals represent the trajectory of the two targets. The sensors are

labeled as S1 to S8. The X and Y-axes are the dimensions of the area in which the targets travel and the

sensors are located.
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1434 agents so as to compare the behavior and performance of other agent formalisms
1435 with that of the performance of negotiating, real-time agents described in this paper.
1436 Our hypothesis was that negotiating agents can track targets better since they can
1437 coordinate radar measurements and achieve better triangulation. The MTI sensors
1438 and the vehicles were simulated by the Radsim simulator version 2.08 [32]. Agents
1439 connect to Radsim and use a standard API to send control signals to their respective
1440 sensor platforms. Radsim, in turn, uses a model of the platforms’ behavior to return,
1441 in the case of taking a measurement, a hypothetical value of amplitude and fre-
1442 quency based on the current locations of the targets. For each setup, we had three
1443 runs. Each run was run for 250,000 simulation ticks, representing 250 real-time
1444 seconds.
1445 Our negotiating agents were compared to (1) simple, reactive ones, and (2)
1446 negotiating agents that use a single, static negotiation strategy instead of an adap-
1447 tive, case-based one. The reactive agents operated as follows: When an agent de-
1448 tected a target, it started tracking it without attempting to form a coalition.
1449 Comparing our negotiating agents to reactive ones allowed us to establish a baseline
1450 performance in which the agents simply track without coordinating with other
1451 agents (as in the simple, reactive scenario) and study how coordinated tracking in a
1452 coalition (as in our negotiating agents) helped improve the tracking. When the agent
1453 no longer sensed the target, it returned to a ‘‘wait’’ state. The single-strategy nego-
1454 tiating agents used our negotiation protocol, but always used the same negotiation
1455 strategy. Comparing our negotiating agents between using a single, static strategy
1456 and using an adaptive, case-based one allowed us to investigate how agents equipped
1457 with learning capability are able to improve their negotiation and ultimately target-
1458 tracking efforts.
1459 We used two metrics of quality for the performance of the three techniques. First,
1460 we used the number of times that an agent selected the correct sensor sector to turn
1461 on, indicating that it was correctly tracking the target. A higher percentage of correct
1462 sector selections would also lead to better triangulation and tracking, implying better
1463 collaboration among the agents. Second, we used the quality of the measurements
1464 made. A target is visible by a sensor sector for a period of time. During this time, its
1465 visibility to the sensor changes as the target moves closer or further away from the
1466 sensor. The exact time at which a sensor makes a measurement establishes the quality
1467 of the measurement as a function of the target visibility. In other words, the first metric
1468 indicates whether the agent selects the correct sector to turn on at the write time, and
1469 the second metric indicates whether the appropriate sensor is tracking the target.
1470 To establish the optimal (or correct) sector that an agent should be looking at, we
1471 used the omniscient agent experiment performed by researchers at the University of
1472 South Carolina (http://www.cse.sc.edu/�vargasje/targetshare/). In their experiment
1473 the South Carolina researchers built a controller that knew the real location of the
1474 targets most of the time. The controller used that information to command a cen-
1475 tralized agent to change the sectors of the sensors so that they pointed most of the
1476 time in the direction of the best sector for tracking the target. Their experiment
1477 determined the best baseline performance that a centralized, omniscient agent could
1478 achieve and provided us with the best ‘‘ground truth’’ available sector. Further, the
1479 negotiating agents with CBR did significantly better in tracking Target 1 than in
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1480 tracking Target 2. This is possibly due to resource contention for the sensors S4 and
1481 S5, where Target 1 was first engaged and acquired by the sensors, which caused
1482 Target 2 to be ‘‘off ’’ in terms of the sensors’ timing.
1483 The results of this evaluation are summarized in the Table 1 below.
1484 Our real-time negotiation protocol with CBR does much better in creating
1485 coalitions of the appropriate sectors to track a vehicle, especially for the left
1486 target.
1487 Next, we used the quality of the measurements made as a proxy of the quality of
1488 the coalition formation and the task execution. The exact time at which a sensor
1489 makes a measurement establishes the quality of the measurement as a function of the
1490 target visibility. An example is given in Figure 8: The red arc represents the visibility
1491 of a target by a sector of a sensor (sensor named ‘‘node 1’’ and sector 1). The x-axis is
1492 time in milliseconds. The y-axis is the quality represented by the sensitivity of the
1493 target position to measurement errors. In practice average measurement errors are
1494 on the order of between 5 and 10 feet, so the vertical range of the chart roughly
1495 corresponds to the range of sensitivity over which a measurement has some theo-
1496 retical usefulness for tracking purposes. Notice that for any given sensor most of the
1497 time measurements are of negligible value (for tracking); however, at any given time
1498 there exists a sensor which would produce valuable measurements. Also, the smaller
1499 the value of quality, the better, since it represents the expected average error. The
1500 vertical green lines are the times when the sector was measuring. Clearly, we want the
1501 measurements to coincide with the existence of a target (although some measure-
1502 ments will not, since the radar will occasionally be on sentry duty, searching for
1503 targets). In Figure 8, sector 1 of node 1 has made multiple measurements when the
1504 target was first visible starting around time 180, but then did not turn itself off and
1505 failed to start measuring the target that appeared around time 305. For quality of
1506 measurements we reward an agent for taking high-quality measurements of a target,
1507 and penalize it for measuring when there is no target.
1508 In our experiments, different sensors had different quality totals based on their
1509 location relative to the target trajectories (for example, sensor 2 had the best per-
1510 formance because it could dedicate all its resources to one target only; sensors that
1511 had to track both targets had worse performance). Our results are presented both per
1512 sensor and as an average. The results of the quality of measurement are summarized
1513 in Table 2.
1514 Our real-time negotiation protocol with CBR does much better in creating
1515 coalitions of the appropriate sectors to track a target, especially for the left target.

