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Abstract: Computer-supported collaborative learning 

(CSCL) environments are used today as a platform for deli-

vering distance education and as a tool to improve student 

understanding via collaborative learning methods.  The suc-

cess of a CSCL environment in improving the knowledge of 

a student depends on the quality of group work of its partici-

pants.  However, forming human user groups that allow all 

the users collaborate effectively is difficult because of the 

dynamic nature of the human users and the complex interplay 

of human factors (e.g., comfort level, proficiency, etc.).  Fur-

thermore, human behaviors change over time due to their 

ability to learn new skills.  Thus, a framework that accom-

modates the unique nature of human behavior and uses it to 

improve the outcome of the coalitions is needed. In this pa-

per, we present iHUCOFS – a multiagent framework for 

forming and scaffolding human coalitions.  We also discuss 

an implementation of the iHUCOFS framework (VALCAM) 

in a CSCL environment called I-MINDS.  Preliminary results 

indicate that VALCAM can make a positive impact on the 

learner coalitions formed in I-MINDS. 

Keywords: Computer-supported collaborative learning, mul-

tiagent system, human coalition formation, scaffolding. 

 

1. Introduction 
 

Computer-supported collaborative learning (CSCL) environ-

ments have become a popular platform for delivering dis-

tance education or supplementing traditional classrooms with 

outside-the-class group activities. A typical CSCL environ-

ment consists of a set of tools to facilitate communication and 

collaboration of the students.  However, a better equipped 

CSCL tool could also contain provisions for the instructor to 

form and support student coalitions.  However, forming hu-

man coalitions in a CSCL environment poses a variety of 

challenges.  The lack of familiarity among the users, their 

decreased social presence, and their varying levels of know-

ledge and expertise all add up to the difficulty of formation 

and support of human learner coalitions.  Furthermore, be-

cause individual human behaviors change and inter-person 

relationships evolve over time, a group of peers who did not 

work well together initially could end up working well to-

gether in the end due to increased familiarity and comfort 

level.  Therefore, due to the dynamic nature of the human 

users, a fixed scripted coalition formation algorithm may not 

provide the best solution.  This also implies that it is possible 

for a coalition formation algorithm to form a group of lesser 

expected utility for the current task with the hope of a better 

reward in the future as the group members improve the quali-

ty of their group work over time.  Thus, a human coalition 

formation framework that forms human coalitions in general 

should also facilitate the betterment of individual human us-

ers, i.e., support the formed coalitions, over time as group 

members work together.  However, this support could be 

explicit or implicit.  In the case of explicit support, the 

framework would help the coalition members directly by 

providing hints, clues, recommendations, etc.  In the case of 

implicit support, the framework would create a working envi-

ronment which would facilitate changes in the members’ 

behaviors that benefit future coalitions.  We denote the com-

bination of implicit and explicit coalition support provided by 

the framework as scaffolding.  

Although the formation and the scaffolding of human user 

coalitions is an integral part of a CSCL environment, the typ-

ical CSCL environments do not address them.  For example, 

Constantino-González [6] proposed a web-based environ-

ment called Collaborative Learning Environment for Entity-

Relationship Modeling (COLER) in which student can solve 

Entity-Relationship (ER) problems while working synchron-

ously in small groups at a distance.  Barros and Verdejo [1] 

used activity theory to design the DEGREE environment that 

monitors and mediates group activity.  Ogata and Yano [18] 

developed a collaborative learning environment using know-

ledge awareness and information filtering.  Grave et al. [9] 

created a multi-layer architecture on a multiagent framework 

that is able to initiate and manage student training.  Although 

the typical CSCL systems do not automate the general coali-

tion formation process, there have been some research ap-

proaches to form two-member human user groups to provide 

peer-support to learners.  For example, Li et al. [14] used 

agent technology with fuzzy set theory to find matching peers 

for human users based on similar preferences or expertise.  

Bull et al. [2] combines a 1-to-1 peer help network and a dis-
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cussion forum to provide offline peer help to learners in I-

HELP.  However, in these peer-help systems, a peer group is 

built based on 1-to-1 experience instead of taking account 

how a group would work together as a team.  Furthermore, 

noise, uncertainty and incomplete information inherent in the 

human group formation environment are also not addressed.  

