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Abstract.  A framework integrating case-based reasoning (CBR) and meta-learning is proposed in this paper as
the underlying methodology enabling self-improving intelligent tutoring systems (ITSs).  Pedagogical strategies
are stored in cases, each dictating, given a specific situation, which tutoring action to make next.  Reinforcement
learning is used to improve various aspects of the CBR module – cases are learned and retrieval and adaptation
are improved, thus modifying the pedagogical strategies based on empirical feedback on each tutoring session.
To minimize canceling out effects due to the multiple strategies used for meta-learning – for example, the
learning result of one strategy undoes or reduces the impact of the learning result of another strategy, a
principled design that is both cautious and prioritized is put in place.  An ITS application, called Intelligent
Learning Material Delivery Agent (ILMDA), has been implemented, powered by this framework, on
introductory computer science topics, and deployed at the Computer Science and Engineering Department of the
University of Nebraska.  Studies show the feasibility of such a framework and impact analyses are reported on
pedagogical strategies and outcomes.
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INTRODUCTION

Developing instructional material for an intelligent tutoring system (ITS) is very time consuming.  For
example, Woolf and Cunningham (1987) estimated that an hour of instructional material required
more than 200 hours of ITS development time.  Furthermore, an already constructed ITS for a specific
domain can neither be re-constructed to function for a different domain, nor can it be altered without
spending much time and effort (Virvou & Moundridou, 2001).  In the past, there have been attempts
(e.g., Kimball, 1982; O’Shea, 1982; MacMillan & Sleeman, 1987; Dillenbourg, 1989; Gutstein, 1992;
Elorriaga & Fernández-Castro, 2000) to build self-improving ITSs.  However, these attempts have
focused on learning about the students that they encountered to improve the ITS’s modeling of the
students in order to better decide the next appropriate tutoring actions.  Thus, these attempts have not
emphasized self-evaluation or self-improvement of the fundamental reasoning component of the ITSs.
For example, is a particular instructional strategy appropriate?  Is a particular weight used in making a
tutorial decision correct?  Thus, these attempts have not significantly reduced the cognitive load
needed to develop instructional material for ITSs.  Hence, there is a need for self-improving ITSs that
are introspective and meta-cognitive, having the capability to examine their own reasoning, such that
the need for laborious and expert quality control of the material can be reduced.



Specifically, such an ITS will improve ITS development in the following aspects (Murray, 1999):
(1) decrease the effort for making intelligent tutors; (2) decrease the skill threshold for building
intelligent tutors; (3) help the designer/author articulate or organize his or her domain or pedagogical
knowledge; (4) support good design principles; and (5) enable rapid prototyping of intelligent tutor
designs.  Note that the research described in this paper does not attempt to build authoring tools that
support the development of ITSs; on the contrary, the framework is grounded on the hypothesis that an
observant, intelligent ITS with machine learning capabilities is able to refine its knowledge base to
address those needs automatically.  Our approach embraces this hypothesis using a framework of case-
based reasoning (CBR) with meta-learning to enable self-improving ITSs.  This framework allows an
ITS to be generative, able to model students, able to model expert performance, able to change
pedagogical strategies, and “self-improving” in which the ITS “has the capacity to monitor, evaluate,
and improve its own teaching performance as a function of experience” (Woolf et al., 2002).

A framework integrating CBR and meta-learning called CBRMETAL is proposed in this paper.
Meta-learning is defined as a learning mechanism of a system that learns about the system itself and
how to improve the system’s performance over time.  Pedagogical strategies are stored in cases, each
dictating how, given a specific situation, to decide which tutoring action to make next.  Reinforcement
learning is used to improve various aspects of the CBR module: cases are learned and retrieval and
adaptation are improved.  To minimize canceling out effects due to the use of these multiple machine
learning strategies to conduct meta-learning - for example, it is possible for the refinements in
adaptation to conflict with the refinements in retrieval, a principled design that is both cautious and
prioritized is also put in place.  An ITS application, called Intelligent Learning Material Delivery
Agent (ILMDA), has been implemented in Java, based on this framework, to deliver instructional
material on introductory computer science (CS1) topics, and deployed at the Computer Science and
Engineering Department of the University of Nebraska.  Two studies were conducted.  The first study
focused on how the learning-enabled ITS impacted the pedagogical strategies and outcomes.  The
second study focused on the use of case-based reasoning and meta-learning in terms of effectiveness
and efficiency.

This paper is a comprehensive extension to previous conference papers published about the
project (Soh & Blank, 2005; Soh et al., 2005; Blank et al., 2004).

In the following, related work in CBR and meta-learning and the use of CBR in ITSs are
presented first.  Then, the CBRMETAL framework is discussed, followed by a section on
implementation.  Finally, results of two deployments of ILMDA are reported before the paper is
concluded.

RELATED WORK

Self-Improving CBR

Integrating meta-learning to self-improve CBR has been proposed and described in the literature.
Emphasis has been mostly on parameter or feature weighting for similarity-based case retrieval.  For
example, Wettschereck and Aha (1995) proposed weighting features automatically for case retrieval
using a hill-climbing algorithm; Cardie (1999) used cognitive biases to modify feature set selection
(changing, deleting, and weighting features appropriately); Bonzano et al. (1997) used a decay policy
together with a push-pull perspective to adjust the term weights; Avesani et al. (1998) used



reinforcement learning to reward nearest neighbors that can be used correctly to solve input problems
to adapt the local weights to the input space; Jarmulak et al. (2000) used genetic algorithms to
determine the relevance/importance of case features and to find optimal retrieval parameters; Zhang
and Yang (2001) used quantitative introspective learning resembling back-propagation neural
networks to learn feature weights of cases; Park and Han (2002) used an analogical reasoning structure
for feature weighting using a new framework called the analytic hierarchy process; and Patterson et al.
(2002) proposed a hybrid approach based on the k-nearest neighbor algorithm and regression analysis.
While case learning has also been a staple of CBR (e.g., Watson & Marir, 1994), learning about case
adaptation has not received as much attention.  Leake et al. (1995) formulated the task of acquiring
case adaptation knowledge as learning the transformation and memory search knowledge, by learning
successful adaptation cases for future use.  In Stahl’s (2005) formal view of a generalized CBR model,
the author considered learning similarity measures while assuming that the adaptation and output
function remain static during the lifetime of the CBR system.  However, none of the above examples
proposed an integrated, introspective learning framework for CBR as proposed in this paper.

ITS with CBR or Machine Learning

There are ITSs that use CBR or machine learning.  For example, Weber and Brusilovsky (2001)
described the ELM Adaptive Remote Tutor (ELM-ART), an ITS that supports learning programming
in LISP.  ELM-ART models individual learners as a collection of episodes that are descriptions of
how exercise problems have been solved by a particular student.  These descriptions are explanation
structures of how a programming task has been solved by the student; i.e. stored episodes contain all
the information about which concepts and rules were needed to produce the program code the students
offered as solutions to programming tasks.  Each episode is stored as cases, with each case describing
a concept and a rule that was used to solve a plan or sub-plan of the programming task.  Using a
combination of an overlay model and the above episodic student model, ELM-ART provides adaptive
navigation support, course sequencing, individualized diagnosis of student solutions, and example-
based problem-solving support.  ELM-ART also selects the best next step for a particular user.
Starting from the current learning goal, the system recursively computes all prerequisites that are
necessary to fulfill the goal.  The first concept belonging to the set of prerequisites that is not learned
or solved already will be selected and offered to the learner.  The learner completes the course
successfully when all prerequisites to the current goal are fulfilled and no further goal can be selected.
The system also provides feedback by providing a sequence of help messages with increasingly
detailed explanation of the error or suboptimal solution.  The sequence starts with a very vague hint on
what is wrong and ends with a code-level suggestion of how to correct the error or how to complete
the solution.  The system also provides an ordered list of relevant examples.  Basically, using case-
based retrieval, ELM-ART selects the episodes with the highest similarity values to the current frame
and presents a list of links to examples and reminders.  However, unlike CBRMETAL, ELM-ART
used neither adaptation nor learning.  Thus, significant effort must be invested to ensure the quality of
the cases; while in the CBRMETAL, only minimal initial effort is necessary to develop cases.

