
Web Intelligence and Agent Systems: An International Journal 6 (2008) 1–28 1
IOS Press

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Considering operational issues for multiagent
conceptual inferencing in a distributed
information retrieval application
Leen-Kiat Soh ∗

Computer Science and Engineering Department, University of Nebraska, 256 Avery Hall, Lincoln,
NE 68588-0115, USA

Abstract. Our system, based on a multiagent framework called collaborative understanding of distributed knowledge (CUDK),
is designed with the overall goal of balancing agents’ conceptual learning and task accomplishment. The tradeoff between the
two is that while conceptual learning allows an agent to improve its own concept base, it could be counter-productive: conceptual
learning is time consuming and requires processing resources necessary for the agent to accomplish its tasks. In our current
phase of research, we investigate the roles of resource and knowledge constraints, environmental factors (such as the frequency
of queries), and learning mechanisms in a CUDK-based distributed information retrieval (DIR) application. In this application,
an agent is motivated to learn about its neighbors’ concept base so it can collaborate to satisfy queries that it cannot satisfy alone.
Similarly, to conserve resources, an agent is motivated not to learn from neighbors that have been unhelpful in the past. As a
result, it is possible for an agent to learn from a helpful neighbor that is not the authoritative expert in the system. The agents
use neighborhood profiling to learn about other agents’ helpfulness and conceptual inferencing to learn about other agents’
known concepts. The helpfulness measure defines a metric called collaboration utility, and the inferencing results are stored in
a translation table in which each entry is a mapping between two concepts plus an associated credibility score. The experiments
investigate how operational and conceptual factors impact the DIR application’s performance.

Keywords: Collaboration, distributed conceptual learning, dynamic profiling, resource description

1. Introduction

We first proposed and outlined the CUDK (orig-
inally called CUDO) framework in [19] with the
following objectives: (1) to promote understanding
among agents of a community, thus reducing com-
munication costs and inter-agent traffic, (2) to im-
prove cooperation among neighbors of a community,
thus enhancing the strength (productivity, effective-
ness, efficiency) of a neighborhood and supporting the
distributed effort of the community, (3) to encourage
pluralism and decentralization within a multi-agent
community; i.e., the specialization of agents of a com-
munity so that each agent can rely on its neighbors for

*Tel: +1 402 472 6738; Fax: +1 402 472 7767; E-mail: lksoh@
cse.unl.edu.

tasks not covered by its own capabilities, and (4) to
enable collaborative learning to improve throughput
of the community, intelligence in communication and
task allocation, self-organization within the commu-
nity, and integrity of the community.

Our approach to designing and building this frame-
work is two-tiered. Our first task is to investigate the
roles of operational and conceptual factors in system
performance and how agents make decisions in bal-
ancing the task accomplishment and ontological learn-
ing goals under constraints. Given the experience and
understanding gained from that first step, we intend
to devise a set of policies for multiagent collaborative
learning and local conceptual designs. Our objectives
in the first tier include identifying (1) whether and how
agents can function effectively without needing to un-
derstand all other agents, and (2) how agents can iden-

wia127.tex; 7/03/2008; 12:09 p. 1

1570-1263/08/$17.00 c© 2008 – IOS Press and the authors. All rights reserved

2 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

tify a specific subset of neighbors whose knowledge
would be valuable to learn about in terms of concepts.
Our objectives in the second tier will then extend the
insights and considerations gained or devised in the
first tier to a formal framework for a general-purpose
multiagent system that manages and builds sufficiently
effective distributed, local concept bases. This paper is
concerned with the first tier.

In our multiagent system, agents can have differ-
ent topical terms or keywords describing a concept,
and the semantics of each topical term that an agent
knows is captured in the associated documents/links
that the agent keeps for that term. For example, a top-
ical term of “sports” may have the following set of as-
sociated documents: {www.espn.com, www.nba.com,
www.atptour.com}. Different agents may know differ-
ent concepts: different topical terms for the same con-
cept, and/or different documents associated with the
same topical term.

The current phase of our CUDK research focuses
on understanding the interplay between conceptual
knowledge and operational factors, exemplified through
a distributed information retrieval (DIR) application.
We have previously reported on our studies in neigh-
borhood profiling and how knowledge of concepts and
resources affect the quality of information retrieval
in [20], emphasizing the incorporation of operational
factors in conceptual learning. This paper extends that
work with further experiments on the impact of query
tasks, neighborhood profiling, and conceptual infer-
encing on the quality of query satisfaction. Specifical-
ly, the experiments reported here are (1) to investigate
and identify how agents collaborate to understand each
other under different operational constraints and se-
tups, (2) to investigate how agents’ inherent knowledge
or concept bases affect their collaborations, and (3) to
examine how multiagent collaborative learning affects
overall performance. We have also previously reported
our results on devising policies for tradeoff between
conceptual inferencing and query satisfaction in [21].

In our DIR application, agents work as a team to
accept and process queries and to learn about the re-
lationships (1) among their individual knowledge of
concepts, and (2) among their individual operational
capabilities and characteristics in collaborative activ-
ities. Each agent maintains a concept base equipped
with a repository of documents (or web page links),
a translation table, and a neighborhood profile of other
agents (i.e., neighbors) that it interacts with. The agent
accepts a query from a user, then it (1) interprets
that query and obtains the relevant documents, and/or

(2) approaches credible or helpful neighbors to gather
additional relevant documents. While an agent may al-
ways ask an authoritative expert neighbor for help on a
particular query in a traditional DIR application, ours
takes into account operational issues such that an agent
may approach a lesser but more helpful neighbor for
help. To identify such neighbors, an agent considers
two values that it monitors: (1) a collaboration util-
ity measure of each neighbor in its neighborhood, and
(2) a credibility score between each pair of concepts,
based on its translation table.

Our work is important to support the diversity in
concepts that always exists among agents of a hetero-
geneous community due to different utilities [8]. It en-
courages the growth of such a community not by re-
quiring the agents to conform to a standard set of con-
cepts, but by promoting the uniqueness and freedom of
expression of each member through cooperative learn-
ing in a multiagent framework. On-going research has
focused on using a pre-defined, common ontology to
share knowledge between agents by using a common
set of ontology description primitives such as KIF [9]
and Ontolingua [12]. However, the approach of using
global ontologies has problems due to the multiple and
diverse needs of agents and the evolving nature of on-
tologies [15]. Further, agents may have disparate ref-
erences, which lead them to refer to the same object
or concept using different terms and viewpoints; i.e.,
diverse ontologies [5]. Our CUDK framework allows
members or agents to learn and identify what these dis-
parate references mean. Furthermore, from the view-
point of DIR applications, as described in [27], in-
formation resources are essentially passive since each
source delivers specific pages when requested. There is
a need for active information sources or modules act-
ing on behalf of these information sources that are able
to identify other information sources to help with sat-
isfying a query, in order to improve the efficiency and
effectiveness of the retrieval tasks. Thus, agents such
as ours in the CUDK framework have the potential to
add intelligence and autonomy to information sources
to improve DIR applications.

Note also that in the following DIR application, we
assume that a concept can be described by a set of rel-
evant documents. This assumption, though not neces-
sarily valid in many conceptual learning situations, al-
lows us to proceed with our research design in investi-
gating the feasibility of the proposed CUDK approach.
It provides us with a DIR environment for the multia-
gent system and a conceptual inferencing mechanism
that motivates the agents to learn from each other.

wia127.tex; 7/03/2008; 12:09 p. 2

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 3

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

In the rest of this paper, we first describe the current
CUDK framework and design in Section 2. Then we
present our agent implementations in Section 3. Sub-
sequently, we discuss our experiments and results in
Section 4. In Section 5, we report on research and sys-
tems related to CUDK. We then address future work
for our research and present our conclusions.

2. Framework and design

Our current research focuses on integrating con-
ceptual and operational components of the multiagent
CUDK framework with a DIR application. The key
to collaboration in the multiagent system is the neigh-
borhood profiling and reasoning process that deter-
mines which neighbors to approach and how to allo-
cate the query tasks among the neighbors. That hinges
upon the aforementioned two measures: collabora-
tion utility and credibility score. Both measures are
subjective—that is, they are computed from the view-
point of the agent of one of its neighboring agents.
Though our CUDK framework is a general one [19]
we use information retrieval strategies in designing the
CUDK modules and agents for our discussions here.

2.1. The distributed information retrieval (DIR)
application

We apply our CUDK framework to DIR. In our mul-
tiagent system, an agent is motivated to collaborate to
ultimately improve its own performance in satisfying

queries that it receives from its users. A query, q, is a
tuple of 〈cq, #q, oq, sq〉, where cq is the topical term
or keyword, #q is the number of documents or links
desired, oq is the originator of the query, and sq is the
current sender of the query. A query may be relayed
multiple times such that oq �= sq . The designation of
oq informs an agent who the originator of a query is
such that it can return the documents to the originator.

Figure 1 shows the behavior of an agent that receives
a query. Given a query q, an agent first decides whether
to entertain the query. If the query comes directly from
a user, then the agent will always entertain the query.
If the query comes from one of its neighbors and the
agent is presently busy, it may decide to decline the
query. If the agent decides to entertain the query, then
it first checks cq against its own concept base. If it finds
a match and it has enough links to satisfy #q , then
it simply returns the results to sq, without having to
ask for help from other neighbors. If it finds a match
but it does not have enough links to satisfy #q , then
the agent needs to contact its neighbors to help sat-
isfy the query. This is called collaboration. If the agent
cannot find a match, i.e., cq is not in its vocabulary,
then it checks its translation table and sees whether cq

matches some keywords or terms that other neighbors
know. If a keyword match is found, then the agent re-
lays the query to the corresponding neighbor. This is
called a targeted relay. Otherwise, the agent distributes
the query to all neighbors. This is called exploration or
a generic relay.

Fig. 1. The behavior of an agent when it receives a query.

wia127.tex; 7/03/2008; 12:09 p. 3

4 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 2. The behavior of an agent when it receives a request from another agent.

Whenever agent ai realizes that it has not been able
to successfully satisfy a particular query, it checks its
translation table. The quality of each mapping entry in
the table reflects how credible the mapping is between
a concept that ai knows and a concept that a neighbor
j of ai, nai,j , knows. If the credibility is low or NIL,
then ai sends an inferencing request to nai,j in an at-
tempt to update the credibility score of the mapping.
Further, agent ai keeps a profile of each of its neigh-
bors. Each interaction results in a change in the profile
of the neighbor involved. Agent ai uses the profile to
compute the collaboration utility of a neighbor when
ai decides whether and how to request for help from
its neighbors.