Finally, there have also been approaches to provide scaffold-

ing (or support) to human coalitions.  For example, Constan-

tino-González et al. [6] provides support by advising a stu-

dent to improve his or her collaborative skills (e.g., participa-

tion, communication, etc.) in COLER.  Vizcaíno [27] de-

scribed a virtual student architecture that improves collabora-

tion by detecting and avoiding situations (e.g., off-topic con-

versations) that decrease the benefits of learning in collabora-

tion. However, these research approaches for realizing scaf-

folding use only short term approaches (solving the task at 

hand) for scaffolding and do not try to improve the behavior 

of the human users and the coalitions in the long term. 

In this paper, we describe the Integrated Human Coalition 

Formation and Scaffolding (iHUCOFS) framework, which 

has been previously proposed in [23].  The iHUCOFS 

framework is designed to form and scaffold coalitions, trad-

ing off expected utility of solving the current task and the 

potential utility of better coalitions in the future.  This paper 

formalizes the iHUCOFS and details its representational and 

characteristic assumptions, and elaborates the different types 

of human learning that occurs in group work.  Further, this 

paper describes an algorithm called VALCAM [23] [24] that 

implements a portion of the iHUCOFS framework in a CSCL 

environment called I-MINDS [24] [25]. VALCAM is an auc-

tion-based multiagent learning algorithm that forms human 

coalitions through an iterative auction.  I-MINDS, which 

stands for Intelligence Multiagent Infrastructure for Distri-

buted Systems in Education, is a CSCL environment for 

learners in synchronous learning and a classroom manage-

ment applications for instructors for large classroom or dis-

tance education situations.  We have previously evaluated the 

usefulness of I-MINDS as a CSCL environment in [12] [23] 

[24].  We further present more comprehensive results of us-

ing the iHUCOFS framework to form and scaffold human 

coalitions in this paper. 

This paper is organized as follows: Section 2 describes the 

iHUCOFS framework: assumptions, problem characteristics, 

and design principles.  Section 3 briefly presents the 

VALCAM algorithm, an implementation of the iHUCOFS 

framework.  Section 4 describes the basic architecture of I-

MINDS and outlines our implementation of VALCAM in I-

MINDS. Section 5 presents the results of our two-semester 

long experiment of using VALCAM.  Section 6 discusses the 

research work related to the collaborative learning systems 

and research work related to human coalition formations in 

collaborative learning scenarios.  Finally, Section 7 con-

cludes and touches upon some ongoing and future work. 

 

2. iHUCOFS Framework 
 

Here we describe a framework called the Integrated Human 

Coalition Formation and Scaffolding (iHUCOFS) framework.  

As alluded to earlier, a multiagent system handling human 

coalitions has to consider both coalition formation and coali-

tion scaffolding.  Furthermore, scaffolding coalitions in-

volves two types of support: explicit and implicit. There ex-

ists also a tradeoff between forming and scaffolding coali-

tions.  For example, if we are forming a coalition where all 

group members are good at what they do and are good at 

working with each other in a group, then scaffolding is not as 

important.  On the other hand, if a coalition consists of group 

members who are not familiar with each other and where 

some members do not have sufficient expertise or knowledge 

to contribute to the group work, then scaffolding plays an 

important role.  Further, putting different members in a coali-

tion could lead to different types of learning among the 

members.  For example, by putting a poor-performing student 

in a group of better-performing students, it is possible that the 

poor-performing student might learn by observation from 

other members of the group, while those members might 

learn by teaching the poor-performing students.  Thus, a sys-

tem needs to determine on which part to focus its computa-

tional resources: coalition formation or coalition scaffolding.  

Driven by this tradeoff, an agent in such a system must also 

deal with two different roles: as a representative for and as an 

advisor to its human user.  

In the following, we first propose a set of assumptions de-

fining the environment for the iHUCOFS framework and 

how the tradeoffs take place in the multiagent environment.  

We then describe a set of design principles addressing specif-

ic characteristics of the problem.   

 

2.1 Assumptions 

 

Here we propose a set of assumptions about the problem and 

the iHUCOFS framework.  These assumptions are divided 

into two categories: representational assumptions and cha-

racteristic assumptions.  The representational assumptions 

are designed to describe the multiagent environment in which 

iHUCOFS resides.  The characteristic assumptions describe 

the characteristics and behaviors of the various actors and the 

environment itself.  While we present formal description of 

the representational assumptions, due to space restrictions we 

only briefly describe the characteristic assumptions.  In this 

framework, each human user has a dedicated user agent, and 

they communicate or work together through the user agents.  