The CBRMETAL framework described in this paper shares the same underpinnings to its design
as the Case-Based Instructional Planner (CBIP).  In the CBIP project, Elorriaga and Fernández-Castro
(2000) integrated a case-based instructional planner with existing ITSs to enhance the pedagogical
component with learning capabilities, transforming ITSs into self-improving systems that learn from
memorization and learn from their own experiences, where instructional planning is the process of



mapping out a global sequence of instructional goals and actions that provides consistency, coherence,
and continuity throughout an instructional session.  In CBIP, the instructional plan memory (IPM) is
the repository of the past teaching/learning experiences of the case-based system.  A case defines a
piece of a previously used instructional plan and contains: the context in which it was applied, the
instructional plan itself or a part of it (subplan) if the plan is layered, and the results that it achieved.
Similar to the design described in this paper, the CBIP application context consists of a sequence of
student-related features, a sequence of session-related features, and a sequence of domain-related
features.  Arruarte, Fernández-Castro, Ferrero and Greer applied the framework to build Maisu that
tutors the derivatives topic (Arruarte et al., 1997).  For adaptation, they used a critic-based approach: a
set of rules that identify the specific adaptation needs.  In CBRMETAL, reinforcement learning is used
to refine both similarity and adaptation heuristics.

Mayo and Mitrovic (2001) proposed a methodology for building tractable normative ITSs using a
Bayesian network for long-term student modeling and decision theory to select the next tutorial action.
They built the Capitalization and Punctuation Intelligent Tutor (CAPIT), a normative constraint-based
tutor for English capitalization and punctuation and showed that, through evaluation results, a class
using the full normative version of CAPIT learned the domain rules at a faster rate than the class that
used a non-normative version of the same system.  CAPIT has a five-step methodology for designing
decision-theoretic pedagogical action selection (PAS) strategies: (1) randomized data collection, (2)
model generation, (3) decision-theoretic strategic implementation, (4) online adaptation, and (5)
evaluation.  One area of concern with the above approach is scalability, both to larger domains and
different domains.  In a larger domain, the space of <state, action, outcome> triples may be so large as
to effectively render network induction impossible.  Thus, we see CBR with its ability to adapt a
viable solution to address this concern.  Further, the ability to learn and store new cases allows the
system to evolve.  Scaling to different domains hinges on handling ambiguity.  CBR allows for partial
matching and thus can help address this particular concern.

Mayo and Mitrovic (2001) also categorized ITSs into three models: expert-centric, efficiency-
centric, and data-centric.  In expert-centric models, student models are unrestricted products of domain
analysis.  That is, an expert specifies either directly or indirectly the complete structure and
conditional probabilities of the Bayesian student model, in a manner similar to that with which expert
systems are produced.  Our ILMDA can be considered as following such a model, as the initial
casebase – together with the adaptation and retrieval heuristics – contains domain expertise on what
tutorial actions to take based on certain student models, though without the corresponding conditional
probabilities.  In data-centric models, the structure and conditional probabilities of the network are
learned primarily from data.  Thus, our ILMDA can also be seen as following the data-centric model,
as it learns from its interactive sessions and refines its knowledge base.  Benefits of the data-centric
model include the following.  First, because the model is inducted from actual data, its predictive
performance can easily be evaluated by testing the network (or casebase) on data that was not used to
train it.  Second, data-centric models can be expected to be much smaller than the typical expert-
centric model because the latter represents both observed and hidden variables, while the former
models only observable variables.

Melis et al. (2001) provided a comprehensive account of ActiveMath, a generic web-based
learning system that dynamically generates interactive (mathematical) courses adapted to student
goals, preferences, capabilities, and knowledge. When the user has chosen her goal concepts and
scenario, the session manager sends this request to the course generator.  The course generator is
responsible for choosing and arranging the content to be learned.  It checks the user model to find out



the user’s prior knowledge and preferences, and uses pedagogical rules to select, annotate, and arrange
the content – including examples and exercises.  However, unlike CBRMETAL, the ActiveMath unit
of course module is the entire tutorial together with the examples and exercises and does not consider
the real-time interactivity between the user and the ITS.  While ActiveMath uses rules, cases are used
to allow for partial matching in CBRMETAL.  For user modeling, ActiveMath incorporates persistent
information about the user as well as a representation of the user’s learning progress.  There are
‘static’ properties such as field, scenario, goal concepts, and preferences as well as the ‘dynamic’
properties such as the knowledge mastery values for concepts and the user’s actual behavior, that have
to be stored in the user model.  ActiveMath also keeps track of a history about the actions the user
performed.  The history elements contain information such as the IDs of the content of a read page or
the ID of an exercise, the reading time, the success rate of the exercise, which is similar to
CBRMETAL.

In terms of potentially useful applications, the CBRMETAL framework can be used as the
following:

(1) A testbed to collect empirical data to, for example, automatically register the transitions in
terms of the path taken by students to achieve a tutorial goal defined in MetaMuse (Cook, 2001).
Because of the reasoning and self-learning power of CBRMETAL, it is possible to separate the
reasoning module from the instructional expertise (as in the cases) and the content set (as separate
databases).  This modularity enables experimentation: cases or content sets can be substituted without
having to modify the reasoning module at all.

(2) An intelligent authoring tool – similar to Disciple, a learning agent shell by (Tecuci &
Keeling, 1999), or WEAR, an instructor modeler in terms of level of expertise, interests and activities,
and preferences in teaching strategies, by (Virvou & Moundridou, 2001) – that quality-tags domain
expertise for the instructors designing the content, especially in the categories of tutoring strategies
and multiple knowledge types (Murray, 1999).  Because of its self-improving capabilities,
CBRMETAL can evaluate its content sets and cases.  Content sets that have been applied with
consistent results could be tagged as such, for example.  Cases that have been used regularly could be
tagged as such, for example.  An intelligent authoring tool could solicit content sets or cases from a
developer, run them through its CBRMETAL process using the data or experience that it has
accumulated, and then make suggestions to the developer regarding the projected quality of the
content sets or cases.  Also, this framework enables the learning of specific cases and heuristics for
specific combinations of contents and students.  That is, it is possible to deploy a CBRMETAL-
powered ITS for a trial period to collect automatically customized cases and heuristics.

UNDERLYING REASONING AND META-LEARNING FRAMEWORK

The underlying methodology of the framework integrates case-based reasoning (CBR) with meta-
learning.  The traditional CBR framework is shown in Figure 1(a), in which the module receives a new
situation, searches its casebase to locate the most similar case (or best case) matching the new
situation, and adapts the solution from the best case to fit the new situation.  The extended framework,
shown in Figure 1(b) incorporates meta-learning to self-adjust various components of the traditional
CBR framework: the casebase, the heuristics used to compute case similarity for retrieval and storage,
and the heuristics used to adapt case solutions.  This framework is named CBR and Meta-Learning or
CBRMETAL.



The case learning module learns new, different cases to improve the coverage of the casebase.
The module designates a new situation and its adapted solution as a potential new case.  It compares
the potential new case with all the existing cases in the casebase.  If the potential new case is found to
be distinct enough, then the module adds it to the casebase for future use.

The similarity heuristics adjuster module uses reinforcement learning to adjust the heuristics used
in computing case similarity.  Note that each case’s situation description consists of a set of attribute-
value pairs.  These similarity heuristics determine the relative weights of the attributes.  Learning to
refine these heuristics allows the CBR system to improve its case retrieval mechanism – retrieving
best cases that are more suitable because of the different weights.  The reinforcement learning is based
on the following assumption. For a retrieved, most similar case, 

€ 

Cbest , it has a situation description
and a solution, 

€ 

pCbest  and 

€ 

sCbest , respectively.  If 

€ 

sCbest  has been observed to be successful in the past,
and when it is adapted to a new situation, 

€ 

pnew , deemed similar to 

€ 

pCbest , then 

€ 

sCbest  should be
successful as well.  If that is not observed, then 

€ 

pnew  may be not as similar to 

€ 

pCbest  as initially
computed.  As a result, similarity heuristics that contributed positively to the similarity are penalized.
Similarly, similarity heuristics that contributed negatively to the similarity are rewarded.

The adaptation heuristics adjuster module learns how to adapt solutions to new situations by
adjusting the weights of the adaptation heuristics.  The underlying strategy is reinforcement learning,
similar to that used in the above module.  For each adapted best case solution, 

€ 

′ s Cbest , the module keeps
track of the adaptation heuristics that have contributed to the changes.  If the 

€ 

′ s Cbest  is observed to be
successful (or not successful), then all contributing adaptation heuristics are rewarded (or penalized).
The level of reward or penalty is also based on the amount of contribution of each heuristic, allowing
the system to selectively adjust individual heuristics.