Table 1. Percentage of correctly selecting a radar sector for tracking a target for the three agent designs.

Agent designs Correctly selecting

radar sector for Target 1

(left target)

Correctly selecting radar

sector for Target 2

(right target)

Negotiating agents with CBR 88.60% 75.69%

Negotiating agents with single strategy 68.20% 74.50%

Reactive agents 69.95% 70.72%
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1524 Overall, our technique scheduled and executed higher quality measurements. In
1525 two sensors, number 5 and number 6, we did worse. The number 5 sensor’s per-
1526 formance is comparable to that of the reactive system, while sensor 6 does sub-
1527 stantially worse than both other techniques. We suspect that these poor
1528 performances might be due to the initial casebases of the agents controlling these two
1529 sensors, and how the targets moved. Conceptually, sensor 6 corresponds to sensors
1530 1, 2, and 8. These sensors with our CBR-powered negotiating agents were able to
1531 perform much better than with the other agent designs. Similarly, sensor 5 corre-
1532 sponds to sensor 4, which also had a better performance using the CBR-powered
1533 negotiating agent design. However, practically, it is possible that, due to how the two
1534 targets moved along the tracks, sensors 5 and 6 encounter situations not covered in
1535 the initial casebases and the agents do not have powerful-enough adaptations to
1536 learn to address those situations. We will investigate this further. In all other cases,
1537 though, our technique performed from exceptionally better (e.g. sensors 1, 4 and 8)
1538 to a little better (e.g. sensor 7), and did better on average.
1539 One added measurement was the number of times a radar was turned on and
1540 measuring. Our technique averaged 63.1 target illuminations per radar per each 250-
1541 second experiment; the negotiating agents with a single strategy averaged 86.8; and
1542 the reactive agents averaged 89.1. In other words, our agents achieved higher quality
1543 measurements taken from the right radar sector at the right time, while conserving
1544 radar resources by not turning them on too often.
1545 In summary, our results showed that in a dynamic, real-time environment of
1546 multi-sensor target tracking our proposed technique proved to be superior to a
1547 reactive agent architecture and a BDI architecture of negotiating agents that use a
1548 single negotiation strategy.

6. Related work

1550 Agent-based negotiations involve information exchanges between two agents where
1551 the initiating agent desires to persuade the responding agent to accept a task. Two
1552 agents need to exchange information as each has only a partial set of the information
1553 or knowledge contained in the entire multi-agent environment, especially where

Table 2. Average quality of each sensor in tracking targets for the three agent designs.

Agent designs Average quality

Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 Sensor7 Sensor8 All

Negotiating agents

with CBR

190.311 1.9 680.4 462.5 1800.1 6696.8 34.4 468.9 1322.5

Negotiating agents

with single strategy

1159.0 2.3 932.6 1787.7 1390.3 4849.3 37.6 2463.9 1577.8

Reactive agents 497.2 2.6 949.0 2040.1 1767.1 4596.3 37.4 2129.3 1502.4

Note that our measure of ‘‘quality’’ is actually the expected average error. Thus, the smaller the value of

quality, the better it is.