This is akin to computer-supported collaborative problem 

solving.  For describing the assumptions, we define the fol-

lowing functions: 

1. 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑥, 𝑦, 𝑡  states that the human user 𝑥  executes 

task 𝑦 at time 𝑡 

2. 𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝑥, 𝑦  states that the human user 𝑥 is a mem-

ber of the coalition 𝑦.  Notice that there is no time factor 

included in this function.  That is because we assume that 

the coalitions change over time and the definition of a 

coalition contains a time index in it 
3. 𝐼𝑠𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑𝐵𝑦 𝑥, 𝑦, 𝑡  states that the human use𝑟 𝑥 

is represented by the user agent 𝑦 at time 𝑡 

Representational Assumption 1. There is a set of auto-

nomous agents in the multiagent system environment 𝐸, spe-

cified as 𝐴 = {𝑈, 𝐺, 𝑆}. Here, 𝑈 =  𝑢𝑖 𝑖 ∈ 1 … 𝑛𝑢} is a set of 

user agents, 𝐺 =  𝑔𝑖 𝑖 ∈ 1 … 𝑛𝑔} is a set of group agents, and 

𝑆 is a system agent.  We also assume that the user agents and 

the group agents operate in the system temporarily.   

SA
MPL

E



 

Representational Assumption 2. There is a set of auto-

nomous human users in the multiagent system specified by 

𝐻 = {𝑕𝑖|𝑖 ∈ 1. . 𝑛𝑕}.   

Representational Assumption 3. There is a set of inde-

pendent, real-time tasks in the problem domain specified as 

𝑇 =  𝑇𝑗 |𝑗 = 1 … 𝑛 .   

The tasks in our environment are events that the human 

users need to handle.  Specifically, we define each task 𝑇𝑗  as 

a 8-tuple:  

                    𝑇𝑗 =  𝑡𝑦𝑗 , 𝑡𝑎𝑗 , 𝑡𝑙𝑗 , 𝑡𝑠𝑗 , 𝑡𝑐𝑗 , 𝑡𝑟𝑗 , 𝑡𝑞𝑗 , 𝑡𝑤𝑗        (1) 

 Where,  

1. 𝑡𝑦𝑗  refers to the type of the jth task 

2. 𝑡𝑎𝑗  refers to the starting time of the jth task 

3. 𝑡𝑙𝑗  refers to the time limit within which the jth task must 

be solved 

4. 𝑡𝑠𝑗  denotes the set of subtasks that constitute the task 𝑇𝑗 .  

Furthermore, 𝑡𝑠𝑗 = {𝑇 𝑗
𝑙 |𝑙 = 1, … ,  𝑡𝑠𝑗  } , where  𝑡𝑠𝑗   re-

fers to the number of subtasks in 𝑡𝑠𝑗 .  We specify the lth 

subtask of the jth task 𝑇𝑗
𝑙  as: 

           𝑇𝑗
𝑙 =  𝑡𝑦𝑗

𝑘 , 𝑡𝑎𝑗
𝑘 , 𝑡𝑙𝑗

𝑘 , 𝑡𝑠𝑗
𝑘 , 𝑡𝑐𝑗

𝑘 , 𝑡𝑟𝑗
𝑘 , 𝑡𝑞𝑗

𝑘            (2)  