Figure 2 shows the behavior of an agent when it re-
ceives a request from an agent ai. When a neighbor
nai,j receives a request, it immediately rejects the re-
quest if it is busy or it does not have the resources to
perform the query. Otherwise, if the request is a col-
laboration or a targeted relay, then it retrieves as many
links as required and returns them to agent ai. If the
request is a generic relay, then nai,j performs the rea-
soning steps as outlined in Fig. 1. If the request is for
inferencing, then it conducts a vector-based similarity
match, to be discussed later.

Due to the resource competition between the need
to improve concept bases for future collaborative ac-
tivities and the need to satisfy current queries, an agent

will have to strike a balance among the above actions.
In the following, we describe the factors that agents
consider when making such decisions.

2.2. Neighborhood, neighborhood profile, and
collaboration utility

We define an agent’s neighborhood as follows. An
agent ai has a neighborhood Nai = {nai,1, nai,2, . . . ,
nai,N} such that it can contact and ask for help from
each of the agents in the neighborhood. Agents in ai’s
neighborhood are ai’s neighbors.

Neighborhood profile. Agent ai keeps track of its
interactions with its neighbors based on the interac-
tions between ai and the neighbors. The profile of a
neighbor is a vector of 5 parameters, based on [22]:
(a) _helpRate , the ratio of successful collaborations
when the agent ai receives a request from the neigh-
bor nai,j over the total number of requests from nai,j

to ai, indicating how helpful or useful ai has been to
nai,j , (b) _successRate, the ratio of successful col-
laborations when the agent ai initiates a request to
the neighbor nai,j over the number of total requests
from ai to nai,j , indicating how helpful or useful nai,j

has been to ai, (c) _nowCollaborating , a Boolean
indicator as to whether the agent ai and the neigh-
bor nai,j are currently collaborating on another task,
(d) _requestToRate, the ratio of the total number of re-

wia127.tex; 7/03/2008; 12:09 p. 4

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 5

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

quests from the agent to the neighbor nai,j over the to-
tal number of all requests from the agent ai, indicating
the reliance of ai on nai,j , and (e) _requestFromRate,
the ratio of the total number of requests from the neigh-
bor to the agent ai over the total number of all requests
initiated by nai,j , indicating the reliance of nai,j on ai.
We have chosen these five parameters, as they seemed
to us a set of parameters that are easy to compute and
still sufficiently capture the collaborative relationship
between an agent and one of its neighbors.

Collaboration utility. The collaboration utility is an
agent ai’s perception of how useful a neighbor nai,j

has been with respect to its requests. We define the col-
laboration utility of a neighbor, nai,j , as perceived by
ai as:

CU nai,j =
_helpRate + _successRate

5

+
_requestToRate + _requestFromRate

5

+
(1 − _nowCollaborating)

5
. (1)

With the above score, if an agent has been in close re-
lationship with a neighbor—having high values for the
above rates) then that neighbor’s collaboration utility
is high. The fact that the agent is not currently collabo-
rating with the neighbor adds to the utility as well. This
is to prevent the agent from overloading a particular
neighbor with too many requests.

In our current implementation, we define a success-
ful collaboration in terms of the ratio of what is re-
quested of a neighbor nai,j by ai over what is supplied
by nai,j to ai. Take our DIR application as an example.
Suppose that ai requests that nai,j provide k links (or
documents) to satisfy a particular query task, and nai,j

supplies ai with k′ links. Then the degree of success of
that collaboration is k′/k.

2.3. Concept base, translation table, credibility score,
and inferencing

An agent ai’s concept base, Γai , consists of a set of
concepts. Each concept is composed of a topical term
(or keyword) and a set of documents categorized un-
der that topic. In our framework, we assume that each
agent is given a concept base to begin with.

Translation table. An agent ai keeps track of the
mappings between the topical terms it knows in its
concept base with those of its neighbors in a translation
table, Ψai . Each entry in the table records a mapping

Table 1
An example of a translation table

Concepts/Neighbors nai,1 nai,2 nai,3 nai,4

basketball NBA 0.9 Bball 0.1 NIL Basketball 0.4
car NIL Auto 0.8 Car 0.7 Move 0.2
. . .

between a topical term c of agent ai’s and a topical
term cmap of a neighbor, nai,j , if such a mapping ex-
ists. Each mapping is also associated with a credibility
value of the mapping: CV map .

In our application, we use a single phrase to repre-
sent a topical term and use WWW addresses (URLs)
as the supporting documents or links. We build the
initial concept bases by gathering several students’
WWW bookmarks based on a similar technique out-
lined in [25]. Each bookmark has a title (i.e., a topical
term) and a set of links.

Table 1 shows an example of a translation ta-
ble. In the example, agent ai has four neighbors,
nai,1, nai,2, nai,3, and nai,4. It knows of topical terms
such as “basketball” and “car”. For “basketball”, it
is similar to nai,1’s “NBA” with a credibility of 0.9,
nai,2’s “Bball” with a credibility of 0.3, and nai,4’s
“Basketball” with a credibility of 0.4. However, it does
not have a translation for “basketball” between itself
and nai,3.

Credibility score and inferencing. In the beginning,
the mapping entries in the translation table are set
to NIL and are learned through inference. When an
agent ai realizes that it has not been able to respond
to queries regarding a particular concept in a satisfac-
tory manner, it may decide to identify and repair the
weak mappings for the concept (e.g., in Table 1, the
mapping between the “Basketball” of the agent and
“BBall” of neighbor nai,2 has a credibility value of
only 0.1). To do so, ai sends an inferencing request
to that particular neighbor. This request includes the
concept that ai knows (the topical term and the associ-
ated documents or links). Since the process is costly in
terms of time and resources, ai only does so carefully.
First, it decides to perform an inference when it has
failed to satisfy a frequently-encountered query in the
past. Second, it employs a stepwise approach. When
ai identifies a problematic query, it does not approach
all neighbors simultaneously to ask for an update on
each mapping. Instead, it first selects the neighbor with
the best collaboration utility and the worst credibility
value, indicating a potentially very helpful neighbor
with possibly poor, outdated mapping. We assume that

wia127.tex; 7/03/2008; 12:09 p. 5

6 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

two agents that have collaborated successfully in the
past are more likely to have a strong mapping after the
inferencing process, and are also more likely to utilize
that mapping.

In general, the inferencing process to find a match
may be based on induction, clustering, or latent seman-
tic analysis [24]. Our inferencing process is based on
an information retrieval approach. Suppose that agent
ai sends an inferencing request to neighbor nai,j . If
the neighbor nai,j decides to help (only if it is not
overly busy and has an idle thread), then nai,j first
sets up a connection with the WWW server of each as-
sociated document or link provided in the request. It
then requests and collects the documents pointed to by
these links. We denote this collection the target set. In
nai,j’s concept base, each topical term it knows also
has an associated collection. The goal of the inference
process is to find the concept in nai,j’s concept base
that has the most similar collection of documents to the
target set, and then use that similarity to compute the
credibility value for the mapping.

The similarity is based on the term frequency and
inverse document frequency method, tf i,j • idf i—
popular in the area of information retrieval [3]—where
tf i,j stands for the term frequency of the i-th keyword
in the j-th document, and idf i stands for the inverse
document frequency of i-th keyword in the entire set of
documents. In general, a keyword that occurs only in a
few documents is given more weight as it is deemed to
be more discriminative. A keyword that occurs more
frequently in a document than another keyword is also
given a higher weight.

Briefly, to compute the document similarity between
two documents, we first perform stopword filtering and
stemming, both standard procedures in information
retrieval. Stopword filtering removes common words
such as articles and conjunctives from the document.
Stemming reduces the remaining words in the docu-
ment to their root or base forms. Words that remain
become the document’s list of keywords, and the tf i,j

of each keyword is computed. Doing this over all doc-
uments in the set, we also obtain the number of hits
(i.e., the number of documents that contain a particu-
lar keyword) for each keyword. We equate the idf i of
a keyword to the inverse of the number of hits. Thus,
multiplying tf i,j and idf i gives the weight of the i-
th keyword, wi,j . With this, the j-th document is rep-
resented with a vector of keyword weights, �wi,j =
〈w1,j , w2,j , . . . , wN,j〉, where N is the total number of
unique keywords in the set of documents.

To compute the similarity of two documents j and
k, the cosine product formula is used:

simj,k =
∑N

i=1 wi,jwi,k√∑N
i=1 w2

i,j

∑N
i=1 w2

i,k

. (2)

The similarity score between two collections of docu-
ments, Γa and Γb, is thus:

simΓa,Γb
= avg

r

(
max

s
simτa,r,τb,s

)
, (3)

where Γa has R documents and each document is in-
dexed with r, and Γb has S documents and each doc-
ument is indexed with s. To find the correct mapping
between a target set specified by agent ai and the col-
lection of repository sets of neighbor nai,j , we sim-
ply find the Γcnai,j

,m that yields the highest simi-
larity with the target set, Γcirai→nai,j

. Thus we have

simΓa,Γb
= avgr(maxs simτa,r,τb,s

) and cmap =
arg maxm simΓcirai→nai,j

,Γcnai,j
,m and the credibil-

ity value is:

CV map = max
m

simΓcirai→nai,j
,Γcnai,j

,m . (4)

The neighbor nai,j then sends over the mapping such
that ai updates the entry in its translation table accord-
ingly.

The above design thus does not specifically deal
with synonyms per se; instead, it deals with relevance
between two topical terms based on the amount of
shared keywords in their respective associated docu-
ments.

In our current design, a neighbor that receives an in-
ferencing request will agree to perform the task if it
has time or resources to do so. However, since infer-
encing is expensive, it could be cost-effective for the
responding neighbor to negotiate with the requesting
agent to reduce the task load. Negotiation issues could
include the accuracy needed for the credibility score (if
low accuracy is sufficient, then the responding neigh-
bors could examine only a few documents) and the re-
wards (the requesting agent could offer guaranteed fu-
ture services in return).