SOH AND TSATSOULIS44



UN
CO

RR
EC
TE
D
PR
OO

F

1554 information cannot be updated and distributed quickly and accurately to all agents.
1555 Thus, when an initiating agent encounters a task that it believes that another agent
1556 can perform, it negotiates by informing that agent of the description of the task and
1557 its own constraints. In this way, each agent maintains a local information base and
1558 information is exchanged only when necessary.
1559 Faratin et al. [15] presented a formal model of negotiation between autonomous
1560 agents. The authors defined negotiation issues such as price, volume, duration,
1561 quality, etc. For example, if an agent is trying to sell an item to another agent and
1562 both are negotiating about the price, then the price is the negotiation issue. The
1563 authors defined negotiation tactics as the set of functions that determine how to
1564 compute the value of an issue by considering a single criterion, including time,
1565 resources, previous offers and counter offers. There are time-dependent, resource-
1566 dependent, and behavior-dependent tactics such as polynomial, exponential, Boul-
1567 ware and Conceder functions. The authors ultimately defined a negotiation strategy
1568 as follows: First, for an issue, there is a weighted counter proposal, made up of a
1569 linear combination of the tactics that generates the value at the current time step of a
1570 negotiation, and the set of tactics is finite. Given a set of tactics, different types of
1571 negotiation behavior can be obtained by weighting the tactics in a different way and
1572 the weights are specified in a matrix. A negotiation strategy is then any function that
1573 is based on the matrix of the weights and the mental state of the agent. This defi-
1574 nition provides a strong formal foundation for generating multi-tactic strategies and
1575 for modifying the negotiation strategy in real-time. However, the negotiation tactics
1576 are functional and thus prescribed. In our approach, we treat negotiation tactics as
1577 situational, temporal and even historical as our agents are able to learn from their
1578 past experiences and adapt old tactics to new situations.
1579 Parsons et al. [13, 39, 40] proposed a comprehensive argumentative negotiation
1580 model that (1) used bridge rules for inference in different units [36] and (2) incor-
1581 porated explicitly multi-context BDI agents [22, 43, 44] and the formalism described
1582 in [25] to construct arguments to evaluate proposals and counterproposals in
1583 negotiation. In particular, the authors made a strong case for sending over rules of
1584 an agent to another agent. This allows the other agent to know the actual reasoning
1585 process behind its counterpart’s claims. In an agency of heterogeneous and com-
1586 petitive agents, this makes a lot of sense since it is logical to have agents that reason
1587 differently. Thus, naturally, to convince another agent, an agent lets its counterpart
1588 know about its reasoning steps. This approach promotes diversification and efficient
1589 knowledge (in addition to merely information) distribution within an agency. Of
1590 course, in a system of homogeneous agents in which all agents share the exactly same
1591 reasoning behavior, then such an argumentation-based negotiation model of Parsons
1592 and Jennings might not be necessary. The model is truly argumentative since agents
1593 not only argue about what evidence there is, but they also argue about how one
1594 reasons evidentially. Matos et al. [35] also investigated the use of genetic algorithms
1595 to evolve the above negotiation strategies. Strategies with high fitness values were
1596 chosen to survive to the next population generation. The fitness measure was a
1597 combination of gain (the seller’s and buyer’s scores) and cost (message exchanges).
1598 By the same token, there are different levels of acceptance, based on notions of
1599 argument defeat [28].
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1600 Amgoud et al. [4–6] further dealt with preferences between two arguments. First,
1601 an argument is undercut if and only if there exists an argument for the negation of an
1602 element of its support. Second, an argument arg1 is preferred to another argument
1603 arg2 according to Pref – a (partial or complete) preordering on the propositions – if
1604 and only if the level of the set of propositions in arg1 is more referred then the
1605 corresponding set in arg2. Using these two definitions, one is able to distinguish
1606 different types of relation between arguments. Suppose arg1 and arg2 are two
1607 arguments. Then, arg2 strongly undercuts arg1 if and only if arg2 undercuts arg1 and
1608 it is not the case that arg1 >>Pref arg2, where >>Pref stands for the strict pre-order
1609 associated with Pref. If arg2 undercuts arg1 then arg1 defends itself against arg2 if
1610 and only if arg1 >>Pref arg2. A set of arguments S defends arg1 if there is some
1611 argument in S which strongly undercuts every argument arg2 where arg2 defends arg1
1612 and arg1 cannot defend itself against arg2. The set S of acceptable arguments of the
1613 argumentation system is the least fix-point of a set of propositions in the system that
1614 is defended by S. These definitions in turn guide the search for the set of arguments
1615 and counter-arguments (or defeaters) and provide the motivation for a dialogue. In
1616 our model, the preference of arguments is prescribed by the CBR system, and the
1617 dynamic part of this preference schemes lies with the prescribed ordering of this
1618 arguments. Our CBR system, based on its experience, ranks the order of the argu-
1619 ments to be communicated. Here, the ordering preference is based on the likelihood
1620 of an argument in persuading the other agent in the shortest time. In a way, this
1621 resembles the degree of strength of the argument in defending its associated request.
1622 Kraus and Wilkenfeld [26] proposed a negotiation model on hostage crisis. The
1623 model is a modification of Rubinstein’s model [38] of alternative offers which focuses
1624 on the passage of time and the preferences of the players for different agreements as
1625 well as for opting out of the negotiations. The authors assumed that agents cared
1626 only about the nature of the agreement or opting out, and the time at which the
1627 outcome was reached, and not about the sequence of offers and counter-offers that
1628 led to the agreement. In particular, no agent regrets either making an offer that was
1629 rejected or rejecting an offer. They also assumed disagreement is the worst outcome
1630 and the initiator gained over time and the receiver lost over time, since this was
1631 applied to hostage crisis. According to this model, if there is an agreement zone
1632 between the two players in the negotiation, an agreement will be reached in the first
1633 or the second iteration of the negotiation as the players either have complete
1634 knowledge of each other to begin with or have complete knowledge of each other
1635 after the first offer as time constraints are incorporated [24, 27]. The model is par-
1636 ticularly useful when inter-agent communication has to be kept absolutely minimal
1637 (one or two interactions), individual agent knowledge is small, and less intelligent as
1638 a result. However, it does not generally apply to multi-agent negotiations where
1639 uncertain and incomplete knowledge is usually the case among autonomous agents.
1640 Zlotkin and Rosenschein [46, 47, 59, 60] outlined a theoretical negotiation model
1641 for rational agents. Basically, the utility of an agent from a deal is the difference
1642 between the cost of achieving its goal alone and its expected part of the deal. A deal
1643 is individual rational if the utility of that deal to each partner of the deal is not
1644 negative, and pareto-optimal if there does not exist another deal that dominates it –
1645 there does not exist another deal that is better for one of the agents and not worse of
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1646 the other. A negotiation set is the set of all the deals that are both individual rational