Where, 

a. 𝑡𝑦𝑗
𝑘  denotes the type of the kth subtask of the jth task 

b. 𝑡𝑎𝑗
𝑘  denotes the starting time of the execution of the 

kth subtask of the jth task  

c. 𝑡𝑙𝑗
𝑘  denotes the time length of the execution of kth 

subtask of the jth task 

d. 𝑡𝑠𝑗
𝑘  denotes the set of subtasks that constitute the kth 

subtask of the jth task 

e. 𝑡𝑐𝑗
𝑘  denotes the constraints among the subtasks that 

belong to the kth subtask of the jth task 

f. 𝑡𝑟𝑗
𝑘  denotes the resources required for executing the 

kth subtask of the jth task 

g. 𝑡𝑞𝑗
𝑘 =  𝑡𝑞𝑚,𝑗

𝑘 |𝑚 = 1 …  𝑡𝑠𝑗
𝑘   ,where 𝑡𝑞𝑗

𝑘 ∈  0,1  , de-

notes the required qualities of the completed subtasks 

𝑡𝑠𝑗
𝑘  that belongs to the kth subtask of the jth task 

h. 𝑡𝑤𝑗
𝑘 =  𝑡𝑤𝑚 ,𝑗

𝑘 |𝑚 = 1 …  𝑡𝑠𝑗
𝑘   , where  𝑡𝑤𝑗

𝑘 ∈  0,1  , 

denotes the reward that can be earned by completing 

the mth subtask 𝑡𝑠𝑗
𝑘  according to the quality specifi-

cation 𝑡𝑞𝑗
𝑘 .  Here, 𝑡𝑠𝑗

𝑘  is the kth subtask of the jth task 

5. 𝑡𝑐𝑗  denotes the constraints among the subtasks of the jth 

task.  For example, 𝑡𝑐𝑗  may contain constraints that re-

strict the order in which the subtasks 𝑡𝑠𝑗  may be executed 

6. 𝑡𝑟𝑗  denotes the resource requirements for the jth task.  An 

example of the resource requirement could be the exper-

tise or capability of the human users who will execute 

this task 

7. 𝑡𝑞𝑗 =  𝑡𝑞𝑚,𝑗 |𝑚 = 1 …  𝑡𝑠𝑗   , where 𝑡𝑞𝑚,𝑗 ∈  0,1  speci-

fies the final required quality of the mth completed sub-

task of the jth task 

8. 𝑡𝑤𝑗 =  𝑡𝑤𝑚,𝑗 |𝑚 = 1 …  𝑡𝑠𝑗   , where 𝑡𝑤𝑚,𝑗 ∈  0,1  speci-

fies the reward that can be earned by completing the  mth 

subtask of the jth task according to the quality 𝑡𝑞𝑚,𝑗  

Representational Assumption 4. A human user executes 

only one task at any given time.   

∀𝑕𝑖 ∈ 𝐻, 𝑇𝑖 , 𝑇𝑗 ∈ 𝑇 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑕𝑖 , 𝑇𝑖 , 𝑡 ~𝐸𝑥𝑒𝑐𝑢𝑡𝑒  𝑕𝑖 , 𝑇𝑗 , 𝑡  

if  𝑇𝑖 ≠ 𝑇𝑗    (3) 

Representational Assumption 5. Each human user 𝑕𝑖  is 

assigned a user agent 𝑢𝑖 .  This user agent helps the human 

user form coalitions with other human users and solve tasks.    

∀ 𝑕𝑖 ∈ 𝐻 ∃ 𝑢𝑖 ∈ 𝑈 s.t. 𝐼𝑠𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑𝐵𝑦 𝑕𝑖 , 𝑢𝑖 , 𝑡       (4) 

where 𝑖 = 1 …  𝐻 .  Furthermore, this assignment is one-to-

one and 𝑛𝑢 = 𝑛𝑕 . 

Representational Assumption 6.  To help the human us-

ers 𝐻 accomplish a task 𝑇𝑗 ∈ 𝑇, the system agent may initiate 

a set of activities so that the human users can form coalitions.  

The user agents 𝑢𝑖 ∈ 𝑈 assigned to the human users 𝑕𝑖 ∈ 𝐻 

participate in these coalition formation activities to form coa-

litions for their respective human users.   

A coalition contains a set of human users who have agreed 

to cooperate with each other to solve an assigned task.  The 

set of all the human coalitions working in the multiagent sys-

tem at time 𝑡 is denoted by  𝐶𝑡 =  𝐶𝑘,𝑡 | 𝑘 = 1 …  𝐶𝑡   .  Once 

the coalitions are formed, the system agent assigns a group 

agent 𝑔𝑘  to each coalition 𝐶𝑘,𝑡 .  Once assigned to a coalition, 

the group agent acts as a representative of the system agent 

and monitors and communicates the progress of the group as 

a whole to the system agent. 

Representational Assumption 7.  Due to his or her inte-

raction with the environment 𝐸, a human user acquires new 

knowledge, and learns new capabilities and behaviors.  For 

iHUCOFS, we define two categories of human learning: De-

rivative (𝐷𝐿) and Communicative (𝐶𝐿).  In Derivative Learn-

ing, the human users are able to learn new capabilities, con-

cepts, and behaviors by interacting with the environment.  An 

example of Derivative Learning would be when a human user 

learns something by watching the behavior of the members of 

his or her group.  In Communicative Learning, the human 

users are able to learn new capabilities, concepts and beha-

viors from some explicit communication with someone else.  