This approach presents several advantages and disadvantages over a traditional CBR system.  The
main advantage is that no one component is entirely responsible for improving the performance of the
system.  By adjusting all three aspects of the CBR system at once, the problem of biased learning can
be avoided.  For instance, if only one aspect was adjusted until it was believed to be functioning
correctly, and only then another aspect was adjusted; then it is possible that, after the second aspect
was adjusted, the first aspect may no longer be optimal or appropriate.  However, this also exposes a
weakness of our approach.  With so many variables changing and adapting, the system may never
converge to a steady state, and one component “improving” may undo “improvements” made in
another component of the system.  For example, adjusting the similarity weights affects how the
system decides which new cases to learn and which best case to retrieve and adapt.  Learning new
cases reduces the need for the adaptation module to make radical, far reaching heuristics, and allows
for more choices when the similarity module attempts to find a case to use.  Adjusting the adaptation
heuristics will reduce the need for the casebase to cover every situation.  It will also give some leeway
to the similarity heuristics, requiring them to only find a close match in the situation space, and not
have to find a good situational match in order to provide a good solution for the new situation.

As pointed out by Cox and Ram (2001), through their extensive empirical evaluations of a system
that implemented a meta-learner that uses multiple machine learning strategies, “explicit
representation and sequencing of learning goals is necessary for avoiding negative interactions
between learning algorithms that can lead to less effective learning.”  Based on our experience over
the years in developing and testing the CBRMETAL framework, six principles have been devised to
minimize such canceling each other out effects.



(a)

(b)
Fig.1.  (a) Traditional or classic case-based reasoning framework; (b) Extended case-based reasoning framework

with machine learning capabilities, CBRMETAL.

Principle 1.  When CBRMETAL learns a new case based on diversity, its objective is to expand
the situation coverage but not the solution coverage of the casebase. With this arrangement, though it
is still possible for the solution coverage of the casebase to expand, it is the adaptation heuristics that
have to shoulder the task of generating new solutions.  Thus, it is less likely for the new case to be
learned to significantly impact the coverage of solutions.

Principle 2.  The CBRMETAL framework may also learn new cases with failed solutions as the
CBR system also performs failure-driven adaptations.  This means if the same situation arises in the
future, it is possible for the system to retrieve a newly-learned case with a failed solution, and perform
a failure-driven adaptation, to incrementally and eventually obtain a successful solution without
straining the adaptation heuristics.  Failure-driven adaptation heuristics are those that adjust the
solution parameters in an opposite manner to what usual different-driven adaptation heuristics would
do.



Principle 3.  Each case is tagged with a utility or competence vector that records how successful
the case has been used, how often the case has been retrieved, and how many new cases have been
spawned as a result of the retrieval of this case (Soh & Luo, 2004).  This allows CBRMETAL to react
with the appropriate degree of “zeal” to the reinforcement.  Cases that have been more successful will
carry more weight, for example, in determining the similarity heuristics.  Cases that have spawned
more new cases will carry more weight in determining the adaptation heuristics.

Principle 4.  CBRMETAL puts in place parameters indicating the degree of aggressiveness of
each learning module (e.g., t in the similarity heuristics learning module and h in the adaptation
heuristics learning module).  This allows the developers of a CBR system to incorporate confidence
into these two sets of domain expertise.  For example, if the similarity heuristics are highly regarded as
correct, then t can be set to be smaller than h.  This in turn could speed up the overall rate of coherence
or convergence of the various learning modules.  Also, if the initial casebase is good – with good
coverage of the situation space and good situation-solution mapping, then it is less likely for the
system to learn new cases or have to adapt to new situations, and thus it is more important to learn
good similarity heuristics than to learn good adaptation heuristics.  On the other hand, if the initial
casebase is average or not good, then the burden lies on case learning and adaptation.  For this,
learning good adaptation heuristics is thus more important, and thus h should be greater than t.  Of
course, if the developer has no prior knowledge on the quality of the cases, then setting t = h would
allow the framework to evolve the casebase and the heuristics in an unbiased manner.  Note that the
CBRMETAL framework does not attempt to tune these degrees of aggressiveness, as they are in place
only for speeding up the convergence in learning.

Principle 5.  CBRMETAL learns conservatively – changing only the most influential similarity
and adaptation heuristics for each learning episode.  That is, after the blame or credit assignment,
similarity (or adaptation) heuristics are ranked in terms of the blame or credit.  Only the top
contributor to a failure or a success is penalized or rewarded accordingly.  This has the effect of
reducing the impact of a single outcome on the heuristics, allowing the system to gradually adjust the
impact of each heuristic.

Principle 6.  CBRMETAL staggers its learning activities with different activation frequencies.
For example, case learning can be activated every time a new case is evaluated while heuristics
learning can be activated after every n cases, or only when the system has seen too many failures for
some period of time.  Once again, as discussed in Principle 4, confidence in the qualities of the
casebase and heuristics could help determine the activation frequencies.  Usually, case learning can be
conditioned upon the utility of the new case to be learned: if the new case adds to the coverage or
diversity of the solution space, then it is learned; otherwise, it is not.  However, weights for the
similarity and adaptation heuristics, in general, should not be modified after, for example, every single
ITS session as that could cause the learning process to oscillate and never converge.

Principles 1 and 2 have been adopted in the case learning module; Principles 3, 4, and 5 in the
two heuristics learning modules; and Principle 6 in the overall learning management.

AN APPLICATION TO INTELLIGENT TUTORING SYSTEMS: ILMDA

This section describes one application of the CBRMETAL framework to the area of intelligent
tutoring systems (ITSs).  In this application, called Intelligent Learning Material Delivery Agent
(ILMDA), each instructional content set consists of three parts: (1) a tutorial, (2) a set of related
examples, and (3) a set of exercise problems to assess the student’s understanding of the topic.  Based



on how a student progresses through the content set and based on his or her profile, ILMDA chooses
the appropriate examples and exercise problems for the student.  ILMDA makes its choice using case-
based reasoning.  Each case contains an instructional strategy, mapping a particular problem to a
specific solution, where the problem consists of parameters describing a student’s progress and his or
her profile, and where the solution consists of parameters prescribing the characteristics of the next
example or exercise problem appropriate for that student.  The case that best matches the current
situation is retrieved from the casebase and its solution is then adapted to the current situation.  After
the modified solution has been applied – i.e. an example or an exercise problem given to the student,
its outcome is recorded.  This outcome in turn facilitates the meta-learning of the system.

Cases

ILMDA has a casebase of cases.  Each case is composed of four parts: situation, solution, outcome,
and performance parameters, as shown in Figure 2.

Fig.2.  Components of a case in our CBRMETAL-powered ITS application, ILMDA.

The situation parameters include the student static and dynamic profiles and the instructional
content’s characteristics.  The student static and dynamic profiles form the basis for ILMDA’s learner
modeling.  This is achieved by profiling a learner/student along two dimensions: student static
background and dynamic student activity.  The background of a student stays relatively static and
consists of the student’s last name, first name, major, GPA, goals, affiliations, aptitudes, and
competencies.  It also includes self-reported self-efficacy and motivation, based on a survey taken
before a student processes a content set.  The dynamic student profile captures the student’s real-time
behavior and patterns.  It consists of the student’s online interactions with the GUI module of ILMDA
including the number of attempts on the same item, number of different modules taken so far, average
number of mouse clicks during the tutorial, average number of mouse clicks viewing the examples,
average length of time spent during the tutorial, number of quits after tutorial, number of successes,
and so on.

The solution parameters specify the characteristics of the example or exercise problem to be
delivered to the student.  Each example or exercise problem is meta-tagged with a set of attributes:
length, interest, Bloom’s taxonomy (Bloom et al., 1964), level of difficulty, amount of scaffolding, the
number of times viewed, the average time per use, average number of clicks per use, and so on.
Instructional scaffolding (Vygotsky, 1978) is support for learning, and the level of scaffolding varies



for different students and scenarios.  In ILMDA, scaffolding similar to those proposed in (Hartman,
2002) is used: cues, hints, references, and elaborations.  Cues are highlighted phrases.  A hint poses
“what if ” and “think about this” statements.  A reference points the student to a particular item in the
content set.  An elaboration explains the steps or partial solutions.  We use highlighted phrases,
diagrams, and figures as cues; “What if ” and “Think about this” questions as hints and prompts; and
stepwise, spelled-out solutions as partial solutions.  In addition, references are used to point students
back to certain pages of a tutorial or an example.  For example, “If you are not clear about how a try-
catch block works, please refer to the Tutorial page, under the ‘Throwing Exceptions’ section.”
Elaborations are guidelines such as “trying to divide a number by 0 or trying to convert a string that
contains letters into an integer are both unchecked exceptions”.