1647 and pareto-optimal. In order for the negotiation set to be non-empty, a necessary
1648 condition is that there is no contradiction between the goals of the two agents.
1649 However, this condition is not sufficient since there may still be a conflict between the
1650 agents. A conflict is where any joint plan that satisfies the union of goals will cost one
1651 agent (or both) more than it would have spent achieving its own goal in isolation –
1652 i.e., no deal is individual rational. They presented a unified negotiation protocol
1653 (UNP) for conflict resolutions and agents taking partial cooperative steps. The
1654 protocol can be applied to two general agent scenarios. First, agents have been
1655 centrally designed to coexist in a single system and are predisposed toward coop-
1656 erative activity – or in the least, there is some notion of global utility that the system
1657 is trying to maximize. Second, agents are self-serving, have their own utility func-
1658 tions and no global notion of utility. These agents have disparate goals and are
1659 individually motivated. Negotiation can be used to share the work associated with
1660 carrying out a joint plan (for the agents’ mutual benefits), or to resolve outright
1661 conflicts arising from limited resources. When a conflict arises, the authors proposed
1662 a conflict resolution via coin toss based on weights. The authors further extended
1663 their model to task-oriented, state-oriented, and worth-oriented functions [61, 62,
1664 63].
1665 Lesser et al. [11, 12, 14] conducted research in which agent-based negotiations
1666 were essentially used for the collection and combination of various information
1667 pieces to derive meaningful and correct observations of the world. The approach
1668 stems from a partial global planning model [14], where an agent has the ability to (1)
1669 represent its own expected interpretation activities (of sensory data), (2) communi-
1670 cate about these expectations with others, (3) model the collective activities of
1671 multiple systems, (4) propose changes to one or more systems’ interpretation
1672 activities to improve group performance, and (5) modify its planned local activities
1673 in accordance with the more coordinated proposal. Thus, the object of negotiation
1674 here is to combine information from several agents in order to reach an outcome for
1675 the entire group of agents. During negotiations, the goals, the long-term strategy and
1676 the rating of a plan are exchanged. Decker and Lesser [12] extended the work further
1677 to generalized partial global planning.
1678 Based on the same partial global planning approach, Lander and Lesser [30, 31]
1679 introduced a framework called TAEMS that implements the cooperative (or nego-
1680 tiated) search and conflict resolution among heterogeneous, reusable, expert agents.
1681 The authors identified three negotiated-search strategies: (1) local search, (2) inte-
1682 gration of local search, and (3) general negotiated search. A local search is performed
1683 individually by an agent within its current view of the shared solution space. This
1684 search includes an initiation, a critique – that describes the features of the proposal
1685 the agent agrees with and those it disagrees with [29], and a solution relaxation. In an
1686 integration of local search, solutions are critiqued by other agents, and the critique is
1687 used to determine local conflicts. The agent then performs relaxation (which lowers
1688 the utility of the solution to the agent) and computes the acceptability of the solu-
1689 tion, based on the number of agents considering the solution to be acceptable.
1690 Finally, a general negotiated search is an opportunistic search augmented by the
1691 communication and assimilation of conflict information. Note that there is no
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1692 explicit face-to-face negotiation involved in the above approach. Agents exchange
1693 information through blackboards, and re-plan based on the critiques and conflicts.
1694 Then they re-post their solutions to the blackboard and the framework controller
1695 sends the information to every agent in the group. The solutions are refined until
1696 acceptable by all agents. However, the negotiated search in addressing inconsisten-
1697 cies such as relaxation is very important in agent-based negotiations, and the task
1698 group and commitment sharing is critical in negotiations as well.
1699 Zeng and Sycara [58] proposed a negotiation model called Bazaar, powered by
1700 Bayesian belief networks. Given each response from the counterpart, an agent updates
1701 its beliefs (through the belief network) regarding the counterpart’s reservation price. A
1702 supplier’s reservationprice, for example, is the price belowwhich the supplier agentwill
1703 not accept an offer. Then, the agent makes another offer based on the newly updated
1704 reservation price. The unique characteristic of this work is its use of Bayesian belief
1705 network,which allowsmodeling of constraints andhypotheses formally.However, one
1706 has to come up with the initial conditional probabilities to build the belief networks.
1707 Kraus et al. [25] described a logical model for multi-agent argumentative negoti-
1708 ations and an implementation called the Automated Negotiation Agent (ANA).
1709 Given the mental states of the agents in their beliefs, desires, intentions, and goals,
1710 the authors defined argumentation as an interactive process emerging from ex-
1711 changes between agents to persuade each other and bring about a change in inten-
1712 tions. There are six different argument types such as threats, promises of a future
1713 reward, appeals to past promises, etc. To decide which arguments to use, an agent
1714 uses negotiation meta-rules. For example, if the counterpart is a memoryless agent,
1715 then do not choose the argument type ‘‘appeal to past promise’’. Next, the agent
1716 ranked all generated arguments in terms of their strengths. For example, a threat is
1717 stronger than a promise of a future reward. Finally, the agent evaluates a request to
1718 decide whether to accept or reject it based on whether there is a contradiction, its
1719 convincing factor and its acceptance value. This logical model provides a compre-
1720 hensive and sound foundation for competitive, selfish (to a certain degree), and
1721 argumentative agents. In our research, however, our agents are cooperative and, due
1722 to time constraints, cannot afford to be over-argumentative. In addition, our agents
1723 can neither pose a threat (since agents are cooperative) nor offer a promise of a
1724 future reward (since no agents in our application can guarantee its future state in a
1725 dynamic environment). Moreover, our protocol explicitly defines when certain states
1726 have to be true and for how long. This makes the real-time implementations feasible.
1727 Our use of mental states and temporal logic shared significant similarity to the
1728 SharedPlan model of Grosz and Kraus [18, 19, 20] with the key difference being in
1729 the resolution of the temporal constraints that we refine in our negotiation model. As
1730 described in [20], the SharedPlan formalization provides mental-state specifications
1731 of both SharedPlans and individual plans. Shared plans are constructed by groups of
1732 collaborating agents and include subsidiary SharedPlans formed by subgroups as
1733 well as subsidiary individual plans formed by individual participants in the group
1734 activity. The formalization distinguishes between complete plans – those in which all
1735 the requisite beliefs and intentions have been established – and partial plans. In
1736 addition to the propositional attitude of intending to do an action, it introduces the
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1737 attitude of intending that a proposition hold. Stemming from this formalization,
1738 Grosz and Kraus [19] identified two axioms.
1739 First, an agent can only have an intention-that toward propositions it believes are
1740 possible. The axiomization does not allow an agent to intend-that an impos-
1741 sible proposition hold. That is, 8G;Tið ÞInt:Th G; prop;Ti;Tprop; ICprop