An example of Communicative learning would be when an 

instructor teaches something to a human user.                               

Representational Assumption 8.  Each user agent 𝑢𝑖  

constructs a model 𝑕𝑚𝑖,𝑡  of its assigned human user 𝑕𝑖  by 

observing his or her behavior in 𝐸  at time 𝑡 .  This model 

𝑕𝑚𝑖 ,𝑡  at time 𝑡 is represented by a 6-tuple:  

𝑕𝑚𝑖 ,𝑡 =  𝐾𝑖 ,𝑡 , 𝐵𝑖 ,𝑡 , 𝐷𝐿𝐶𝑖 ,𝑡 , 𝐶𝐿𝐶𝑖 ,𝑡 , 𝐶𝐴𝑖,𝑡 , 𝐸𝑈𝑖 ,𝑡               (5)  

Here, 𝐾𝑖 ,𝑡  represents the human user’s knowledge base and  

𝐾𝑖 ,𝑡 =   𝑐𝑡𝑡𝑦 , 𝑒𝑥𝑖 ,𝑡𝑦 ,𝑡                                (6) 

Where 𝑐𝑡𝑡𝑦  denotes the capabilities that are necessary to 

solve tasks of type 𝑡𝑦 and 𝑒𝑥𝑖 ,𝑡𝑦 ,𝑡 ∈  0, 𝜁𝑡𝑦  , 𝜁𝑡𝑦 ∈ ℝ denotes 

𝑕𝑖’s expertise level for capability 𝑐𝑡𝑡𝑦  at time 𝑡.  In brief, the 

human user’s knowledge base contains the capabilities that 

he or she uses to execute various tasks while working in a 

coalition.  We define the operator knowledge base update 

operator  ⊩𝑘  for the knowledge base 𝐾𝑖 ,𝑡  as:  

𝐾𝑖 ,𝑡 ⊩𝑘  𝑐𝑡𝑡𝑦   if  𝑐𝑡𝑡𝑦 , 𝛿𝑡𝑦
𝑘  ∈ 𝐾𝑖 ,𝑡 for some 𝛿𝑡𝑦

𝑘 ∈  0, 𝜁𝑡𝑦   (7) 

Moreover, 𝐾𝑖 ,𝑡  changes over time as the human user inte-

racts with the states of the environment 𝐸 .  So, 𝐾𝑖 ,𝑡
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑤𝑖𝑡 𝑕  𝐸
              𝐾𝑖,𝑡 ′ .  Here, 𝑡 ′ = 𝑡 + ∆𝑡  and the ∪𝑢𝑝𝑑𝑎𝑡𝑒

𝑘  

operation is defined as: 

𝐾𝑖,𝑡 ′ = 𝐾𝑖 ,𝑡 ∪𝑢𝑝𝑑𝑎𝑡𝑒
𝑘  𝑐𝑡𝑡𝑦

′                        (8) 
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Where 

𝐾𝑖 ,𝑡 ′ =  
𝐾𝑖 ,𝑡 ∪  𝑐𝑡𝑡𝑦

′ , 𝛿𝑡𝑦
𝑘0  𝑖𝑓 𝐾𝑖 ,𝑡 ⊮𝑘  𝑐𝑡𝑡𝑦

′     

𝐾𝑖 ,𝑡 ∪  𝑐𝑡𝑡𝑦
′ , 𝑒𝑥𝑖 ,𝑡𝑦 ,𝑡

′ ± 𝛿𝑖,𝑡𝑦
𝑘𝑢   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

    (9) 

Where 𝛿𝑖,𝑡𝑦
𝑘𝑢 ∈ ℝ is a variable that represents 𝑕𝑖 ’s ability to 

update his or her knowledge base 𝐾𝑖 ,𝑡 .  