2.4. Interpretation, collaboration, and relays

After an agent ai decides to entertain a query, q, it
compares cq against its own concept base, Γai . In our
current implementation, the interpretation process is
simply matching the string cq to the concepts in Γai . In
Section 6, we discuss a key item of our future work—
using hierarchical ontologies and partial and relevant
matching, as originally proposed in [19].

wia127.tex; 7/03/2008; 12:09 p. 6

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 7

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Collaboration. Suppose that ai receives a query q
with 〈cq, #q, oq, sq〉 and that ai is only able to satisfy
the query partially, providing only #′

q links or docu-
ments matching cq . Now, ai needs to find additional
#c

q = #q − #′
q links to satisfy the query. This col-

laboration consists of two parts: (1) the identification
of specific neighbors from which to ask for help and
(2) the allocation of requests to these neighbors.

First, each CUDK agent ai has Nai collaboration
threads. When an agent asks for help from one of its
neighbors, it activates one of its collaboration threads
so that such interaction is handled in a thread while the
main agent process carries out its other tasks. Hence,
the number of neighbors to approach for help is limited
by the number of idle collaboration threads, N idle

ai
, that

an agent ai has at the time of the collaboration.
Given N idle

ai
, ai identifies the potential help by ex-

amining its translation table, looking for mappings
of cq. First, each neighbor nai,j with a non-NIL map-
ping is a potential source of help. Second, each of these
potential help sources is ranked based on the credibil-
ity of the mapping and the collaboration utility. If the
number of potential help sources is greater than N idle

ai
,

then only the top N idle
ai

− Ninsurance,ai neighbors are
selected to form the collaboration, where Ninsurance,ai

is the number of threads that each agent ai reserves to
handle requests from other agents. In general, an agent
with a higher combined value of collaboration utility
and credibility score will have a higher Ninsurance,ai .
After this stage, agent ai has determined a subset of its
neighbors to approach for help.

The second task involves distributing the number of
desired links, #c

q , among the neighbors. Proportion-
ally, agent ai assigns the number of desired links to re-
quest from a neighbor nai,j , #c

q,nai,j
, based on nai,j’s

ranking. The higher the ranking, the larger #c
q,nai,j

is.
This design encourages an agent to prefer the same
neighbors for help as long as those neighbors have
been useful and credible in the past.

Relays. A relay occurs when agent ai cannot find a
match for a query q, i.e., cq is not in its concept base.
There are two types of relays in CUDK: targeted and
generic.

A targeted relay occurs when agent ai matches cq

to one of the entries in its translation table. Suppose
the entry is ψcq,ai→nai,j . A match occurs when cq =
cmap . When such a match is found, ai relays the query
to nai,j . It is possible that nai,j’s understanding of
cmap does not match what the query’s originator has
in mind for cq . But in view of ignorance on ai’s part,

for our current design, the agent simply assumes that
nai,j would likely return relevant links to the query.

A generic relay occurs when an agent has absolutely
no idea what cq is. In this case, it initiates an explo-
ration with the following principles. First, it starts the
exploration conservatively, approaching only a small
number of neighbors, thus conserving the collabora-
tion threads that it has. Second, it allocates the number
of desired links in the same way as in the collabora-
tion requests to the neighbors. So, if neighbor nai,j has
been useful and credible, agent ai will count on that
neighbor more for exploration. Consequently, within
the general exploration process, there is still a touch of
targeted strategies.

To prevent circular relays—i.e., a query going back
to its originator—agents have a provision in place such
that a neighbor that is also the originator of the query
cannot be a potential source of help.

Relay score. To keep track of how well a neighbor
handles a relay, we use a metric similar to collabora-
tion utility. Suppose that ai relays a query to nai,j and
the query requests k links (or documents), and after the
interaction, nai,j returns to ai with k′ links. Then the
degree of success of the relay is k′/k. The relay score
of nai,j from the viewpoint of ai is the average of k′/k
for all relays from ai to nai,j .

3. Implementation

In this section, we present briefly the agent imple-
mentation for the application of CUDK to DIR. As
shown in Fig. 3, a CUDK agent has eight key modules.
Together with these eight modules are three dynamic

Fig. 3. The current design of the operational components of an agent
in our framework.

wia127.tex; 7/03/2008; 12:09 p. 7

8 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

knowledge bases or databases: a concept base, a trans-
lation table, and a set of neighbor profiles.

(1) Interface: This module interacts with the user to
obtain queries and to provide query results. Cur-
rently, we have (simulated) software users that
automatically generate timed queries for our ex-
periments. Each software user submits its queries
through a socket connection with the interface.

(2) Query Processor: This module receives a query
from the Interface module and processes it. It
first checks the agent’s concept base. If the query
matches one of the topical terms in the concept
base, the module retrieves the number of links
available. If the query does not find a match in the
concept base, the module examines its translation
table. If there are available translations, then that
means a collaboration is possible.

(3) Action Planner: This module serves as the main
reasoning component of the agent: (a) If the
number of internal links satisfies the query, then
the action planner simply provides those links
through the Interface module to the user; other-
wise, if (b) the agent understands the query and
finds available translations, it initiates its collab-
orative activities (as discussed in Section 2.3); or
if (c) the agent does not understand the query,
it will relay the query to another agent (as dis-
cussed in Section 2.4). Whether a collaboration
is feasible depends on the current status of the
agent, as recorded by the Activity Monitor and
Thread Manager modules. If the agent does not
have enough resources for a collaboration, the
query satisfaction process terminates. If it re-
ceives an inferencing request, it also decides
whether to help as discussed in Section 2.3. If it
helps, it carries out the inferencing using Eqs. (2)
and (3) as discussed.

(4) Collaboration Manager: When the action plan-
ner calls for a collaboration, this module takes
over. The objective of this module is to select
a group of neighbors to approach and distrib-
ute the query demands (link allocations) among
them accordingly. To design such a collaboration
plan, this module relies on the neighborhood pro-
file and the translation table. Each neighbor is
tagged with a collaboration utility and a trans-
lation credibility score (Eq. (1)). The collabora-
tion manager ranks these neighbors based on the
two measures and composes the query demands
accordingly, with the help of the Query Com-

poser. The manager assigns more links to neigh-
bors with higher ranking proportionally to maxi-
mize the chance of retrieval success, as discussed
in Section 2.2. It also collects the query results
and filters out low-credibility links when it has
more links than desired.

(5) Query Composer: Based on the allocation of
query demands, this module composes a specific
query for each neighbor to be approached. As
previously mentioned, each query is associated
with a link requirement that specifies the num-
ber of links desired. A query will also include the
name of the originator and a time stamp when it
is first generated. If the query is based on a trans-
lation, then the translated concept name is used.

(6) Neighborhood Profiler: Each time a collabora-
tion is completed, this module updates its pro-
file of the neighbor. For example, if it was a suc-
cessful collaboration, this module increments the
number of successful collaborations between the
agent and the particular neighbor by one.

(7) Activity Monitor: This module keeps track of
the activities in a job vector—whether the agent
is processing a query on its own, or collaborat-
ing with other neighbors for more links, or enter-
taining a request from a neighbor. Each job is de-
scribed with a list of attributes such as the origi-
nator, the executor, the task description, the cur-
rent status, and so on. Also, if the agent encoun-
ters a particular query that it has frequently failed
to satisfy, it triggers an inferencing request to its
neighbors, as discussed in Section 2.3.

(8) Thread Manager: This module manages the
threads of the agent. It is a low-level module that
activates the threads and updates and monitors
the thread activity.

We have implemented all eight modules of our agent
as depicted in Fig. 3 in C++. Each agent receives its
user queries from a software user through a socket
connection and communicates with other agents using
a central communication module through socket con-
nections as well.

4. Experiments and results

The following experiments were designed to answer
the following questions:

(1) How do operational and conceptual constraints
together impact the query results in our mul-
tiagent DIR application? The operational con-

wia127.tex; 7/03/2008; 12:09 p. 8

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 9

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

straints considered are time and collaboration
threads. The conceptual constraints considered
are the concept bases and the translation tables.
The query results are measured in terms of con-
tent quality and time taken to satisfy a query.

(2) How do query tasks affect the query results in our
multiagent information retrieval system? Here,
we look at different segments of query tasks, de-
signed to incur different environmental stresses
on the agents.

(3) Does the profiling module (one of the two learn-
ing mechanisms) help improve the query satis-
faction task? Answering this question will allow
us to refine our profiling module, which could
lead to a better design of our credibility score and
collaboration utility.

(4) Does the inferencing mechanism (one of the two
learning mechanisms) help improve the query
satisfaction task? Answering this question will
give us insights to build a better decision making
process that balances costly inferencing acts with
services to user queries.

4.1. Experimental setup

There are five agents supporting one software user
each. All agents are neighbors and can communicate

among themselves. Every agent has a unique set of
nine concepts in its repository. Each concept has five
supporting links. Each agent has an initial translation
table where each cell of the table indicates the transla-
tion between a local concept and a foreign concept in
a neighbor and the translation’s credibility value. If a
mapping is not available, we use the symbol NIL.

Each software user has a query configuration file.
Thus, instead of us manually submitting these queries,
each software user automatically retrieves a query at
a time from the configuration file and sends it to its
agent. For each query in a configuration file there are
(a) a cycle number, (b) the queried concept name, and
(c) the number of links desired. The cycle number in-
dicates when the query is to be submitted to the agent.
Figure 4 gives an overview of the first batch of query
segments (Table 4 in Section 4.4 describes additional
attributes of these query segments):

(1) Cycles 0–10: Every software user queries about
all different concepts its agent has in the concept
base. Each agent is also able to satisfy the query
demand on its own. During this segment, each
agent does not need to collaborate. All queries
across the users are submitted at the same cycles.

(2) Cycles 11–40: Every software user queries about
all different concepts its agent has in the concept

Fig. 4. The number of links for the queries submitted by the software users to the agents for each cycle.

wia127.tex; 7/03/2008; 12:09 p. 9

10 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

base. However, each agent is not able to fulfill
all queries on its own. During this segment, each
agent needs to collaborate. All queries across the
users are submitted in a staggered manner. User
1 submits all its nine queries first; user 2 submits
its queries after 3 cycles; and so on.

(3) Cycles 41–70: Every software user queries about
all different concepts its agent has in the con-
cept base and each agent is not able to satisfy the
queries on its own. Also, the number of links de-
sired for every query is twice that in the second
segment. Extensive collaborations are needed.
Queries are also staggered in this segment.