� �
)

1742 :Bel G;:prop;Tið Þ where if G is an agent that intends-that (for a duration of Ti)
1743 proposition prop to be true for duration Tprop, within the intention context of ICprop,
1744 then G does not believe that the proposition is not possible during the duration of the
1745 agent’s intention. Similar to our model, this SharedPlans model uses a variant of
1746 intentions, bounded by time to generate other mental states. In SharedPlans, the
1747 intention-that stems from the mutual belief of agents to make sure that the con-
1748 straints for doing a task will hold. Similarly, we treat intentions as derived from
1749 beliefs and desires in our model. In addition, our agents also believe that a propo-
1750 sition is possible if they attempt to achieve that proposition during the negotiation
1751 process. The key difference is that in our model, due to the consideration of real-time
1752 delays, we allow for a mental state (e.g., Bel ) – that has initially caused another
1753 mental state (e.g., Int) to hold – to become false before the intention is completely
1754 acted out.
1755 Second, if an agent believes that the intended proposition prop is possible but does
1756 not currently believe it holds and knows some actions it can take to cause propo-
1757 sition prop to hold, then the agent must consider doing at least one of these actions.
1758 So, the second axiom in the SharedPlans model says the following. If an agent is
1759 uncertain about whether proposition prop holds and believes there are some actions
1760 any of which might lead to prop holding, then it must either (a) intend to do, or (b)
1761 be actively considering doing, one of these actions, or (c) it must have considered all
1762 of the actions and determined that it could not do any of them. Our model adopts a
1763 similar practice. However, the mental state of our agent in its intention is subtly
1764 different. In our model, when an agent intends to achieve a prop, it carries out a
1765 series of actions towards achieving that prop. These actions may lead to a modifi-
1766 cation of the original intention, and may lead to the termination of the original
1767 intention. In the face of conflicts that cannot be resolved, our agents negotiate to
1768 change the original intention so that an alternative prop can be achieved.
1769 Gmytrasiewicz and Durfee [17] proposed a Recursive Modeling Method (RMM)
1770 approach to multi-agent coordination under time constraints, and one of their
1771 applications was anti-air defense. Even though agents do not negotiate explicitly,
1772 they make decisions based on their individual modeling of each other, and sub-
1773 sequent modeling of how each other models others.
1774 Our domain of application has certain similarities with the distributed vehicle
1775 monitoring testbed (DVMT) (among many publications on the topic: [33, 37]) which
1776 was used as a tool to investigate distributed problem solving networks. The appli-
1777 cation is vehicle monitoring where each agent receives data only from its own
1778 individual sensor. The sensor coverage areas of the agents overlap. So, the task
1779 becomes one of modeling agent interpretations to ensure local and global consis-
1780 tencies. Hence, in a way, an agent is able to produce an interpretation by itself and
1781 needs to synthesize its own with other agents’. However, in our problem, an agent
1782 needs to cooperate with other agents just to obtain an interpretation of where the
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1783 target is. Hence, the DVMT problem focuses more on well-timed sensor fusion while
1784 ours more on coordination.
1785 Distributed sensor networks have also recently received attention where para-
1786 digms and strategies from the multi-agent systems are used to solve the problem of
1787 allocating resources within such networks [34]. In such networks, the sensors may be
1788 heterogeneous in terms of what and when they could sense, the quality of their
1789 measurements, and the coverage area in which they operate. There are approaches
1790 based on negotiation such as dynamic mediation, argumentation, and satisficing
1791 search. There are also approaches based on hierarchical team organization for large-
1792 scale network arbitration and approaches employing distributed constraint satis-
1793 faction techniques dealing with both soft and hard constraints and peer-based
1794 optimization. A version of our work is reported in [34], focusing on a coalition
1795 formation architecture that learns [50].