In iHUCOFS, we represent a human user’s knowledge 

about what to do in an environment state with the behavior 

base  𝐵𝑖 ,𝑡  where 

𝐵𝑖 ,𝑡 =   𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡 , 𝑢𝑡𝑖,𝑡𝑦 ,𝑡                     (10) 

where 𝑒𝑠𝑡𝑦 ,𝑡  denotes an environment state that could be en-

countered by the human user 𝑕𝑖while solving a task of type 

𝑡𝑦  at time 𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡  denotes the 𝑕𝑖 ’s expected action in the 

state 𝑒𝑠𝑡𝑦 ,𝑡 , and 𝑢𝑡𝑖,𝑡𝑦 ,𝑡  is the expected utility for 𝑕𝑖  when he 

or she applies 𝑎𝑐𝑡𝑦 ,𝑡  on environment state 𝑒𝑠𝑡𝑦 ,𝑡 .  Again, we 

define the behavior base update operator ⊩𝑏  as: 

 𝐵𝑖 ,𝑡 ⊩𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡  if  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡 , 𝛿𝑡𝑦
𝑏  ∈ 𝐵𝑖 ,𝑡 (11) 

for some 𝛿𝑡𝑦
𝑏 ∈ ℝ.  Furthermore,  

𝑢𝑡𝑖,𝑡𝑦 ,𝑡 = 𝑓𝑛𝑐 𝑐𝑡𝑡𝑦 , 𝑒𝑠𝑡𝑦 ,𝑡 ,  𝑎𝑐𝑡𝑦 ,𝑡                 (12) 

where 𝑓𝑛𝑐 is some function that depends on the state-action 

pair  𝑒𝑠𝑡𝑦 ,𝑡 ,  𝑎𝑐𝑡𝑦 ,𝑡  of environment 𝐸 and tasks of type 𝑡𝑦. 

  𝐵𝑖 ,𝑡  also gets updated as the human user interacts with the 

environment states.  So, 𝐵𝑖 ,𝑡

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑤𝑖𝑡 𝑕  𝐸
              𝐵𝑖 ,𝑡 ′  where 

𝑡 ′ = 𝑡 + ∆𝑡 and  

 

𝐵𝑖 ,𝑡 ′ =𝐵𝑖 ,𝑡 ∪𝑢𝑝𝑑𝑎𝑡𝑒
𝑏  𝑒𝑠𝑡𝑦 ,𝑡

′ , 𝑎𝑐𝑡𝑦 ,𝑡
′ , 𝑢𝑡𝑖,𝑡𝑦 ,𝑡

′           (13) 

where 

𝐵𝑖 ,𝑡 ′ =

 
 
 

 
 

𝐵𝑖 ,𝑡 ∪  𝑒𝑠𝑡𝑦 ,𝑡
′ , 𝑎𝑐𝑡𝑦 ,𝑡

′ , 𝑢𝑡𝑖,𝑡𝑦 ,𝑡
′   

                        𝑖𝑓 𝐵𝑖 ,𝑡 ⊮𝑏  𝑒𝑠𝑡𝑦 ,𝑡
′ , 𝑎𝑐𝑡𝑦 ,𝑡

′  

𝐵𝑖 ,𝑡 −  𝑒𝑠𝑡𝑦 ,𝑡
′ , 𝑎𝑐𝑡𝑦 ,𝑡

′ , 𝑢𝑡𝑖,𝑡𝑦 ,𝑡
′  ∪

 𝑒𝑠𝑡𝑦 ,𝑡
′ , 𝑎𝑐𝑡𝑦 ,𝑡

′ , 𝑢𝑡𝑖,𝑡𝑦 ,𝑡
′ ± 𝛿𝑡𝑦

𝑏𝑢   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

     (14) 

here 𝛿𝑡𝑦
𝑏𝑢 ∈ ℝ. 

Not all human users are able to learn new behaviors at the 

same rate.  We define the abilities of a human user 𝑕𝑖  to learn 

something (capability or behavior) about a task of type 𝑡𝑦 

using derivative and communicative learning by 𝐷𝐿𝐶𝑖 ,𝑡 , 

𝐶𝐿𝐶𝑖,𝑡  respectively. Here, 𝐷𝐿𝐶𝑖 ,𝑡  is a set defined as:  

𝐷𝐿𝐶𝑖 ,𝑡 =   𝑑𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 , 𝑑𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 |𝑡𝑦 ∈ 𝑇𝑗                (15) 

where 𝑑𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 ∈  0,1  and 𝑑𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 ∈  0,1 .  Further, 𝐶𝐿𝐶𝑖,𝑡  is 

a set defined as:  

𝐶𝐿𝐶𝑖,𝑡 =   𝑐𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 , 𝑐𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 |𝑡𝑦 ∈ 𝑇𝑗                  (16) 

where, 𝑐𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 ∈  0,1  and 𝑐𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 ∈  0,1 .   