(4) Cycles 71–80: Every software user queries about
different concepts its agent does not have in its
concept base. This forces the agent to relay the
queries to its neighbors. Queries are packed and
not staggered in this segment.

(5) Cycles 81–110: The setup of this segment is sim-
ilar to that during cycles 11–40, but with con-
cepts that each agent does not have in its concept
base. Queries are staggered.

(6) Cycles 111–120: During this segment, two users
query about concepts that their agents do not
have in their respective concept bases, two soft-
ware users query about only some concepts that
their agents do not have in their respective con-
cept bases, and one software user queries about
concepts that its agent has in its concept base.
The queried number of links is small and no col-
laborations are needed.

Our query segments are staggered (e.g., the third
segment) and packed (e.g., the first segment) to in-
vestigate the response behaviors of the agents. Since
the number of collaboration threads is limited for each
agent, packed queries with high link demands may
lead to only partial link retrievals. Our query segments
also come with low and high link demands. Low link
demands do not require any or require fewer collab-
orations, while high link demands prompt the agents
to collaborate more. Finally, an agent may or may not
know some of the queried concepts. The agent’s con-
cept base specifies this knowledge. When an agent
knows the queried concept, it has more options, ap-
proaching different neighbors for help. When it does
not know the queried concept, then it shifts the respon-
sibility to one of the neighbors, essentially making it-
self a relay station.

Given the above query segments, we further vary
two sets of parameters: (1) operational constraint: the

number of collaboration threads, and (2) conceptual
constraint: the credibility values in the translation ta-
bles. When the number of collaboration threads is
small, an agent cannot afford to contact many neigh-
bors simultaneously. Thus, this limits the opportuni-
ties to perform inferencing and entertain requests. In
addition, the agents are supplied with different sets of
translation tables for different experiments. For exam-
ple, in the first set, all credibility values of all trans-
lations are above zero. In this situation, every concept
that one agent knows has four translations. In the sec-
ond set, one of the agents has what is termed as a
“narrow translation.” That is, its translation table con-
tains many NIL mappings, above 50%. In the third set,
two agents have narrow translations. In the fourth set,
three agents do; in the fifth set, four agents do; finally,
all agents do. With these sets, we want to see how
agents with poor conceptual mappings learn to cope
with query satisfaction.

We also collect the following parameters from our
agents:

(1) Neighborhood Profile Parameters: For each
neighbor, an agent collects parameters docu-
menting the outcomes of their past interactions.
These parameters are also used in the computa-
tion of a neighbor’s collaboration utility measure,
as described in Section 2. Table 2 documents the
definitions of these parameters.

(2) Query Result Parameters: For each query, an
agent collects parameters documenting the char-
acteristics of the query and the query outcome.
Table 3 documents the definitions of these para-
meters.

4.2. Analysis 1: Impact of operational constraints

We analyze the impact of operational constraints on
how CUDK agents collaborate in our DIR application.
The operational constraints considered are time and
collaboration threads. The query results are measured
in terms of content quality and time required to satisfy
a query.

Figure 5 shows the average _successQuality of the
queries (averaged over all queries) vs. the number of
threads, for each software user.

Here are some observations:

• The average _successQuality of a user’s queries
increases as expected when the number of threads
increases. This is because for high-demand queries

wia127.tex; 7/03/2008; 12:09 p. 10

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 11

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Table 2
Neighborhood profile parameters

Parameters Definitions

_numSuccess The number of successful collaborations that the agent has initiated to neighbor i

_numHelp The number of successful collaborations that the agent has received from the neighbor i

_numRequestTo The total number of collaborations that the agent has initiated to the neighbor i

_numRequestFrom The total number of collaboration requests that the agent has received from neighbor i

_successRate _numSuccess/_numRequestTo

_helpRate _numHelp/_numRequestFrom

_requestToRate _numRequestTo/_totalRequestTo where _totalRequestTo is the sum of all collaborations that the agent
has initiated

_requestFromRate This number tells the agent how much neighbor i relies on the agent

Table 3
Query result parameters

Parameters Definitions

_originator The originator of the query, either from a software user (ID) or another agent
_cycle The cycle ID when the query is first generated
_numLinksDesired The number of links desired by the query
_numLinksRetrieved The number of links retrieved at the end of the retrieval process and presented to the user, always smaller than

or equal to _numLinksDesired

_conceptName The query keyword
_successQuality numLinksRetrieved/numLinksDesired

_duration The actual elapsed time between the receipt of a query and the presentation of the query results to the user
_listLinks The list of links retrieved and presented to the user at the end of the retrieval process

Fig. 5. The average _successQuality value of each user’s queries vs. the number of threads that the agents have.

wia127.tex; 7/03/2008; 12:09 p. 11

12 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 6. The average and standard deviation of the _successQuality for all agents vs. the number of threads.

Fig. 7. The average _duration , for different numbers of threads, vs. the number of narrow translations.

that call for collaborations, the agent has more
resources (i.e., collaboration threads) to use.

• Figure 6 shows the average _successQuality and
standard deviation of all queries for each number
of threads. As we can see, with a higher number
of negotiation threads, queries are satisfied more

successfully (high average values), and also more
consistently (low standard deviation values).

• Figure 7 shows the average _duration (in sec-
onds) for each query to be processed and pre-
sented back to the user, for different numbers
of collaboration threads. As observed, when the

wia127.tex; 7/03/2008; 12:09 p. 12

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 13

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

number of threads increases, it takes longer for a
query to be satisfied. Though this observation was
not anticipated initially, upon further analysis, we
realize the following: when an agent has more
threads, not only it can approach more neighbors
for help, but it also entertains more requests for
help from other agents. As a result, the agent
manages more tasks and slows down its processes
for retrieving and supplying results to the soft-
ware users.

Based on the above, we conclude the following.
Though an increase in the number of threads improves
query satisfaction in terms of retrieved documents
and consistency, the query satisfaction performance in
terms of time spent for retrieval process deteriorates.
This has several implications. First, when the number
of threads is high, the system performs better, and thus
the agents have less motivation to improve learning of
their concept bases (i.e., the translation tables). Sec-
ond, when the number of threads is high, the agents
slow down. To address the slowdown in query satis-
faction, we realize that the agents should be conserv-
ative in their collaborations—instead of asking many
neighbors for help, the agents should ask only a few
top-ranked neighbors for help. This will allow an agent
to complete a query task more quickly. Further, if an
agent views the slowdown as partial failure, then the
agent will indeed have motivation to learn to improve
its translation table. Therefore, having more threads is
both a liability and an advantage. How an agent man-
ages the thread resources will have a significant im-
pact on the way the agents learn about each other’s
concepts. This also implies that the role of an accurate
neighborhood profile will be important since an agent
has to be sure that the quality of help it receives from
a reduced number of neighbors is good.

4.3. Analysis 2: Impact of conceptual constraints

In this analysis, we focus on the conceptual con-
straints imposed by the “narrow translations” defined
in Section 4.1. We aim to investigate how poor initial
mappings impact how agents collaborate in the sys-
tem, and how that leads to the need for neighborhood
profiling and conceptual inferencing.

• From Fig. 7, the average _duration values for the
different numbers of narrow translations are 7.66,
7.41, 7.73, 8.15, and 8.24 seconds, respectively.
We see that there is an increasing trend in the time
spent to satisfy queries as the number of narrow

translations increases. This is to be expected as
agents are required to collaborate more often, in-
curring more time cost as the number of narrow
translations increases

• Figure 8 shows the _successQuality , for differ-
ent numbers of narrow translations and threads,
over the different sets of queries in terms of
the numbers of desired links. As expected, the
_successQuality drops as more links are desired.
However, we see that the conceptual constraint is
offset by an increase in agent resources (i.e., the
number of collaboration threads).

Comparing Fig. 8 with the figures in Section 4.2,
we see that operational constraints impact the sys-
tem more significantly than do conceptual constraints:
the number of narrow translations impacts the suc-
cess quality insignificantly compared to what we have
found in Section 4.2 about the number of threads. This
was unexpected. Upon closer analysis, we see that the
conceptual disadvantage in some agents can be com-
pensated with neighborhood profiling and collabora-
tion rather successfully. Thus, we see that the motiva-
tion for agents to learn each other’s concepts is likely
to be more resource-related than concept-related, at
least in our CUDK framework and our DIR applica-
tion. This also hints that with good neighborhood pro-
filing and collaboration, agents with poorer initial con-
cept bases do not necessarily perform more poorly than
agents with better initial concept bases.

4.4. Analysis 3: Impact of query tasks

In this analysis, we investigate the impact of query
tasks. Our objective is to find out how various combi-
nations of query tasks stress the collaboration activi-
ties. For example, if the queries are packed and pre-
sented all at once to the agents, will the agents be able
to still collaborate successfully?

Particularly, we want to investigate how the agents
handle the different segments of queries. Briefly, there
are six segments, as described in Section 4.1, in each
batch of queries. Segment 1 is the least demanding in
terms of the number of links or documents desired for
each query. Segment 2 consists of queries that lead to
every agent having to collaborate with its neighbors.
Also, the queries are submitted in a staggered manner.
Thus, the agents are not flooded with all their queries
at the same time. Segment 3 is similar to Segment 2,
but with far more demanding queries in terms of the
number of links desired. In Segment 4, the queries

wia127.tex; 7/03/2008; 12:09 p. 13

14 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 8. _successQuality for queries of different link demands, for systems with different numbers of narrow translations.

are intentionally submitted to the agents that do not
have links or documents to satisfy the queried con-
cepts. These queries are also packed to induce commu-
nication congestion in the system as well as resource
contention for negotiation threads within each agent.
Segment 5 is similar to Segment 4 but with staggered
submissions and thus is less constrained. Segment 6 is
a mixture of all the above characteristics.

In addition, we identify eight attributes to describe
each segment (see Table 4):

(1) _cooperationNeeded : indicating whether an agent
needs to collaborate with its neighbors to satisfy
the queries in the segment.

(2) _numCycles : the duration of the segment.
(3) _queryCompactness : the ratio of the number of

queries occurring at the same cycles to the total
number of queries in the segment.