7. Conclusions

1797 This paper describes a real-time case-based negotiation model and its logical
1798 negotiation protocol. We first defined the characteristics of our agents and the
1799 cooperative environment that they work in. Next, we outlined a set of real-time
1800 constrained design guidelines and introduced our argumentative negotiation pro-
1801 tocol. We described the protocol in a state transition diagram and as a logical
1802 framework. To better represent the axioms used to guide the rules of encounter
1803 between agents, we used the multi-context BDI framework and temporal logic to
1804 define CanDo, Do, and Doing predicates that link agent behaviors to negotiation
1805 motivations. We also defined logically motivations for a negotiation from the
1806 different viewpoints of the initiating and responding agents. Moreover, we utilized
1807 a set of communicative acts to handle a received message and to send out a
1808 message. We further described in detail two sets of axioms that govern the
1809 negotiation behavior between two agents. The axioms are real-time constrained,
1810 facilitated by a suite of functional predicates. The functional predicates are in-
1811 frastructural tools that enable a negotiation process to monitor the pace of its
1812 negotiation, to determine whether it is on time, to determine whether and how to
1813 counter-offer, to analyze the acceptability of a counter-offer, and to evaluate evi-
1814 dence support for a requested task. These predicates are real-time and reflective.
1815 Then, we turned our attention to our case-based negotiation model. We also
1816 outlined a set of guidelines for the design of the model, particularly for enabling
1817 real-time negotiations. In addition, we designed and implemented a real-time
1818 logical framework and a set of real-time functional predicates.
1819 Subsequently, we applied the model to the distributed sensor network domain in
1820 which multiple sensors controlled by different agents are required to collaborate to
1821 track targets. Our experiments showed that our model was able to select the
1822 appropriate sensor sectors and perform good-quality measurements better than
1823 purely reactive agents and negotiating agents with only a single negotiation strategy.
1824 As for our future work, we aim to extend our model to consider multi-agent
1825 systems with heterogeneous agents, different types of resources, and multiple
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1826 concurrent negotiation issues. In Sections 3.3.7 and 3.3.8, we have hinted that our
1827 model assumes a multi-agent with agents of overlapping capabilities, such that when
1828 an initiating agent encounters a negotiation failure, it is able to approach another
1829 neighbor for help. In some heterogeneous multi-agent systems, this may not be
1830 possible. Thus, if an agent is determined to solve a task and if there is only one
1831 neighbor that has that capability, then the agent has no choice but to continue to
1832 negotiate with the neighbor. In a way, our proposed model is general enough to
1833 support the above scenario. However, the specific mechanism is not entirely clear.
1834 For example, our model will require some extensions, including a notion of persis-
1835 tence and a ‘‘re-planning’’ mechanism to overhaul the task description and alloca-
1836 tion. The persistence notion will still have to trade-off time constraints and task
1837 accomplishments. We will also look into different types of resources: highly con-
1838 strained, sharable, consumable, and otherwise. We will investigate the role of these
1839 negotiations in coalition formation – for example, if a coalition is deemed to fail due
1840 to a failed negotiation, should the initiating agent still continue with the remaining,
1841 ongoing negotiations? Finally, we will also study how real-time negotiations based
1842 on our model perform in noisy and uncertain environments. For example, if there is
1843 uncertainty in the requested task or there is message loss in the communication, the
1844 negotiation protocol has to be flexible enough such that the negotiating agents will
1845 factor uncertainty into their reasoning, and be more cautious in its communication.
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Appendix A. Similar Axioms

Failure 2 When an initiating agent (i) receives a STOP message from a responding
1861 agent (r), it believes that the responding agent r does not desire to perform the
1862 requested task q and thus stops negotiating with r to perform the task, and the
1863 negotiation fails.