The outcome parameters are based on the usage history of a case, which includes the number of
times the case has been used, the number of times the case has been used successfully, whether the
student quit the example or exercise problem, and whether the student answers the exercise problem
correctly.  These parameters are accumulated from what is observed each time the case is used.

The performance parameters document the difference between the expected and the observed
behavior, also accumulated from what is observed each time the case is used.  For example, how much
time the student spent on an exercise problem or an example with respect to the average time all
students spent on the same exercise problem or example, how many times the student went back-and-
forth between an exercise problem and a tutorial page with respect to the average recorded for all
students when given the same exercise problem, and so on.  This allows the CBR module to evaluate
how each session performs with respect to the norm.

Tables 1 and 2 document the situation and solution parameters of a case, respectively.

How CBR is Used

CBR is used in our system to retrieve the best matching case to the current situation, adapt the solution
of the best matching case to the current situation, and retrieve the next appropriate example or exercise
problem based on the characteristics prescribed by the solution.

When a student clicks “Next Example” or “Next Exercise Problem”, ILMDA records what it has
observed so far of the student (student static and dynamic profiles, see Table 1) and denotes these as
the current situation parameters.

ILMDA then computes the similarity of each case iC  in the casebase to this current situation:

Curr :  

€ 

sim Curr,Ci( ) = swk ⋅ pCurr,k − pCi ,k
k=1

N p

∑
where 

€ 

N p  is the number of situation parameters, 

€ 

pCi  is the situation description of 

€ 

Ci , 

€ 

pCi ,k  is the
kth situation parameter of 

€ 

Ci , and 

€ 

swk  is the similarity weight for the kth situation parameter.  These

€ 

swk  weights are considered the similarity heuristics; each indicates the importance of a particular
parameter in determining the similarity between two sets of situation parameters.



Table 1
Situation parameters of a case used in the intelligent tutoring system application of the CBRMETAL framework

Parameters Description

GPA The student’s self-reported grade point average

AVE_TTRL_TIME The average time spent (in milliseconds) per tutorial

AVE_TTRL_CLICKS
The average number of times the student clicks the mouse in the tutorials he or she
has seen

AVE_EXMP_CLICKS
The average number of times the student clicks the mouse in the examples he or she
has seen

AVE_EXMP_TIME The average time spent (in milliseconds) per example

AVE_EXMP_TO_TTRL The average number of times the student goes back to the tutorial from the example

AVE_GRADE The student’s average grade on the exercise problems

AVE_PROB_CLICKS
The average number of times the student clicks the mouse in the exercise problems he
or she has seen

AVE_PROB_TIME The average time spent (in milliseconds) per exercise problem

AVE_PROB_TO_EXMP
The average number of times the student goes back to the example from the exercise
problem

AVE_PROB_TO_TTRL
The average number of times the student goes back to the Tutorial from the exercise
problem

AVE_SES_TIME The student’s average total time spent in the interface during a session

EXMP_QUITS The number of times the student has quit at the example stage

MAX_SES_TIME The length of the student’s longest session, in milliseconds

MIN_SES_TIME The length of the student’s shortest session, in milliseconds

NUM_EXMP The number of examples the student has seen

NUM_PROB The number of exercise problems the student has seen

NUM_SESSIONS The total number of sessions the student has had

PROB_QUITS The number of times the student has quit at the exercise problem stage

SUCCESSES The number of successful sessions the student has had

TTRL_CLICKS The number of times the user has clicked the mouse during the tutorial

TTRL_QUITS The number of times the user has clicked the mouse during the tutorial

TTRL_TIME The length, in milliseconds, the student spent in the tutorial

SELF_EFFICACY The student’s self efficacy, measured by a pre-topic quiz

MOTIVATION The student’s motivation, measured by a pre-topic quiz



Table 2
Solution parameters of a case used in the intelligent tutoring system application of the CBRMETAL framework

Parameters Description

DIFF_LEVEL The difficulty level of the exercise problem or example

MIN_USE_TIME The shortest anyone has looked at the exercise problem or example

MAX_USE_TIME The longest anyone has looked at the exercise problem or example

AVE_USE_TIME` The average time students view the exercise problem or example

AVE_CLICK The average # of times students click the mouse in the exercise problem or example

LENGTH The # of characters in the example or exercise problem

BLOOM The Bloom’s taxonomy value for the exercise problem or example

SCAFFOLDING The amount of scaffolding to give the material

After computing the similarity values of all cases in the casebase with respect to the current
situation Curr , ILMDA selects the case with the highest similarity as the best case, 

€ 

Cbest .  The solution
of 

€ 

Cbest , 

€ 

sCbest , has to be adapted to Curr .  The adaptation is based on the differences between
Curr  and 

€ 

pCbest .  For each solution parameter, there is one adaptation heuristic:

  

€ 

ahl = awl,1,awl,2,K,awl,N p
 where 

€ 

Np  is the number of situation parameters, and 

€ 

hwl,n  is the weight in
heuristic 

€ 

ahl  that influences the lth solution parameter.  Each lth solution parameter is adapted in the
following manner:

€ 

′ s Cbest ,l
= awl ,k ⋅ pCurr ,k − pCbest ,k( )[ ]

k=1

N p

∑ ⋅ sCbest ,l

Thus, the difference between the kth situation parameter in the current situation and the best case
situation parameters are moderated by a heuristic weight is computed.  These differences are then
summed and multiplied with the original value of the lth solution parameter of the best case.  This
process is repeated for all solution parameters of the best case.  When it is completed, the best case
solution, 

€ 

sCbest , is considered to have been adapted, and the modified best case solution is 

€ 

′ s Cbest .
Note that for solution parameters that are continuous 

€ 

′ s Cbest ,l is just the sum of weighted
differences.  For discrete solution parameters, however, the difference is less straightforward.  For
example, as shown in Table 2, one of the solution parameters is BLOOM, which indicates Bloom’s
taxonomy value for an exercise problem or an example.  For this parameter, we denote the six Bloom
levels as 1-6 (corresponding to knowledge, comprehension, analysis, application, evaluation, and
synthesis).  Thus, instead of using the actual real value of 

€ 

′ s Cbest ,BLOOM , it is normalized between 1 and
6, and rounded down to an integer.  Another solution parameter is SCAFFOLD, which indicates the
amount of scaffolding to be displayed with the example or exercise problem.  The four levels of
scaffolding are denoted in binary codes: 0001 for a cue, 0010 for a hint, 0100 for a reference, and
1000 for an elaboration.  Given these levels, a cue has 1 point, a hint has 2 points, a reference has 4
points, and an elaboration has 8 points, indicating the different amounts of scaffolding these items
offer.  Likewise, it is possible to have a SCAFFOLD of 9 points or 1001, which means to use both
elaborations and cues. As a result, the amount of scaffolding is between 0 and 15.  Following the same
approach to BLOOM, instead of using the actual real value of 

€ 

′ s Cbest ,SCAFFOLD , it is normalized
between 0 and 15, and then rounded down to an integer.



Equipped with 

€ 

′ s Cbest , ILMDA now has a prescription for the next appropriate example or
exercise problem.  All examples and exercise problems of a tutorial are stored in a database, each
meta-tagged with a set of parameters exactly the same as those found in Table 2.  ILMDA finds the
best matching example or exercise problem to 

€ 

′ s Cbest  and duly displays it to the student.

How Meta-Learning is Used

Meta-learning is used in our system to adjust the adaptation heuristics, similarity heuristics, and flesh
out the casebase used by the CBR system.  After a student has completed the session, ILMDA informs
its CBR module the result of the student's session.  The CBR module uses this information to analyze
the results and improve its performance, and as a result, the performance of the whole system.

ILMDA learns new cases in order to allow the system to more easily handle a wider range of
situations that it will inevitably encounter when faced with different types of students.  The initial
casebase is designed by experts in order to cover a wide range of students, but may not actually cover
the possibilities or may be faulty.  For instance, a new case which has been learned may have a similar
situation space with a different solution, providing another way of approaching the situation that it
describes.  Or an entirely new type of situation space may be encountered, which was unplanned for.
The ability to learn new cases allows the system to overcome this.  In the application, the design
focuses on expanding the situation space of the casebase, in order to cover as many situations as
possible in the following manner.  Given the potential new case, 

€ 

Cnew:

if 

€ 

simmax Cnew( ) =
i

max sim Cnew,Ci( )  is less than a threshold, 

€ 

tlearn ,

then 

€ 

Cnew  is added to the casebase, with 

€ 

sim Cnew,Ci( ) = swk ⋅ pCnew ,k − pCi ,k
k=1

N p

∑
where 

€ 

N p  is the number of situation parameters, 

€ 

pCi  is the situation description of 

€ 

Ci , 

€ 

pCi ,k  is the
kth situation parameter of 

€ 

Ci , and 

€ 

swk  is the similarity weight for the kth situation parameter. (Note
that this similarity measure is similar to the one used in CBR to retrieve the best matching case to a
current situation.)