(4) _queryDensity: _queryCompactness normal-
ized by _numCycles .

wia127.tex; 7/03/2008; 12:09 p. 14

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 15

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Table 4
Description of the six different segments. Abbreviations: cN = _cooperationNeeded , nC =
_numCycles , qC = _queryCompactness , qD = _queryDensity, aL = _aveNumLinks,
maL = _maxNumLinks , miL = _minNumLinks, and kR = _knowledgeRatio

Segment cN nC qC qD aL maL miL kR

1 N 9 1 0.11 3 5 1 1

2 Y 27 0.8 0.03 10 12 7 1

3 Y 27 0.8 0.03 20 26 15 1

4 Y/N 9 1 0.11 4 5 2 0.02

5 Y 26 0.8 0.03 11 12 7 0.00

6 Y/N 9 1 0.11 5 13 2 0.54

(5) _aveNumLinks : the average number of links de-
sired per query in the segment.

(6) _maxNumLinks: the maximum number of de-
sired links of a query in the segment.

(7) _minNumLinks: the minimum number of de-
sired links of a query in the segment.

(8) _knowledgeRatio: the ratio of the number of
queries submitted to the agents that know the re-
quested concepts over the number of total queries
in the segment.

In general, if a segment requires collaboration, with
a larger number of queries for an agent, higher com-
pactness, lower number of cycles, higher query den-
sity, and higher number of links per query, and lower
knowledge ratio, then we expect the system to perform
less successfully. From the experiments, we observe
the following:

• Figure 9 shows the average _successQuality val-
ues for all segments, for different numbers of
threads and narrow translations. We see similar
observations as those drawn from Fig. 8.

• Table 5 shows aggregate results of two sets of
query segments grouped based on the levels of
their _knowledgeRatio . The _knowledgeRatio
value impacts the average _successQuality value:
agents with higher _knowledgeRatio values achieve
higher _successQuality values, especially when
the number of threads is small (0 or 1). As
the number of threads increases, the impact of
_knowledgeRatio decreases. Also, as the number
of agents with narrow translations increases, the
number of threads factors more significantly into
the _successQuality values of the agents with
low _knowledgeRatio values. In general, when
the knowledge ratio is low, a high number of
threads—increased resources for collaborations
and relays—can maintain a level of system per-

formance very similar to that achieved when the
knowledge ratio is high.

• Table 6 shows aggregate results of two sets
of query segments grouped based on the lev-
els of their _queryDensity. The impact of the
_queryDensity value of the segments on the
query results was not expected. We expected that
the _successQuality would be high when the
_queryDensity is low. However, this is not the
case. Actually, the segments with a high query
density (1, 4, and 6) have significantly higher
_successQuality than do the other segments.
Following this observation, we ran another ex-
periment and the results are shown in Figs. 10
and 11. This new experiment shows that the
agents learned to respond to queries faster when
_queryDensity is higher, and they contact fewer
neighbors. This is an interesting observation as
the higher query demands forced the agents to
learn more quickly and improve their use of re-
sources. A faster response time frees up threads
for collaborations; contacting fewer neighbors
also frees up more threads for other collabora-
tions and frees up the neighbors’ threads. As a re-
sult, agents with handling query segments of high
_queryDensity are able to produce better perfor-
mance.

• Table 7 shows the standard deviation values of the
average _successQuality for different numbers
of narrow translations and threads. We see that the
system performance is slightly less consistent—
with larger standard deviations—when the agents
have fewer threads (this coincides with Fig. 6)
and also when the agents have more narrow trans-
lations. Table 8 shows the standard deviation
values of the average response time for differ-
ent numbers of narrow translations and threads.
We see that the system’s performance in terms

wia127.tex; 7/03/2008; 12:09 p. 15

16 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 9. Average _successQuality vs. Segment.

of response time becomes significantly more
inconsistent—with larger standard deviations—
when the agents have more threads. Combining
the two observations, we see a key tradeoff. If we
want to have a reliable and predictable system in
terms of both the goal achievement (i.e., query
satisfaction in this case) and the time it takes to
achieve the goal, then having more threads does
not help. Further, we find that collaborations are

more consistent than targeted relays; and targeted
relays are more consistent than generic relays.
This is because agents responding to relays are
more persistent since they have more threads to
approach their neighbors. This implies that hav-
ing good collaboration and relay mechanisms are
not sufficient. Though these mechanisms help im-
prove system performance, they do not help sta-
bilize the system.

wia127.tex; 7/03/2008; 12:09 p. 16

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 17

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Table 5
Average _successQuality , comparing segments 1, 2, 3 (high _knowledgeRatio) with segments 4, 5, 6
(low _knowledgeRatio) to analyze the impact of _knowledgeRatio

Table 6
Average _successQuality , comparing segments 2, 3, 5 (low _queryDensity) with segments 1, 4, 6
(high _queryDensity) to analyze the impact of _queryDensity

Fig. 10. Average response time per batch of segments for different _queryDensity values. 30/30 = 30 queries in 30 cycles, high density;
30/60 = 30 queries in 60 cycles, low density.

wia127.tex; 7/03/2008; 12:09 p. 17

18 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 11. Average number of neighbors contacted per batch of segments for different _queryDensity values. 30/30 = 30 queries in 30 cycles,
high density; 30/60 = 30 queries in 60 cycles, low density.

Table 7
Standard deviation for average _successQuality by combining
all six segments, for different numbers of threads and narrow
translations

Narrow
Translations

T0 T1 T2 T3 T4 T5

0 1.94 1.92 1.90 1.88 1.87 1.87
1 1.96 1.93 1.92 1.89 1.88 1.87
2 1.99 1.96 1.94 1.92 1.89 1.89
3 2.02 1.98 1.94 1.93 1.90 1.90
4 2.05 2.01 1.97 1.95 1.92 1.91
5 2.08 2.03 1.99 1.95 1.94 1.90

Based on the above, we conclude the following. Out
of the eight attributes that we use to describe the var-
ious segments, only _knowledgeRatio plays a signif-
icant role on the system’s performance in query satis-
faction. We also see that agents equipped with more
resources (i.e., threads) are able to address the concep-
tual constraints through collaboration and relay mech-
anisms. However, more resources also create a less
predictable system in terms of the time spent on each
query. Reducing relays could help since they con-
tribute most significantly to the inconsistency. To re-
duce relays, conceptual inferencing is a very viable
approach. We also observe that (1) transfers of con-
ceptual knowledge may improve the system’s perfor-
mance, and (2) referrals of queries may improve the
system’s performance. When we transfer conceptual

Table 8
Standard deviation for average response time by combining all six
segments, for different numbers of threads and narrow translations

Narrow
Translations

T0 T1 T2 T3 T4 T5

0 2.10 2.38 2.87 3.45 4.36 4.89
1 1.67 2.21 2.54 3.45 4.20 5.17
2 1.38 1.85 2.42 3.16 3.90 4.88
3 1.33 1.8 2.33 3.31 4.05 4.73
4 1.28 1.79 2.79 3.62 4.16 5.30
5 1.27 1.96 2.75 3.31 4.30 5.07

knowledge from an agent ai to another agent aj , aj be-
comes knowledgeable. This is particularly useful when
aj has few resources available. However, ai’s unique-
ness will decrease, as will the diversity of the system
as a whole. When we refer queries from an agent ai

to another agent aj , ai basically transfers one of its
users to another agent. It is possible that ai eventu-
ally becomes a relay station for aj and thus loses its
autonomy. Therefore, combining the results from Sec-
tions 4.2 and 4.3, we see that conceptual constraints
play a very important role on our CUDK agents if the
agents do not have enough resources to collaborate, or
if the resources are both disadvantageous and advan-
tages at the same time. This could serve as the underly-
ing motivation for agents to learn conceptually for our
tier-2 research and design.

wia127.tex; 7/03/2008; 12:09 p. 18

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 19

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

4.5. Analysis 4: Impact of neighborhood profiling

The objective of this analysis is to investigate
whether and how the profiling module helps improve
the query satisfaction task. We want to find out whether
the profiling is able to help an agent build better collab-
orations faster and achieve better query results. Know-
ing how to profile more accurately also leads to a better
design of collaboration utility.

Here are the typical observations, showing the re-
sults of one agent, a1:

• Figure 12 shows the average neighbor profile
of agent a1 of its neighbors: _numSuccess,
_numHelp, _numRequestTo, and
_numRequestFrom. For a1, the number of times
it has requested help is smaller than the num-
ber of times it has entertained other agents’ re-
quests. This indicates that the query segments
tend to induce collaborations, causing the origi-
nating agents to ask for help from many different
neighbors. From the graph, we see that the agent
approaches more neighbors for help when it has
more collaboration threads.

• Figure 13 shows the average _successRate vs.
the number of threads available. As observed,
the agent is able to collaborate more successfully
when the number of threads increases. This is
expected since with more threads available, the
agent’s neighbors are able to entertain more re-

quests. Coupling this with Fig. 9, we see that a1

is able to conduct more collaborations more suc-
cessfully when the number of threads increases—
and to do so more effectively and more efficiently.

• Figure 14 shows the _requestToRate vs. the
number of threads available. As observed, when
the number of threads is 1, agent a1 relies on
agent a2 (or na1,1) almost completely. This is due
to the fact that in the beginning of an agent, all
neighbors are weighted very similarly; as a result,
the agent will approach the first neighbor that it
knows. However, as the number of threads in-
creases, the agent is able to collaborate more with
other neighbors. As a result, the reliance on na1,1

greatly decreases. Meanwhile, the reliance on the
other three neighbors steadily increases.

Based on the above, we conclude the following.
More collaboration threads mean more collaborations
and more successes. We also see that an agent collab-
orates more successfully (with a higher success rate)
as it has more threads. Further, the reliance of an
agent on its neighbors is distributed more evenly as
it has more threads. These three observations indicate
that our CUDK agents are able to profile their neigh-
bors, learn about the good neighbors, and seek them
out for subsequent collaborations. The implicit rein-
forcement learning takes place here: an agent will re-
quest help from a neighbor that has been helpful in the
past. This gives us a mechanism to identify neighbors

Fig. 12. The average neighbor profile for agent a1 of its neighbors vs. the number of threads.

wia127.tex; 7/03/2008; 12:09 p. 19

20 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 13. The average neighbor profile for agent a1 of its neighbors vs. the number of threads.

Fig. 14. The _requestToRate from agent a1 to its neighbors, N1 (na1,1), N2 (na1,2), N3 (na1,3), and N4 (na1,4) vs. the number of threads.

whose concept bases are more important for an agent
to understand—for our future tier-2 work, we can uti-
lize this relationship to perform cost-effective concep-
tual inferencing. The neighborhood profile empowers
an agent to strategically select a subset of its neighbors
to perform conceptual inferencing, thus improving the
overall system performance.