Cin :stop r;i;Do r;qð Þ;tcin;stop
� �

^I :Ii succeed Negotiate r;Do r;qð Þð Þð Þ;t0I
� �

)
B :Bi :CanDo r;qð Þ;tBð Þ^D :Di :Do r;qð Þ;tDð Þ^I :Ii :Negotiate r;Do r;qð Þð Þ;t00I

� �
^

I :Ii :succeed Negotiate r;Do r;qð Þð Þð Þ;t00Ið Þ^rejected
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18651865 where During tcin;stop; t
0
I

� �
^Meets t0I; tB

� �
^Meets t0I; tD

� �
^Meets t0I; t

00
I

� �
. The com-

1866 municative act stop is the encapsulation of receiving and parsing a STOP message.
1867 This rule is similar to Failure 1. In addition, it also states that the agent intends to not
1868 negotiate. In our current design we do not differentiate between an outright failure
1869 (failure type 1) and an opt-out failure (failure type 2) – both end with a rejected tag.

1870 Failure 3I When an initiating agent (i) receives an ABORT message from a
1871 responding agent (r), it believes that the responding agent r no longer desires to
1872 perform the requested task q and thus stops negotiating with r to perform the task,
1873 and the negotiation fails.

Cin :abort r;i;Do r;qð Þ;tcin;abort
� �

^I :Ii succeed Negotiate r;Do r;qð Þð Þð Þ;t0I
� �

)
B :Bi :CanDo r;qð Þ;tBð Þ^D :Di :Do r;qð Þ;tDð Þ^I :Ii :Negotiate r;Do r;qð Þð Þ;t00I

� �
^

I : Ii :succeed Negotiate r;Do r;qð Þð Þð Þ;t00I
� �

^abort

18751875 where During tcin;abort; t
0
I

� �
^Meets t0I; tB

� �
^Meets t0I; tD

� �
^Meets t0I; t

00
I

� �
. The com-

1876 municative act abort is the encapsulation of receiving and parsing an ABORT
1877 message. This rule is similar to Failure 2.

1878 Failure 4I When an initiating agent (i) receives an OUT_OF_TIME message from a
1879 responding agent (r), it believes that the responding agent r no longer desires to
1880 perform the requested task q and thus stops negotiating with r to perform the task,
1881 and the negotiation fails.

Cin :out–of–time r;i;Do r;qð Þ;tcin;out–of–time

� �
^I :Ii succeed Negotiate r;Do r;qð Þð Þð Þ;t0I

� �
)

B :Bi :CanDo r;qð Þ;tBð Þ^D :Di :Do r;qð Þ;tDð Þ^I :Ii :Negotiate r;Do r;qð Þð Þ;t00I
� �

^
I : Ii :succeed Negotiate r;Do r;qð Þð Þð Þ;t00I
� �

^out of time

18831883 where During tcin;out of time; t
0
I

� �
^Meets t0I; tB

� �
^Meets t0I; tD

� �
^Meets t0I; t

00
I

� �
. The

1884 communicative act out_of_time is the encapsulation of receiving and parsing an
1885 ABORT message. This rule is similar to Failure 2.

1886 Failure 3R When a responding agent (r) receives an ABORT message from an
1887 initiating agent (i), it believes that the initiating agent i no longer desires to negotiate
1888 and thus stop negotiating with i to perform the task, and the negotiation fails.

Cin :abort i;r;Do r;qð Þ;tcin;abort
� �

^I : Ir succeed Negotiate i;Do r;qð Þð Þð Þ;t0I
� �

)
I :Ir :Negotiate i;Do r;qð Þð Þ;t00I

� �
^I :Ir :succeed Negotiate i;Do r;qð Þð Þð Þ;t00I

� �
^abort

18901890 where During tcin;abort; t
0
I

� �
^Meets t0I; t

00
I

� �
. The communicative act abort is the

1891 encapsulation of receiving and parsing an ABORT message. This axiom is similar to
1892 Failure 3I.

1893 Failure 4R When a responding agent (r) receives an OUT_OF_TIME message
1894 from an initiating agent (i), it believes that the initiating agent i no longer desires to
1895 negotiate and thus stop negotiating with i to perform the task, and the negotiation
1896 fails.
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Cin :out–of–time i;r;Do r;qð Þ;tcin;out–of–time

� �
^I :Ir succeed Negotiate i;Do r;qð Þð Þð Þ;t0I

� �
)

I : Ii :Negotiate i;Do r;qð Þð Þ;t00I
� �

^I : Ii :succeed Negotiate i;Do r;qð Þð Þð Þ;t00I
� �

^out of time

18981898 where During tcin;out of time; t
0
I

� �
^Meets t0I; t

00
I

� �
. This axiom is similar to Failure 4I.