The similarity heuristics adjuster module in turn learns about the set of 

€ 

swk  in the following
manner.  Each case has a distribution, 

€ 

distCi ,  of how it has been used, based on its performance
parameters.  In this particular implementation, the distribution is assumed to be uniform and thus only
the average is computed.  For each pair of similar cases, 

€ 

Ci  and 

€ 

C j  – determined by using the set of

€ 

swk , compute the performance similarity

 

€ 

simper Ci,C j( ) = distCi ,k − distC j ,k
k=1

N pf

∑
where

€ 

N pf  is the number of performance parameters. 

€ 

Ci  and 

€ 

C j  are considered to be truly similar if
both 

€ 

sim Ci,C j( )  and  

€ 

simper Ci,C j( ) are high (>

€ 

tlearn  and >

€ 

tsimilar , respectively).  For each such
occurrence, the 

€ 

swsel  value  (such that 

€ 

sel = arg
k

maxswk) is increased by a percentage 

€ 

α sim .  If

€ 

sim Ci,C j( )  is high and 

€ 

simper Ci,C j( ) is low, then the two cases are not considered to be truly
similar and the 

€ 

swsel  value is decreased by 

€ 

α sim .  

€ 

α sim  is essentially the learning rate of this
reinforcement learning design.  If 

€ 

sim Ci,C j( )  is low, then 

€ 

swsel  remains unchanged.  With this
design, if the system deemed that situation parameter kp was the most influential in determining that

€ 

Ci  and 

€ 

C j  were very similar, but the cases had very different performances, then the learning module



will adjust the similarity weights to make 

€ 

pk  less influential, thereby making 

€ 

Ci  and 

€ 

C j  less similar.
However, if the similarity measurement did not determine that the cases were similar, then it would
not be expected that the cases would perform similarly.  With this learning process, the system would,
for example, eventually appoint the amount of time a student spends in a particular session as a more
important parameter than the number of times a student views a tutorial.

The adaptation heuristics in the ILMDA modify a solution provided by the case-based reasoning
in order to account for differences in the situation descriptions.  Once again, the reinforcement is
driven by the performance of a session.  For instance, if the student took an excessive amount of time
and was unsuccessful in answering the question they were presented with, then the performance of
that session would be low.  Similarly, if the student spent much less time than usual on a question, and
answered it correctly, then the performance of the session would also be low, reflecting that the
solution was too easy to present a worthwhile experience to the student.  This performance
information is used to adjust the adaptation heuristics of the system by determining if an adaptation
was successful or not.  If an adaptation is deemed successful, then the heuristics that were influential
in making that adaptation will be reinforced.  And, similarly, if an adaptation is deemed unsuccessful,
then the heuristic most responsible for that adaptation will be weakened.  The system determines
which heuristic is most responsible in the following manner.  Given the solution of a best case, 

€ 

sCbest

and the adapted solution 

€ 

′ s Cbest , and a set of adaptation heuristics such that each heuristic

  

€ 

ahl = awl,1,awl,2,K,awl,N p
 where 

€ 

Np  is the number of situation parameters, and 

€ 

hwl,n  is the weight in
heuristic 

€ 

ahl  that influences the lth solution parameter, as described in previous subsection.
Designate 

€ 

ahsel n( ) such that:

€ 

sel = arg
l

max awn ⋅ sCbest ,n − ′ s Cbest ,n( )( ) ,

which identifies the adaptation heuristic that contributes the most to the difference in the solutions for
the nth solution parameter.  If the performance of the session is deemed successful (observed behavior
matches closely the norm, > 

€ 

tadapt ), then the 

€ 

ahsel n( ) is increased by a percentage of 

€ 

αada .  Likewise,
if the performance is deemed unsuccessful, then 

€ 

ahsel n( ) is decreased by a percentage of 

€ 

αada .  A
high 

€ 

αada  indicates an aggressive learning system, and vice versa.  This adjustment of the heuristics
allows ILMDA to more accurately adapt to the situations that ILMDA encounters.  This adaptation
behavior also allows ILMDA to expand its coverage of the situation space, without explicitly growing
the casebase' coverage of the situation space.

Following the principles of meta-learning outlined earlier, we minimize possible conflicts in
learning in several ways.  Two of the modules, the similarity and adaptation heuristics adjustor
modules, are run offline after several sessions.  This minimizes the noise by reducing the influence
that a single outlying result will have on the learning.  It also allows a significant amount of sessions
to be present before each adaptation, to provide accurate statistics on the cases.  The case learning
module, on the other hand, is run online with the system.  ILMDA decides whether or not to store a
case as soon as the session is finished.  This allows for new cases to be used immediately.  The
similarity and adaptation heuristics also act conservatively, modifying only one heuristic at a time, to
prevent drastic changes.  This increases the stability of our learning while retaining the benefits of
meta-learning.



IMPLEMENTATION

The ILMDA system powered by CBRMETAL has been implemented in Java.  It has a front end
graphical user interface (GUI), a mySQL database backend, and a reasoning module connecting the
two.  Here we discuss how the content sets were developed, how cases were developed and initial
similarity and adaptation heuristics were created, the architecture of ILMDA, the flow of a student
session with ILMDA, and how ILMDA performs its meta-learning.  Details of the implementation can
be found in (Blank, 2005).

Content Set

A total of five content sets were developed on CS1: (1) File I/O, (2) Event-Driven Programming, (3)
Exceptions, (4) Inheritance and Polymorphism, and (5) Recursion.  For each topic, the content set had
a tutorial, a set of 3-4 examples, and a set of 20-25 exercise problems.  Two computer science
graduate students developed these content sets based on the textbook by Wu (2005), and then revised
and refined by Soh, one of the authors of this paper.  Soh has taught CS1 at the University of Nebraska
for three semesters, and has also been involved heavily in the Computer Science and Engineering
Department’s Reinventing CS Curriculum Project (http://cse.unl.edu/reinventCS).  The content set
was then reviewed by a handful of computer science undergraduate students.  When developing the
content set, scaffolding was embedded and tagged with in-line HTML-like tags.  This allows ILMDA
to dynamically display them when the solution of a retrieved case calls for a certain level of
scaffolding to be in place.  The following shows how a reference is tagged.

… This concludes the discussion on the Tower of Hanoi example.
<REFERENCE>Please refer to Section 1.1 to review the components of a
recursion.</REFERENCE> …

Each example or exercise problem was then tagged with the appropriate Bloom’s level (BLOOM:
1-6 for knowledge, comprehension, application, analysis, evaluation, and synthesis) and difficulty
level (DIFF_LEVEL: between 1-10).

Cases and CBR Heuristics

The casebase and the similarity and adaptation heuristics essentially constitute the knowledge base of
ILMDA.  The cases were developed in the following manner.  Given the set of situation parameters as
shown in Table 1, a range of values was estimated for each kth parameter.  For example, for the
parameter AVE_EXMP_CLICKS, the range was estimated at 1-10.  Once the bounds were estimated,
nine scenarios (or situations) that roughly approximate the behavior of a particular type of student
behavior were identified.  For example, “a situation where a student has spent, on average, little time
on his/her previous sessions, has tried to go back-and-forth between exercise problems and the tutorial
frequently, has seen only a few examples, and has quit previous sessions early (after seeing only a few
exercise problems)” is one that might be representative of an impatient student with less motivation to
learn but more motivation to get through the content set as soon as possible.  “A situation where, with
everything else relatively about average, the student’s self-efficacy is low and the student spent a lot of
time in the tutorial” is one that might be representative of a student with low confidence but with
determination to try to understand the tutorial.  After selecting a set of interesting situations, their



solutions were identified.  For example, for the “impatient student” situation, the solution – i.e. the
prescription of the next appropriate example or exercise problem – was to have an example or exercise
problem of average difficulty level, short length, with less than average scaffolding, and of low
average use time (AVE_USE_TIME).  The strategy here was to provide a sufficiently challenging
example or exercise problem that would not take too much time to complete.  For the “motivated but
low-confident student” situation, the solution was to have an example or exercise problem of low
difficulty level, with high scaffolding, and of about average use time.  The strategy here was to help
raise the student’s confidence by giving him or her a relatively easy item with a lot of help, in the hope
of getting the student to understand the example successfully or answer the exercise problem correctly.
Note that this strategy also assumed the following.  If the student successfully completed the item,
then his or her profile would go up for the next example or exercise problem.  Then ILMDA would
give a more difficult item (via the adaptation heuristics) and lower the amount of scaffolding.
Gradually, if the student continued to do well, ILMDA would select a more difficult item with lower
scaffolding.