Query-triggered collaborations. The queries that an
agent encounters trigger collaboration requests, in-

cluding the targeted and generic relays. Since queries
trigger different types of collaborations, an agent
learns differently as well. We identify six collaboration
types that an agent might encounter during its query
satisfaction process as shown in Table 9.

Type-3 and -4 collaborations are situations in which
the agent cannot approach potentially helpful neigh-
bors for help because it does not have available col-
laboration threads. Further, Type-2, -5, and -6 col-

wia127.tex; 7/03/2008; 12:09 p. 20

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 21

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Table 9
Types of collaborations triggered by queries based on what an agent knows and what resources it has available

Type Knows the
queried concept?

Has enough
documents/links?

Has idle
threads?

Has entry in
translation table?

Actions

1 Yes Yes Don’t Care Don’t Care No collaboration; return documents/links
2 Yes No Yes Don’t Care Collaboration; compose and return documents
3 Yes No No Don’t Care No collaboration; return documents
4 No No No Don’t Care No collaboration; return nothing
5 No Don’t Care Yes Yes Targeted relay
6 No Don’t Care Yes No Generic relay

Fig. 15. The number of occurrences of different types of collaborations over time.

laborations are situations where the agent has the re-
sources to carry out query collaborations, indicating
that it is operationally capable. A good multiagent sys-
tem should reduce Type-3 and -4 collaborations and
increase Type-2, -5, and -6 collaborations. Reducing
the numbers of Type-3 and -4 collaborations indicates
that the agents are able to better utilize their resources
and avoid fruitless requests for collaboration. Increas-
ing the numbers of Type-2, -5, and -6 collaborations,
on the other hand, indicate that the agents are able to
identify helpful and useful neighbors.

Figure 15 shows the numbers of different types of
collaborations in each batch for the five agents. As
learning progressed over time, the number of Type-5
collaborations (targeted relays) increased because the

agents gradually learned what the other agents knew
and what they themselves did not know through con-
ceptual inferencing. Further, the number of Type-6
collaborations (generic relays) decreased because the
agents became more knowledgeable about the other
agents’ concept bases. Thus, the agents became more
responsible in asking for help—in essence, they en-
gaged in less “spamming”. The number of Type-2 col-
laborations remained the same as the local concept
base of each agent did not change. Best of all, the
numbers of Type-3 and -4 collaborations (situations
where no idle threads were available for collabora-
tions) significantly decreased. This indicates that the
agents were able to learn to use their resources effec-
tively.

wia127.tex; 7/03/2008; 12:09 p. 21

22 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

The performance of Type-2 and -5 collaborations
were significantly improved by the profile-based rein-
forcement learning. In Type-5 collaborations (targeted
relays), we observe that the agents were able to iden-
tify unknown queries and relay those queries to ap-
propriate neighbors such that the _successQuality im-
proved. However, in Type-6 collaborations (generic re-
lays), the agents needed the relay score in addition
to the collaboration utility to obtain improved perfor-
mance. This indicates that even when an agent had ab-
solutely no idea which neighbor knew about a partic-
ular queried concept, it was still able to improve its
performance by looking at two operational factors: the
collaboration profile and the relay score, with the latter
keeping track of the response of a neighbor to a relay
request.

4.6. Analysis 5: Impact of multiagent inferencing

In this analysis, we investigate the impact of agents
performing conceptual inferencing on query satisfac-
tion. For this analysis, we use the following experi-
mental setup. We distinguish three phases of activities:
In Phase I, agents do not have the ability to perform
conceptual inferencing and each agent has an empty
translation table. Phase I shows the baseline system
performance and the quality of service when the agents
do not have inferencing ability. In Phase II, each agent
has an empty initial translation table and is able to per-
form inferencing every 30 cycles and when a certain

percentage of idle threads are available. Phase II shows
how agents handle queries, collaborate, and distribute
resources to perform inferencing. In Phase III, each
agent has a full initial translation table but has no infer-
encing capability. Phase III shows the baseline system
performance when all agents are given full translation
tables.

Figure 16 shows the system performance in terms of
the total number of links returned for the three phases,
respectively, with different numbers of threads per
agent. We see that conceptual inferencing improves the
overall system performance significantly. Not recorded
in the graph are occurrences of “panicky” collabora-
tions: when an agent realizes that it has an initially
empty translation table, it invokes conceptual infer-
encing repeatedly. Since this process is resource- and
time-consuming, the agent does not have enough re-
sources to satisfy queries, resulting in lowered system
performance. Thus, we see that there is a delicate bal-
ance between how much conceptual inferencing is ap-
propriate to ensure improved performance. Trying to
learn too much or trying to help too often renders query
satisfaction inefficient. Therefore, the strategy of an
agent’s decision and design of conceptual inferencing
should be gradual and selective. This could also be a
self-regulating rule for every agent in the system. For
example, if a query for a concept has been well satis-
fied, the motivation to ask for a translation should be
low even if the translation is empty or NIL.

Fig. 16. The #links returned vs. phases. From left to right, Phase I: no inferencing capability with empty translation tables, Phase II: inferencing
capability with initially empty translation tables, Phase III: no inferencing with full translation tables.

wia127.tex; 7/03/2008; 12:09 p. 22

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 23

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

5. Related work

Our research is related to information matchmaking,
cooperative learning, and resource description. When
an agent selects and approaches a subset of its neigh-
bors to ask for help, it is attempting to find a match
in its neighbors. In our case, this happens whenever
the incoming query demands a number of documents
greater than what an agent has in its concept base. Af-
ter selecting the appropriate neighbors, the agent as-
signs particular tasks or subtasks to each neighbor. Ide-
ally, the agent matches the tasks to a neighbor’s ex-
pertise. In our case, a neighbor’s expertise corresponds
to the credibility of a translation and the collaboration
utility of that neighbor to the agent. Our agents learn
about each other’s concepts through collaboration in
satisfying queries. Each agent performs such learn-
ing only when necessary—when it needs help from
its neighbors. Thus, the learning is problem- or event-
driven and only occurs when the agents collaborate.
Our research work, through its DIR application, is re-
lated to resource description and resource selection.
Resource description is the profiling of what a resource
has—similar to what an agent profiles concerning its
neighbors. Resource selection is the selection of re-
sources per query—similar to an agent’s decision mak-
ing during the coalition formation and task allocation
stages.

5.1. Information mediation and matchmaking

SIMS [1,2,13] is an information mediator that pro-
vides access to and integration of multiple sources
of information. The mediator determines which data
sources to use, how to obtain the desired information,
how and where to temporarily store and manipulate
data, and how to efficiently retrieve information. First,
it selects the appropriate information sources, given an
incoming query. This is done by translating a query ex-
pressed in terms of the concepts in the domain model
into a query expressed in the information source mod-
els. In general, the choice is made so as to minimize
the overall costs of the retrieval. For example, the cost
can be minimized by using as few information sources
as possible. Next, the mediator generates a query plan
for retrieving and processing the data. The query plan
specifies the precise operations that need to be per-
formed, as well as the order in which they are to be
performed. The uniqueness of the system lends itself to
the semantic query optimization where rules are used
to search for the least expensive query in the space

of semantically equivalent queries. The goal here is to
transform the original query into an inferred set of op-
timized subqueries—leading to fewer processes within
the system. The idea of minimizing the overall costs
of the retrieval by using as few information sources
as possible is akin to the objective of our research.
The mediator approach would allow a mediator agent
to perform modeling on n other agents and share the
modeling information with the agents such that only
one (or a few) of the mediator agents does the mod-
eling work. This would reduce the complexity of the
multiagent system. However, this is assuming that how
the mediator agent perceives an agent A is the same as
how all other agents perceive A. Otherwise, the medi-
ator agent would end up having to model agent A from
multiple perspectives, one for each agent that inter-
acts with the mediator agent. In that case, the mediator
agent now would have to model roughly n×n relation-
ships. In our framework, we assume that the modeling
of an agent A will yield different results by different
agents, due to the different query needs, operational
constraints, and collaboration utility values. Thus, a
mediator in our framework would have to deal with
the n × n relationships. We have chosen to do away
with the mediator approach to increase (1) flexibility:
so that if a mediator agent becomes non-operational,
the other agents can still operate; and (2) scalability:
so that a mediator agent would not have to handle all
agents. On the other hand, from a different viewpoint,
we see that each agent in the CUDK framework be-
haves like a mediator agent, mediating between itself
and its neighbors. That could be viewed as fundamen-
tally similar to the SIMS approach.

Kuokka and Harada [14] described two match-
making algorithms—SHADE and COINS—to sup-
port a cooperation partnership between information
providers and consumers. Information providers take
an active role in finding specific consumers by adver-
tising their information capabilities to a matchmaker.
Conversely, consumers send requests for desired infor-
mation to the matchmaker. The matchmaker attempts
to identify any advertisements that are relevant to the
requests and notifies the providers and consumers ac-
cordingly. SHADE supports many modes of operation
over formal, logic-based representations (recruiting,
advertising, subscribing, brokering). COINS operates
over free-text information, supporting fewer modes.
Compared to our design, SHADE and COINS match-
make based on advertisements and requests, without
taking the operational issues into account. For exam-
ple, a producer that has advertised about its resources

wia127.tex; 7/03/2008; 12:09 p. 23

24 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

at time t1 may no longer have the resources avail-
able when the matchmaker approaches the producer at
time t2. This failure, which may be due to the dynamic
characteristics of a resource, or to the communication
bandwidth between the producer and the matchmaker,
would not be captured by the matchmaker in SHADE
and COINS. Essentially, our system considers match-
making in terms of both conceptual and operational
competitiveness.