1899 Abort R When a responding agent (r) no longer intends to negotiate with an ini-
1900 tiating agent (i) to perform a requested task q, it aborts the negotiation.

I : Ir :Negotiate i;Do r; qð Þð Þ; t0I
� �

) Cout : abort r; i;Do r; qð Þ; tcout;abort
� �

^
I : Ir :succeed Negotiate i;Do r; qð Þð Þð Þ; t00I

� �
^ abort

19021902 where During tcout;abort; t
0
I

� �
^Meets tcout;abort; t

00
I

� �
^ Finishes t00I ; t

0
I

� �
. The communica-

1903 tive act abort is the encapsulation of composing and sending an ABORT message. It
1904 is similar to Abort I.

1905 Out_of_time R When a responding agent (r) runs out of its allocated time for the
1906 negotiation with an initiating agent (i) to perform a requested task q, it aborts the
1907 negotiation.

B :Br :time Negotiate i;Do r;qð Þð Þð Þ;tBð Þ^I : Ir succeed Negotiate i;Do r;qð Þð Þð Þ;t0I
� �

)
Cout :out–of–time r;i;Do r;qð Þ;tcout;out–of–time

� �
^I :Ir :Negotiate i;Do r;qð Þð Þ;t00I

� �
^

I :Ir :succeed Negotiate i;Do r;qð Þð Þð Þ;t00I
� �

^out–of–time

19091909 where
1910 During tB; t

0
I

� �
^ Finishes tcout;out of time; tB

� �
^Meets tcout;out of time; t

00
I

� �
^Meets t0I; t

00
I

� �
.

1911 This axiom is similar to Out_of_time I.

1912 No_response R When a responding agent (r) detects receives no response from an
1913 initiating agent (i) during a negotiation, then it unilaterally quits the negotiation with
1914 a failure.

B : Br no response ið Þ; tBð Þ ^ I : Ir succeed Negotiate i;Do r; qð Þð Þð Þ; t0I
� �

)
I : Ir :Negotiate i;Do r; qð Þð Þ; t00I

� �
^ I : Ir :succeed Negotiate i;Do r; qð Þð Þð Þ; t00I

� �
^

channel jammed

19161916 where During tB; t
0
I

� �
^Meets t0I; t

00
I

� �
. The no_response predicate is one of our real-

1917 time enabling functional predicates to be discussed in Section 3.4. This axiom allows
1918 an agent to bail out of a negotiation when the negotiation partner fails to respond.
1919

Notes

1. A ‘‘good-enough, soon-enough’’ solution is sometimes known as a ‘‘satisficing’’ one [34] – a solution

that satisfies the minimum problem requirements and the time constraints.

2. Since our agents must be able to perform multiple, concurrent negotiations, it is important for them to

be multithreaded.
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3. Take a simplified example, if a tracking coalition must be formed before a target enters a coverage zone

that includes the projected path of the target and involves at least three different sensors, and if the

negotiation runs longer than the allowable time, then the negotiation is considered to have lost its utility

– even if a deal is reached, the coalition is no longer useful for tracking the target. This motivates our

design to consider real-time issues significantly.

4. A ‘‘time step’’ can be any interval of time that is reasonable for an application. For target tracking, for

example, a reasonable time step is in the order of tens of milliseconds.

5. This could be accomplished through a domain knowledge base that each agent has at creation, or a

centralized broker or a mediating agent.

6. The utility-based ranking is detailed in [51, 52] and will not be repeated here.

7. This assumes that the agent knows of neighbors of similar capabilities such that it is able to approach a

second neighbor for help when the first approached neighbor refuses to help.

8. See, for example, http://www.ghg.net/clips/CLIPS.html for a discussion on CLIPS.

9. Note that the workings of the persuasion threshold and evidence do not define to a joint intention in a

formal sense. However, we see these two parameters as the keys to make possible for two negotiating

agents to come to a deal with which both are satisfied, leading to an implicit joint intention in the end (if

a deal is indeed reached).

10. There have been a variety of persuasion functions used in previous work in negotiation. Lander and

Lesser [30, 31] used linear functions of local utility values over contract prices. Zlotkin and Rosen-

schein [61–63] suggested non-linear and exponential worth (or utility) functions and task-based, pre-

defined worth functions. In [15], polynomial, exponential, Boulware tactics and Conceder are used.

11. An explanation of these numbers may be in order: Some sensors do not see a target often. During their

idle time they measure the environment to see if a target is there. Such sentry duty is penalized since it

results in no quality measurements. So, the actual values in the table fluctuate greatly across sensors.

The important aspect is the comparison of the behavior of the same sensor using different techniques.
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