The similarity heuristics were all initialized to the weight of 1.0.  That is, all situation parameters
were considered to have the same importance in determining the similarity between two situations.
This initialization was possible because of the CBRMETAL framework: the similarity heuristics
would be revised automatically by the system as it interacted with the users.

The adaptation heuristics were developed for each solution parameter.  Take the amount of
scaffolding, SCAFFOLDING, for example.  Out of the 16 situation parameters listed in Table 1, 9
played a role in the initial adaptation heuristic:  GPA (-10), AVE_GRADE (-10), AVE_TTRL_TIME
(5), AVE_EXMP_TIME (5), AVE_PROB_TIME (5), AVE_EXMP_TO_TTRL (5),
AVE_PROB_TO_TTRL (5), MOTIVATION (-5), and SELF_EFFICACY (-5).  A negative weight
means an inverse proportionality: if the difference between two situations for that parameter is
positive, then the amount of scaffolding is reduced; and vice versa.  Thus, in the above, it is seen if the
GPA, AVE_GRADE, MOTIVATION, or SELF_EFFICACY in the current situation is higher than
that of the best case’ situation, then the best case’ SCAFFOLDING is lowered accordingly; and vice
versa.  On the other hand, if AVE_TTRL_TIME, AVE_EXMP_TIME, AVE_PROB_TIME,
AVE_EXMP_TO_TTRL, or AVE_PROB_TO_TTRL of the current situation is higher than that of the
best case’ situation, then the best case’ SCAFFOLDING is increased accordingly.  This thus gives rise
to the adapted solution.  Yet another example is the level of difficulty, DIFF_LEVEL.  Nine situation
parameters played a role in the initial adaptation heuristic: GPA (6), SUCCESS (8), AVE_GRADE
(10), AVE_TTRL_TIME (1), AVE_EXMP_TIME (1), AVE_PROB_TIME (1),
AVE_EXMP_TO_TTRL (-1), AVE_PROB_TO_TTRL (-1), and AVE_PROB_TO_TTRL (-1).  Here,
GPA, SUCCESS, and AVE_GRADE were considered to be more important in deciding the difficulty
level than other parameters.  In general, if the student has a better GPA, has had more successes with
ILMDA sessions, or done better on the exercise problems than the best case’ situation, then
DIFF_LEVEL is increased; and vice versa.

Once developed, the initial cases and the adaptation heuristics were then reviewed by an
educational expert in instruction.  The expert was told to review whether the cases and heuristics were
“more or less” correct and not to dwell on the actual values too closely.  For example, whether GPA
should be weighted 6 and SUCCESS weighted 8 in the adaptation heuristic in DIFF_LEVEL was not
as important as whether SUCCESS should be weighted more than GPA.  It took the expert relatively
little time (within an hour) to review the cases and the adaptation heuristics.  Note that this was



possible because of the CBRMETAL framework: the cases and the heuristics would be modified by
ILMDA over time, and thus the actual values did not have to be accurately initialized in the first place.

Architecture

Figure 3 shows the architecture of the CBRMETAL-powered ITS application.  It has a front end GUI
interacting with the user (student).  This GUI tracks every interaction between the student and the
GUI, and sends the information to the reasoning core.  The reasoning core denotes each set of
information as the current situation, and retrieves the best case from the casebase.  The core module
then adapts the solution to fit the current situation.  As a result of this, a prescription for the next
appropriate example (or exercise problem) is obtained, and then used to retrieve the actual item from
the content set database.  Meanwhile, the information or situation is updated with the student and
session databases.  The retrieved item is then displayed to the student.  The process repeats.  When
outcomes are obtained and transmitted to the reasoning core, depending on the schedules, different
learning mechanisms are triggered.  More on this will be discussed later.

In addition to ILMDA, an authoring suite for developers, and a report-and-review suite for
instructor and students, and a simulation (Soh and Miller, 2005) have also been implemented as
support tools for the ILMDA system.  The authoring suite is used to author, edit, and upload content
sets – i.e. tutorials, examples, and exercise problems.  The report-and-review suite is used by students
to view their own usage and performance statistics, and by the instructor to get a sense of how the
individual and average student performances compare.  The simulator allowed us to test the machine
learning components of the CBRMETAL framework and how they worked together.

Fig.3.  Architecture of our CBRMETAL-powered ITS application, ILMDA.

Session Flow

Figure 4 shows a session flow and pages displayed by ILMDA.  Each student is required to create a
profile in order to log into the system.  This password-protected profile holds the student's static
information, such as their GPA, name, major, and number of credit hours taken.



Fig.4.  The session flow of the ILMDA application.



These screens display the learning material on the left side which can be several pages long.  On
the right side of the screens is a panel to display support material such as figures or key terms and
definitions.  The exercise problem panel also has an answer panel, which displays the multiple choice
answers for the exercise problem, and then the explanation of that answer after the student has
answered the question.

Once a student is given one example or an exercise problem, they have the opportunity to ask the
system for another example or another exercise problem.  When a student chooses to view another
example, the system records the session as unsuccessful (since the student either did not understand
the example, or the example did not adequately explain the topic) and uses its CBR module to retrieve
another example, updating the student's usage history and disallowing examples that the student has
already seen.  The system, however, automatically feeds exercise problems to the student as long as
the system thinks the student needs one.  When a student chooses to quit an exercise problem or fails
to answer an exercise problem correctly, the system records the session as unsuccessful as well.
Support material for each tutorial, example, and exercise problem can be either text or an image.
Screenshots of the tutorial panel, the example panel, and the exercise problem panel are shown in
Figures 5-7, respectively.

Fig.5.  The tutorial panel of the ILMDA application, with support material.



Fig.6.  The example panel of the ILMDA application.

Fig.7.  The exercise problem panel of the ILMDA application.



How ILMDA Performs Meta-Learning

As discussed earlier, the design of meta-learning of CBRMETAL is based on a set of cautious and
prioritized principles.  When a student quits a session, the session’s performance data (e.g., number of
seconds used, number of mouse clicks in tutorial, number of mouse clicks in examples, number of
examples viewed, and so on) is captured and recorded.  Also recorded is also the outcome data (e.g.,
the number of exercise problems that the student answered correctly, the number of exercise problems
given, whether the student has answered one of the most difficult exercise problems, and so on).
Every time a student clicks “Next Example”, or “Next Problem” on the GUI, the reasoning core
module composes a new case.  This new case is based on the situation prior to that click, the applied
solution, the performance, and the outcome.  Then, this new case is evaluated against the casebase to
determine whether it is worthwhile to store this new case in the casebase following the algorithm
outlined in the “How Meta-Learning Is Used” subsection earlier.  Thus, case learning impacts the
subsequent ILMDA sessions immediately.

Two of the modules, the similarity and adaptation heuristics adjustor modules, are run offline.
That is, the weights were adjusted not immediately after each session, but after a number of sessions
or a period of time.  In our implementation, the five topics assigned to the students over a period of
five weeks.  The students had about one week to go online and go through a topic.  Thus, heuristics
adjuster modules were invoked a week after a topic was assigned, or after about 40-50 sessions.
Basically, each module would go through the database, combing through each session and propagating
the learning affects onto its heuristics.

RESULTS

Fall 2004

In Fall 2004, ILMDA was first deployed at CSCE155 (CS1) at the Department of Computer Science
and Engineering at the University of Nebraska.  CSCE155 is the first core course for the Computer
Science majors.  Typically, it has about 150 students per year, with a diverse group of students from
majors such as CS, Math, Electrical Engineering, Industrial Engineering, and so on.  Further, the
programming background of these students is highly diverse.  Some incoming freshmen have had
some programming in their high schools; some have had none.  Thus, it is important for the course to
be able to adapt to the different student aptitude levels and motivations.  This course is thus well-
suited for evaluating the ILMDA application.