Bayardo et al. [4] described a system called InfoS-
leuth where a broker accepts advertisements from new
resources and notifications of resource unavailability
at any time, leading to dynamic binding of resources.
These brokers that serve the information sources in-
teract with each other to accomplish query-answering
goals. Compared to our design, InfoSleuth does not
have the ability to predict when it decides whether to
approach a particular agent for help—it assumes that if
agent Ai does not hear from a particular agent Aj , then
Ai will proceed with its assignment of sub-queries, for
example, based on its current knowledge of resource
binding. Thus, the responsibility for updating the bind-
ing actually lies with Aj . Cognitively, this requires Aj

to be willing to update other agents about its current re-
sources. In our approach, however, Ai keeps a concep-
tual profile as well as an operational profile. Given the
two profiles, when Ai needs to decide its assignment
of sub-queries, it is able to predict to a certain degree
how useful other agents have been to its queries and
assigns accordingly. As a result, this design rests the
responsibility on Ai to keep track of its neighbors or
other information resources. This has two advantages
in a system with dynamic information resources. First,
the updating of information resources is event-driven
(triggered by a query) and consequently the number
of messages due to advertisements and notifications
is reduced. Second, cognitively, it is more sensible to
have an agent shouldering the responsibility of keep-
ing track other agents, since the agent is motivated to
satisfy its queries.

5.2. Cooperative learning

Sen and Weiss [16] established that multiagent sys-
tems can bring out different types of learning. For ex-
ample, agents may learn organizational roles, learn to
benefit from market conditions, and learn to play better
against an opponent. Coupled tightly with multiagent
learning is communication. This relationship is mainly
focused on the requirements on the agents’ ability to
effectively exchange useful information. According to

Sen and Weiss [16], agents may learn to communicate,
in which learning is viewed as a method for reducing
the load of communication among individual agents.
In this situation, the agent learns what to communi-
cate, when to communicate, with whom to communi-
cate, and how to communicate. Alternatively, agents
may use communication as learning, where communi-
cation is viewed as a method for exchanging informa-
tion that allows agents to continue or refine their learn-
ing activities. In our CUDK framework, the agents
communicate to learn how to satisfy queries better and
to learn about each other’s concept bases. As a side ef-
fect, a CUDK agent, due to better profiling of its neigh-
bors, also reduces the number of messages that it sends
out to other neighbors. In our framework, we see that
agents communicate to learn, leading to better commu-
nications, which in turn leads to better learning, and so
on.

Distributed Ontology Gathering Group Integration
Environment (DOGGIE) [25,26] deployed an ontol-
ogy learning methodology that is similar to our work.
The distributed ontology understanding among agents
is carried out in three steps: locating similar seman-
tic concepts, translating semantic concepts, and learn-
ing key missing attributes. To locate similar seman-
tic concepts, an agent sends other agents the name of
the concept and a sample of semantic objects of that
concept. The receiving agent interprets the semantics
by comparing the concept and objects and then sends
back the result. In essence, DOGGIE agents are able to
teach each other what their concepts mean using their
own conceptualization. Our work uses the same prin-
ciple that allows agents to exchange conceptual under-
standing by multiple 1-to-1 collaborations. However,
our framework combines both operational and concep-
tual aspects. Not only does it allow the agents to ini-
tiate collaboration by considering the knowledge ex-
pertise of other agents, but it also equally emphasizes
the operational issues using neighbor profiling. Each
agent takes into account that in a dynamic multiagent
system, an agent that is very capable may not have the
resources (e.g., communication threads) to be helpful.

Further, in DOGGIE, there are several key assump-
tions [24]: (1) agents live in a closed world represented
by the distributed collective memory, (2) the identity
of the objects in this world are accessible to all the
agents and can be known by the agents, (3) agents use
a knowledge structure that can be learned using objects
in the distributed collective memory, and (4) the agents
do not have any errors in their perception of the world
even though their perceptions may differ. Our assump-

wia127.tex; 7/03/2008; 12:09 p. 24

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 25

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

tions are different. Our agents live in an open world.
The collective memory expands and changes dynam-
ically. The identity of the objects is not accessible to
all the agents and may not be known by the agents if
deemed not useful. Agents use a knowledge structure.
The agents, though they do not have any errors in their
perception of the world, may have incomplete model-
ing or profiling of their perception of the world due to
lack of data and evidence, changing environments, and
noise.

Wiesman and Roos [23] proposed a concept map-
ping measure based on the ontological knowledge or
capacity of the agents. This measure indicates the odds
that a query instance (utterance) from an agent A and
an existing instance in an agent B denote the same en-
tity in the world given the corresponding words of the
two utterances. They identify a number of factors that
influence the success of learning a mapping: (1) in-
creasing the number of labels (keywords or descrip-
tors) in an utterance makes the mapping problem eas-
ier, (2) increasing the number of words in the vocabu-
lary set and the occurrence of sub- and super-concepts
makes the mapping problem harder, (3) splitting and
concatenating label values makes the mapping prob-
lem harder, and (4) labels in one ontology that do not
occur in the other ontology make the mapping problem
harder. In Section 6, we touch upon addressing the sec-
ond and third factors. We see that these are important
factors that will help improve our CUDK framework.

5.3. Resource description and selection

The research of information retrieval has progressed
from the single database model to the multi-database
model as the latter is often more suitable due to propri-
etary information, costs (e.g., access, storage, manage-
ment, duplication, and transmission), and distribution
of data [6]. In this paper, we report on our experiments
and analyses of a multiagent DIR system. In the sys-
tem, each agent, safeguarding its database and process-
ing queries, learns from its experience through its in-
teractions with other agents. The unique characteristic
of our methodology is the agent treatment of resource
description and selection.

There are three key stages of the multi-database
model [6]: (1) resource description, in which the con-
tents of each text database is described, (2) resource
selection, in which given an information need and a
set of resource description, a decision is made about
which database(s) to search, and (3) result merging, in
which the ranked lists returned by each database are

integrated into a single, coherent ranked list. Resource
description is the discovery and representation of what
each database contains, and is usually performed. The
resource selection problem is the ranking of databases
by how likely they are to satisfy the information need.

The resource description problem arises as data-
bases (or resources) with diverse specialties may not be
known to the distributed query systems. Usually, each
resource has a guardian to handle queries, publish the
expertise of the resource, and interact with other re-
sources. A guardian is very similar to an agent in our
CUDK framework. To interact, a guardian must find
out what other resources exist. When resources are dy-
namic, large, or myriad, finding out about other re-
sources is non-trivial. If resources are dynamic, then a
guardian has to ping these resources periodically, up-
date its knowledge of these resources, and believe in
its knowledge of these resources with reservation. If
each resource is large (i.e., consists of a large number
of documents), then a guardian has to decide how to
cost-effectively provide the most representative docu-
ments for its list of expertise. Likewise, a guardian of
another resource querying into this large resource has
to believe that its knowledge of this large resource is
incomplete or inaccurate. To simplify the description,
a guardian may assume that what it knows of such a
large resource is the best of what the large resource
can offer. When the resources in the system are myr-
iad, a guardian trying to complete its description of
these resources may face diverse resources with over-
lapping expertise. A guardian will have to believe that
what it knows may be sufficient but not optimal. That
is, if agent ai receives a query q for a concept ck, and
it knows of another agent (or resource), aj , that has
documents for ck, then should ai be satisfied with ask-
ing for help from only aj , or should it explore the sys-
tem to see whether there are other agents with more
relevant documents for ck? These are questions that
research in resource description and selection investi-
gates.

In general, resource descriptions can be created in a
distributed fashion through a technique called query-
based sampling [7]. In this strategy, each resource
provider cooperates by publishing resource descrip-
tions for its document databases. The sampling re-
quires minimal cooperation and makes no assump-
tions about how each provider operates internally. In
a way, our approach is similar to query-based sam-
pling. However, our agents perform the sampling as a
side effect of real-time query handling. Also, our re-
source description is maintained dynamically on a per-

wia127.tex; 7/03/2008; 12:09 p. 25

26 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

demand basis. With our agent-centric viewpoint, our
technique is adaptive to each agent’s experience, and
they may have different profiles of how well a partic-
ular agent deals with a particular topic of queries. Fi-
nally, our sampling is done whenever there is an inter-
action between two agents—thus the resource descrip-
tion changes constantly. As a result, our resource de-
scription is subjective, instead of objective as in tradi-
tional DIR.

One of the key areas in the resource selection prob-
lem is ranking resources by how likely they are to
satisfy the information need [6]. Conventionally, the
desired database ranking is one in which databases
are ordered by the number of relevant documents they
contain for a query [10]. Techniques proposed in-
clude a Bayesian inference network [7], the Kullback–
Leibler divergence [18], and a relevant document dis-
tribution estimation taking the database size into ac-
count [17]. In particular, Wu and Crestani [28] pro-
posed a model that considers four aspects simultane-
ously when choosing a resource: a document’s rele-
vance to the given query, time, monetary cost, and
similarity between resources. Though similar, our re-
source selection algorithm has several unique features:
(a) it ranks the agents that safeguard the databases (or
resources) instead of the database, based on the agents’
ability to satisfy a query, (b) it performs a task alloca-
tion and approaches the agents based on the ranking,
and (c) it is based on an agent’s dynamic viewpoint
of others that the agent maintains through experience.
The first feature is an important change in strategy in
resource selection as it also takes into account the “op-
erational capabilities” of a resource.

6. Future work

As alluded to earlier in Section 1, most concept
bases are too complex and cannot always be specified
by a set of relevant documents. To allow for a hier-
archy of concepts with relationships such as is-a and
has-a links, the current designs of our concept base
and the translation table have to be extended. First,
each agent’s concept base should be a concept hierar-
chy, with each node a concept with a set of relevant
documents. Second, each entry in the translation ta-
ble is a mapping between a node from an agent A’s
hierarchy to another node from another agent B’s hi-
erarchy. As a result, agent A also inherits what agent
B inherits, and the confidence in such inheritance de-
pends on how similar the two nodes are. With the hier-

archical concepts, the conceptual inferencing is more
complicated. To illustrate, say that there is a concept
C1 that A knows, in a hierarchy such that C1 is re-
lated to n other concepts. Likewise, there is a simi-
lar concept C2 that B knows, related to m other con-
cepts in B’s hierarchy. The motivation for A to learn or
discover the mapping between C1 and C2 could now
also depend on the values of m and n. If n is large,
then this mapping could allow A to find relevant doc-
uments for many of its known concepts in the hierar-
chy from B. If m is large, then this mapping could al-
low A to find more relevant documents for its known
concepts from B. Further, with a hierarchical concept,
that means the mapping between a concept C1 in A
and a concept C2 in B could also be inferred as long
as there is a node in A that maps into a node in B,
and every concept that an agent knows is organized
into one hierarchy. How should one decide which map-
pings to keep and which ones to infer? Factors that one
could consider include the size of the hierarchies, the
cost of storing the mappings, the cost of inferences,
and the conflicts between direct mappings and inferred
mappings in terms of credibility values. As discussed
earlier in Section 5.3, factors and issues pointed out
in [23] will also be considered.