For this study, two versions of ILMDA were used: learning and non-learning.  The learning
ILMDA used the full meta-learning capabilities described in the above sections.  It learned new cases
and adjusted its similarity and adaptation heuristics. On the other hand, the non-learning ILMDA did
not use any of the meta-learning capabilities.  The casebase, similarity heuristics, and adaptation
heuristics remained unchanged as initialized. Basically, all its learning capabilities were disabled.
However, case-based reasoning was still used in both versions.  For the study, ILMDA was set up
such that it automatically toggled on and off the learning mechanisms alternatively for each student
session so that both designs handled almost exactly the same number of sessions.



Here we report a case study on the Recursion topic:
• The average numbers of examples and exercise problems that a student read when interacting

with the learning ILMDA were 2.216, and 10.946, respectively and that with the non-learning
ILMDA were 3.047 and 15.116, respectively.  This indicates that the learning ILMDA was able
to deliver fewer examples and exercise problems.

• The average percentage of exercise problems answered correctly by a student indicates how well
a student did as part of the assessment.  When interacting with the learning ILMDA, the
percentage was 66.2%.  When interacting with the non-learning ILMDA, it was 60.2%.  This is
encouraging.  This hints that the learning ILMDA was able to deliver more appropriate examples
and exercise problems.  Combining these two observations, the learning ILMDA seems to be
effective (delivering more appropriate examples and exercise problems) and efficient (delivering
fewer examples and exercise problems).

• Table 3 shows the average number of seconds spent in each section.  Students interacting with the
learning ILMDA spent more time than students interacting with the non-learning ILMDA.  This
could be due to the learning ILMDA providing more interesting and appropriate examples and
exercise problems, engaging the students to invest more time and effort into reading the
materials.

Table 3
Average time spent on each section in seconds for the learning and non-learning ILMDA systems

Section Tutorial Per Example Per Exercise problem
Learning 457 64 74
Non-Learning 276 61 30

To further measure the efficiency and effectiveness of ILMDA’s meta-learning capabilities,
another aspect of the students session is analysed as follows.  First, a specific level of topical
comprehension for students to attain is identified:  answering one of the most difficult exercise
problems correctly.  To be effective, an ITS should learn to guide students to reach that level.  To be
efficient, the same ITS should learn to guide students to reach that level with a small number of
exercise problems.  Tables 4 and 5 show the results.  From Table 4, for File I/O, Exceptions, and
Inheritance, the learning ILMDA consistently used fewer exercise problems to bring a student to the
level of topical understanding.  However, the learning ILMDA did more poorly for the Recursion
topic – requiring more than 2 additional exercise problems on average to achieve a level of topical
understanding.

It is suspected that the reason for this learning failure is due to the Recursion topic.  Unlike the
other topics which are closely related to programming, recursion is more closely related to problem
solving.  It is realized that the learning ILMDA gave students difficult questions more often than easy
questions in the Recursion topic, with a correlation of 0.11 between the number of times a question is
given and its difficulty level, whereas the same system gave students easy questions more often in
other topics (correlations = 0.2–0.56).

Table 5 shows the percentages of failed sessions.  A failed session is one in which a student quits
before reaching one of the most difficult exercise problems.  The results are not conclusive.  There is
no evidence that learning ILMDA is more effective than the non-learning ILMDA in this regard.  It is
realized that the cases in the casebase were initially tuned to minimize the number of exercise
problems given to the students, thus prompting the ITS to be more aggressive in giving more difficult



exercise problems but more conservative in giving easier exercise problems.  Further, in a student
profile, a student usually answers questions correctly more often than not since there are more easy
questions.  Thus, an incorrect answer might not cause ILMDA to change its perception of the student
drastically.

Combining the results of Table 5 with that of the case study on recursion, it is concluded that:
Even though the learning system was able to increase the percentage of correct answers from the
students, it was not able to engage students consistently longer for them to stay on through the set of
exercise problems.

Table 4
Average number of exercise problems given by ILMDA to a student to eventually correctly answer an exercise
problem with a certain degree of difficulty.  Empty cells are due to the fact that there were no exercise problems
with that degree of difficulty.  Also, we did not include the data for exercise problems with degree of difficulty
smaller than 5.5.  Results for the Event-Driven Programming topic were not available due to a disk storage
problem.

File I/O Exceptions Inheritance Recursion
Deg. Diff. No-L L No-L L No-L L No-L L
5.5 8.78 6.50 8.75 4.10 3.57 2.50 4.34 6.67
6.0 8.78 6.50 8.75 4.10 3.57 2.50 4.34 6.67
6.5 12.00 11.36 15.28 15.80 4.00 2.50 7.44 10.33
7.0 12.00 11.36 25.66 14.50 6.60 2.75 7.44 10.33
7.5 8.2 7.25 8.00 11.28
8.0 8.2 7.25 8.08 11.28
8.5 13.13 15.10
9.0 13.13 15.10

Table 5
Percentage of failed sessions at various degrees of difficulty for the four topics.  For the Inheritance-Learning
column, students who quit all quit at level 5.5. Results for the Event-Driven Programming topic were not
available due to a disk storage problem.

File I/O Exceptions Inheritance Recursion
Deg. Diff. No-L L No-L L No-L L No-L L
5.5 41.94% 31.43% 66.67% 40.00% 53.33% 69.23% 40.91% 51.35%
6.0 41.94% 31.43% 66.67% 40.00% 53.33% 69.23% 40.91% 51.35%
6.5 45.16% 37.14% 70.83% 66.67% 60.00% 69.23% 43.18% 59.46%
7.0 45.16% 37.14% 75.00% 66.67% 66.67% 69.23% 43.18% 59.46%
7.5 66.67% 69.23% 45.45% 62.16%
8.0 66.67% 69.23% 45.45% 62.16%
8.5 50.00% 72.97%
9.0 50.00% 72.97%

Initially, at the beginning of the semester, the similarity weights on the situation parameters were
set to 1.0; that is, all situation parameters were considered equally important.  At the end of the
semester, however, the learning ILMDA modified these weights based on its observation of how many
times a retrieved case was useful, as shown in Figure 8.  It was found that GPA was not that important
(dropping from 1.0 to 0.46), quitting an exercise problem before answering it was important



(increasing from 1.0 to 2.54), the number of times a student went back-and-forth between an example
and the tutorial was quite important (0.80) but not as important as the back-and-forth between an
exercise problem and the tutorial (0.99), and so on.  These results are empirical data, key to the self-
evaluation capabilities of the learning ILMDA to meta-learn about when to use which pedagogical
strategies.

Note that GPA’s importance as a situation parameter was reduced by ILMDA.  This might be due
to the nature of the GPA values.  This study was conducted on CS1, the first CS course for our
students.  Most of these students were first-semester freshmen college students, and thus the GPAs
that they reported were most likely their high school GPAs, and thus GPA turned out to be a lesser
parameter in this study.  It is possible that if we had conducted another study on juniors or seniors in a
different course, this GPA parameter could have had a more important role. Here the learning results
for the adaptation heuristics are discussed.  There are 9 sets of heuristics, and each heuristic is
triggered by a subset of about 20 situation parameters.  Figure 9 shows the example of how two sets of
heuristics changed after learning.
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Fig.8.  Changes in the similarity heuristics after meta-learning.

As shown in Figure 9(a), an example is to adapt the solution parameter SCAFFOLDING.
Initially, it had been expected that if a student is observed to have spent more time on a tutorial,
example, or exercise problem, or if a student is observed to go back-and-forth between example and
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Fig.9.  Changes in the adaptation heuristics after meta-learning: (a) BLOOM, and (b) SCAFFOLDING.



tutorial, or between exercise problem and example, then the ITS should provide a larger amount of
scaffolding.  However, after a semester of using ILMDA, this expectation was not met for
“aveExmpTime” (i.e. AVE_EXMP_TIME, average time spent on an example), “expToTtrl” (number
of times going from example to tutorial, and “probToExmp” (number of times going from exercise
problem to example).  It was realized that when students were found to spend more time on examples,
or were found to refer back to the examples, they were more likely to quit ILMDA before answering
questions correctly.  As a result, the learning ILMDA adjusted its adaptation heuristics to reduce the
amount of scaffolding, thinking that this would improve its performance.

As shown in Figure 9(b), initially, for the heuristic that adapted the solution parameter BLOOM,
at the beginning of the semester, the weight of each situation parameter of the heuristic was set at 1.0.
At the end of the semester, this number increased to 9.0.  A significant change in the weight of
“exmpQuits” (i.e. EXMP_QUITS, the number of quits during an example), going from 1.0 to -11.76,
was also observed.  This indicates that the more often a student has quit during the viewing of an
example, the lower the Bloom’s taxonomy level is for the exercise problem to be selected.

Details of the study can be found in (Blank, 2005).  Interested readers are also referred to (Soh &
Miller, 2005) for an analysis on how student motivation and self-efficacy impact student use of
ILMDA.

Spring 2005

In Spring 2005, ILMDA was once again deployed at CSCE155 (CS1) at the Department of Computer
Science and Engineering at the University of Nebraska.  However, for this study, three versions of
ILMDA were used: static, non-learning, and learning.  The learning and non-learning ILMDA
versions were the same as those used later in the Fall 2006 study.  The static version simply used a
single tutoring strategy without any case-based reasoning, chosen from one of the original nine cases
used in the Fall 2006 study.  In the static version, this case was always retrieved and its solution was
applied directly without any adaptation.  And no new cases were learned.

As alluded to earlier in the discussion of Fall 2004 results, one metric to measure the impact of
meta-learning is the average number of exercise problems delivered between a wrong answer and
solving an exercise problem correctly.  This metric indicates how effective and efficient the system is
in adjusting to a failed session (in which a wrong answer was given by the student) to ultimately
model the student correctly (in which the student was able to solve the exercise problem correctly).  A
safe strategy that immediately gave the student the easiest exercise problem to solve after a wrong
answer would be the most effective.  However, that is not efficient as more exercise problems would
have to be delivered in order to bring a student to solve one of the most difficult exercise problems
correctly. Our static agent remedies this by always selecting the next easier exercise problem after a
wrong answer.  Figure 10 shows the comparison.

It is observed that the static ILMDA outperformed the non-learning ILMDA.  This indicates that
the initial casebase of the non-learning ILMDA was not as effective as the static ILMDA’s one single
heuristic.  Likely, the non-learning ILMDA used CBR to adapt to the different situations poorly,
resulting in delivering more exercise problems to the students.  However, though given the same poor
casebase to begin with, the learning ILMDA outperformed both the static and non-learning ILMDA
designs.  This is because the learning ILMDA was able to adjust its own adaptation heuristics and
learned new cases, thereby improving its performance over time, reducing the number of exercise
problems needed before re-capturing a correct profile of the student.
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Fig.10.  Average number of exercise problems after a wrong answer before getting an exercise problem correct.

To investigate further the role of the meta-learning in ILMDA, the utility of the system’s
knowledge set is looked at.  A knowledge set in ILMDA is defined as the set of adaptation heuristics,
the set of similarity heuristics, and the casebase that the system has to work with.  For each set, its
utility is measured.  The utility of a similarity heuristic is its success rate in retrieving a successfully
applied case; the utility of an adaptation heuristic is its success rate in contributing significantly to an
adaptation of the old solution to the new situation that led to the successful application of the adapted
solution; and the utility of a case is the ratio of the number of successful applications of the case over
the number of times the case has been retrieved.

Figure 11 shows the comparison between the learning and the non-learning ILMDA systems.
First, for the learning ILMDA, as discussed in earlier sections, the adaptation and similarity heuristics
are adapted after the conclusion of each topic (offline), which means they were updated five times
because of the five topics used in the deployment.  The casebase was updated online, immediately
after each session.  There was a significant improvement from the first knowledge set to the second
set, and then there was a slow decline.  However, even with the slight decline in outcome, the final
knowledge set still outperformed the initial knowledge set significantly.

Worth noticing is the much narrower gap between the performances of the two systems at the
fifth topic, only about 0.03.  After studying the modified knowledge sets more closely, it was found
that the heuristics were modified quite significantly at the fourth topic.  The fourth topic was
Inheritance & Polymorphism, and upon retrospective analysis, it was found that this topic had the
worst-labeled exercise problems: the level of difficulty of each exercise problem was not labeled



accurately.  This caused ILMDA to penalize its similarity and adaptation heuristics incorrectly.  As a
result, when the fifth topic came around, ILMDA had to deal with heuristics that were not as good as
before.  This is an encouraging design problem: (1) the learning ILMDA is certainly adaptive, and (b)
the learning ILMDA can be further refined to quality-tag its learning materials to assign blame for
failed sessions.

Details of the study can be found in (Blank, 2005).
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DISCUSSION

A comprehensive framework based on integrating case-based reasoning and meta-learning to
introspectively refine an ITS’s reasoning has been described.  This framework, called CBRMETAL,
specifically improves the casebase, the similarity heuristics and adaptation heuristics through
reinforcement and adheres to a set of six principles to minimize interferences during meta-learning.  It
has been shown, through an ITS application called ILMDA, implementation, deployment, and two
studies, that such a framework can be effective and efficient.  A self-improving ITS based on
CBRMETAL can modify its pedagogical strategies to improve its performance.  Future work includes
further deployments to obtain more significant data on student learning, the development of more CS1
topics, and a self-diagnostic component that allows an ITS to pinpoint faulty components in its
reasoning.



There is an important issue in terms of the representativeness of the cases in the casebase with
respect to the parameters: how many cases do we need to cover the situation and solution spaces
properly?  If the adaptation heuristics are powerful, then covering the solution space is not as
important as covering the situation space, as the CBR system could still reach a viable solution derived
from what it has in its casebase and thus would have no need to learn new cases to expand its solution
space.  Our initial casebase started out with 9 cases.  After the semester was over in our first study,
there were 103 cases.  When we analyzed the standard deviation (or range) values of the situation and
solution parameters in these cases, in the initial casebase and then the final casebase, the values
changed insignificantly.  This means that the system more or less “filled in the gaps” among the initial
nine cases.  Based on this observation, we would say that the initial casebase was rather sparse. The
lack of growth in terms of the situation space could also be because of the narrowness in our content
sets and the students.  The five topics that we chose were all CS1 topics, and the students were mostly
first-semester freshmen.  It was true that these students had a diverse background in terms of
proficiency in programming and CS knowledge.  But still, the situations that the ITS encountered were
restricted.  From another aspect, we see that this enables the CBRMETAL framework to be used to
prototype the knowledge base (i.e. casebase and heuristics) of an ITS for a particular content and for a
particular group of students.

A key area that will be focused on to improve ILMDA and also the CBRMETAL framework is
more accurate and precise student modeling.  For example, in the current implementation, motivation
and self-efficacy were self-reported through a survey when a student first registered with the system.
These reports were inherently noisy.  Further, a student’s motivation and self-efficacy might change
from one exercise problem to the next, or even after simply reading the tutorial.  Right now, such a
resolution is not in place in our framework and implementation.  Also, in our current implementation,
it is assumed that if a student asks for another example, or quit the tutorial, or quit an example, or quit
the exercise problems before answering one of the most difficult problems, then the session is
considered unsuccessful.  However, it has been pointed out to us that it is perfectly possible for a
genuinely interested student to ask for additional examples and thus such a request should not be
viewed as a failure of the system.  Indeed, new cases can be crafted to reflect “genuinely interested
students”: high motivation and self-efficacy, high number of examples viewed per session, long
average time spent on the content, and high average grade on the exercise problems.  In short, our
cases do not cover a good spectrum of student types sufficiently.  Thus, we see better student
modeling as an important area in our continuing work to improve the CBRMETAL framework and the
ILMDA application.

Our research focus has been to create a framework for an intelligent tutoring system that could
improve its performance over time.  In our studies, though poor cases were not purposely used in the
non-learning or static versions, they were not intentionally optimized either.  In retrospect, whether a
system could improve itself when it was given a so-so initial knowledge base was our main concern.
And from our two studies, there seemed to be indications that the system was able to do so.  Whether
the system could learn to improve on a good initial knowledge base is uncertain.  However, since the
case learning is conditioned upon diversity, and the reinforcement learning on heuristics is conditioned
upon the session outcomes, conceptually the framework will stop learning – or will only fluctuate
minimally – once it realizes that it is doing well.  This sets up a safety measure: the system is unlikely
to hurt its performance through learning unnecessarily.  Actually, for our next steps in the future, we
will be more concerned about adaptation across contents and student types.  For example, let’s
suppose that, after using ILMDA for a while and perfecting the casebase and heuristics for students of



CS1, we want to apply ILMDA to elementary students in a geography course with the “perfect”
casebase and heuristics and investigate whether the CBRMETAL framework facilitates ILMDA to
adapt.
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