Another key issue concerning our experiments and
design is the scalability issue: how will the system
behave when there are many agents (100’s, 1000’s),
each responsible for an information resource? Will the
agents behave similarly to what has been reported in
this paper? To address the scalability issue, we have
employed the notion of neighborhood in our design—
each agent has a neighborhood where it can approach
all the agents in the neighborhood for help, and the
neighborhoods can overlap. With a neighborhood, the
overall system may still be scalable since regardless
of the size of the system, the size of a neighborhood
could remain the same. Adopting this notion, we then
expect to observe similar results in a larger system
since the CUDK design does not have a bottleneck
such as a centralized mediator. For example, if the
agent is constrained with a fixed number of communi-
cation threads, then it will still perform the same trade-
offs in order to select the best neighbors to approach
for help. Likewise, because of the resource constraints,
even when the system is large, the size of an agent’s
neighborhood will still remain constrained by the re-
sources. And with the relay capabilities, agents from
different neighborhoods can still help each other out,
thereby reducing the need for expanding an agent’s
neighborhood.

wia127.tex; 7/03/2008; 12:09 p. 26

L.-K. Soh / Considering operational issues for multiagent conceptual inferencing 27

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

There is also a concern about duplicated query re-
sults collected from the neighbors of an agent. In
general, duplicates are not desirable. However, one
may make use of the duplicates by giving duplicates
a higher rating since multiple neighbors think the
same link matches the query. On the other hand, an
agent could make use of the duplicates to measure the
uniqueness of its neighbors. An agent should avoid ap-
proaching a pair of neighbors that tend to return the
same links for the same query task. In addition to the
translation credibility score and the collaboration util-
ity, the novelty factor of each neighbor should play a
role in multiagent collaboration. How two agents dif-
fer in their understanding of a concept could be of key
importance and could motivate the mapping between
the two agents to identify the differences between their
concept bases.

7. Conclusions

We have implemented the first tier of a multiagent
framework for collaborative understanding of distrib-
uted knowledge (CUDK) and evaluated the design in
distributed information retrieval. Through our experi-
ments, we have shown that CUDK-based agents work
as a team to accept and process queries and to learn
about (1) the relationships among their individual con-
cept bases, and (2) the relationships among their in-
dividual operational capabilities and characteristics in
such collaborative understanding. We have drawn sev-
eral conclusions based on our experiments.

We have identified key factors that are important to
consider when designing a multiagent system dealing
with operational and knowledge constraints. First, an
agent should ask only a few top-ranked neighbors for
help, indicating that neighborhood profiling is impor-
tant. Second, operational constraints impact the system
more significantly than conceptual constraints. Based
on our DIR application and experiments, we have also
realized that the motivation for agents to learn each
other’s concepts is likely to be more resource-related
than concept-related; that is, agents with poorer ini-
tial concept bases do not necessarily perform more
poorly than agents with better initial concept bases if
the agents collaborate. Third, though more resources
improve the overall system performance, they could
also lead to a less predictable system. Fourth, in mul-
tiagent tasks involving conceptual understanding, it
is wise to perform conceptual inferencing instead of
transferring jobs or tasks to those who know how to

accomplish those tasks in order to have more consis-
tent results. In systems where resources are so con-
strained that agents do not have viable options to solve
a concept-related problem, accurate inferencing is also
critical. Fifth, simple neighborhood profiles can effec-
tively identify neighbors that are capable and helpful.
This profiling mechanism facilitates strategic neighbor
selection for conceptual inferencing. Sixth, agents are
able to reduce the number of generic relays (spam-
ming) by keeping track of the quality of relays to each
particular neighbor. This further suggests that profiling
can reduce the need for agents to learn concepts. Sev-
enth, and most importantly, there is a delicate balance
between how much conceptual inferencing is appropri-
ate when operational factors are considered. The de-
sign of conceptual inferencing should be gradual and
selective. It should be balanced with the tasks at hand,
allowing the agents to learn about collaborating with
others and subsequently identify the appropriate neigh-
bors whose concepts they should learn to improve sys-
tem performance.

Acknowledgments

The author would like to thank Jingfei Xu and Chao
Chen for their programming work and experiments.
The author would like to thank the anonymous review-
ers and Dr. Donna Haverkamp whose comments sig-
nificantly improved this paper. This project was par-
tially supported by a University of Nebraska Layman
Grant.

References

[1] Y. Arens, C.Y. Chee, C. Hsu and C. Knoblock, Retrieving and
integrating data from multiple information sources, Int. Intel-
ligent & Cooperative Information Systems 2(2) (1993), 127–
158.

[2] Y. Arens, C.-N. Hsu and C.A. Knoblock, Query processing
in the SIMS information mediator, in: Readings in Agents,
M.N. Huns and M.P. Singh, eds, Morgan Kaufmann, San Fran-
cisco, CA, 1998, pp. 82–90.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Re-
trieval, ACM Press and Addison-Wesley, 1999.

[4] R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine,
M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Un-
ruh and D. Woelk, InfoSleuth: agent-based semantic integra-
tion of information in open and dynamic environments, in:
Readings in Agents, M. Huhns and M. Singh, eds, Morgan
Kaufmann, San Francisco, 1998, pp. 205–216.

[5] A.H. Bond and L. Gasser, eds, Readings in Distributed Artifi-
cial Intelligence, Morgan Kaufmann, San Mateo, CA, 1988.

wia127.tex; 7/03/2008; 12:09 p. 27

28 L.-K. Soh / Considering operational issues for multiagent conceptual inferencing

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

[6] J. Callan, Distributed information retrieval, in: Advances in In-
formation Retrieval, W.B. Croft, ed., Chapter 5, Kluwer Acad-
emic Publishers, 2000, pp. 127–150.

[7] J. Callan and M. Connell, Query-based sampling of text data-
bases, ACM Transactions on Information Systems (2001), 97–
130.

[8] M. Genesereth and N. Nilsson, Logical Foundations of Artifi-
cial Intelligence, Morgan Kaufmann, Palo Alto, CA, 1987.

[9] M. Genesereth and R. Fikes, Knowledge Interchange Format
Manual Version 3.0, Technical Report Logic-92-1, Stanford
Logic Group, Stanford University, 1992.

[10] L. Gravano and H. García-Molina, Generalizing GIOSS to
vector-space databases and broker hierarchies, in: Proceed-
ings of the 21st International Conference on Very Large Data-
bases (VLDB’95), 1995, pp. 78–89.

[11] T.R. Gruber, A translation approach to portable ontologies,
Knowledge Acquisition 5(2), 199–220.

[12] T.R. Gruber and G.R. Olsen, An ontology for engineering
mathematics, in: Proceedings of the 4th International Confer-
ence on Principles of Knowledge Representation and Reason-
ing (KR’94), Bonn, Germany, May 24–27. Morgan Kaufmann,
1994, pp. 258–269.

[13] C. Knoblock, Y. Arens and C. Hsu, Cooperating agents for
information retrieval, in: Proceedings of the 2nd Interna-
tional Conference on Cooperative Information Systems, Univ.
Toronto Press, Toronto, Ontario, Canada, 1994.

[14] D. Kuokka and L. Harada, Matchmaking for information
agents, in: Readings in Agents, M.N. Huns and M.P. Singh, eds,
Morgan Kaufmann, San Francisco, CA, 1998, pp. 91–97.

[15] G. Mineau, Sharing knowledge: starting with the integration of
vocabularies, in: Conceptual Structure: Theory and Implemen-
tation, H. Pfeiffer and T. Nagle, eds, Proceedings of the Sev-
enth Annual Workshop, Las Cruces, NM, July 8–10, Springer-
Verlag, 1992, pp. 34–45.

[16] S. Sen and G. Weiss, Learning in multiagent systems, in: Mul-
tiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, G. Weiss, ed., MIT Press, 2000.

[17] L. Si and J. Callan, Relevant document distribution estimation
method for resource selection, in: Proceedings of the 25th An-
nual Int. ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2003.

[18] L. Si, R. Jin, J. Callan and P. Ogilvie, A language model frame-
work for resource selection and results merging, in: Proceed-
ings of the 11th CIKM, 2002.

[19] L.-K. Soh, Multiagent distributed ontology learning, in: Work-
ing Notes of AAMAS2002 Workshop on Ontologies in Agent
System (OAS), Bologna, Italy, July 15–19, 2002.

[20] L.-K. Soh, Collaborative understanding of distributed ontolo-
gies in a multiagent framework: design and experiments, in:
Proceedings of AAMAS 2003 Workshop on Ontology in Agent
Systems (OAS), Melbourne, Australia, 2003, pp. 47–54.

[21] L.-K. Soh and C. Chen, Balancing ontological and operational
factors in refining multiagent neighborhoods, in: Proceedings
of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’2005), July 25–29, Utrecht,
the Netherlands, pp. 745–752.

[22] L.-K. Soh and C. Tsatsoulis, Reflective negotiating agents for
real-time multisensor target tracking, in: Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI’01),
Seattle, WA, Aug 6–11, 2001, pp. 1121–1127.

[23] F. Wiesman and N. Roos, Domain independent learning of on-
tology mappings, in: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’2004), New York, NY, July 19–23, 2004,
pp. 846–853.

[24] A.B. Williams, Learning to share meaning in a multi-agent sys-
tem, in: Autonomous Agents and Multiagent Systems, vol. 8,
2004, pp. 165–193.

[25] A.B. Williams and Z. Ren, Agents teaching agents to share
meaning, in: Proceedings of ICMAS’2001, ACM Press, Mon-
treal, Canada, 2001, pp. 465–472.

[26] A. Williams, A. Padmanabhan and M.B. Blake, Local consen-
sus ontologies for B2B-oriented service composition, in: Pro-
ceedings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’2003),
Melbourne, Australia, July 14–18, 2003, pp. 647–654.

[27] M. Wooldridge, Reasoning about Rational Agents, The MIT
Press, Cambridge, MA, 2000.

[28] S. Wu and F. Crestani, Multi-objective resource selection in
distributed information retrieval, in: Proceedings of IPMU’02,
Annecy, France, July, 2002.

wia127.tex; 7/03/2008; 12:09 p. 28