Finally, we denote the combined autonomy of the human 

user and his or her assigned user agent while working on a 

task of type 𝑡𝑦 at time 𝑡 by 

𝐶𝐴𝑖,𝑡 =   𝑕𝑎𝑖 ,𝑡𝑦 ,𝑡 , 𝑢𝑎𝑖 ,𝑡𝑦 ,𝑡 | 𝑡𝑦 ∈ 1 …  𝑡𝑦𝑗 ,𝑘          (17)  

Here, the autonomy of the human user while working in coa-

lition 𝐶𝑘,𝑡  at time 𝑡 executing a task of type 𝑡𝑦 is defined by 

 𝑕𝑎𝑖 ,𝑘,𝑡𝑦 ,𝑡 =
 𝐷𝑆𝑖,𝑡

𝑕  

 𝐷𝑆𝑖,𝑡  
                                  (18) 

where 

𝐷𝑆𝑖 ,𝑡 =   𝑒𝑠𝑛,𝑡𝑦 ,𝑡 , 𝑎𝑐𝑛,𝑡𝑦 ,𝑡 |𝑛 ∈ ℤ                 (19) 

 𝐷𝑆𝑖 ,𝑡  is a set of state-action pairs generated by the human 

user 𝑕𝑖  and the user agent 𝑢𝑖  at time 𝑡  and for working on 

tasks of type 𝑡𝑦.  Further, 𝐷𝑆𝑖 ,𝑡
𝑕 ⊆ 𝐷𝑆𝑖 ,𝑡  and  

𝐷𝑆𝑖 ,𝑡
𝑕 =   𝑒𝑠𝑛,𝑡𝑦 ,𝑡 , 𝑎𝑐𝑛,𝑡𝑦 ,𝑡

𝑕  |𝑛 ≤  𝐷𝑆𝑖 ,𝑡                (20)  

Here,  𝑎𝑐𝑛,𝑡𝑦 ,𝑡
𝑕  is the action generated by the human user.  

Notice that, 𝑕𝑎𝑖 ,𝑡𝑦 ,𝑡 ∈  0,1 .  Then we define the user agent’s 

autonomy while the human user 𝑕𝑖  is working in coalition 

𝐶𝑘,𝑡  executing a task of type 𝑡𝑦 as  

𝑢𝑎𝑖,𝑘,𝑡𝑦 ,𝑡 = 1 − 𝑕𝑎𝑖 ,𝑘,𝑡𝑦 ,𝑡                        (21) 

𝐸𝑈𝑖 ,𝑡  is a set of real values that represents the estimated utili-

ty that can be gained by 𝑕𝑖   by joining a coalition at time 𝑡 

measured from the perspective of 𝑢𝑖 . 𝐸𝑈𝑖 ,𝑡  is defined as  

𝐸𝑈𝑖 ,𝑡= 𝑒𝑢𝑖,𝑗 ,𝑘,𝑡 |𝑘 = 1 …  𝐶𝑡                   (22) 

So, 𝑒𝑢𝑖,𝑘,𝑡  is the estimated amount of utility that can be 

gained by be gained by 𝑕𝑖  measured from the perspective of 

𝑢𝑖  by joining a coalition 𝐶𝑘,𝑡  and executing a task 𝑇𝑗  at time 𝑡. 

Representational Assumption 9.  A coalition 𝐶𝑘,𝑡 ∈ 𝐶 at 

time 𝑡 can be specified as a 12-tuple,  

𝐶𝑘,𝑡 =  
𝑈𝑖 ,𝑘 , 𝐻𝑖 ,𝑘 , 𝑔𝑘 , 𝑜𝑠𝑗 ,𝑘,𝑡 , 𝑠𝑢𝑗 ,𝑘,𝑡 , 𝑇𝑗 , 𝑅𝑖,𝑗 ,𝑘,𝑡 , 𝑌𝑖 ,𝑗 ,𝑘,𝑡 , 𝑂𝑀𝑖,𝑗 ,𝑘,𝑡

𝑇𝑄𝐴𝑗 ,𝑘,𝑡 , 𝑃𝐶𝑁𝑗 ,𝑘,𝑡 , 𝑇𝐶𝑁𝑗 ,𝑘,𝑡
        

(23) 

 where 𝑈𝑖 ,𝑘 ⊆ 𝑈, 𝐻𝑖 ,𝑘 ⊆ 𝐻,  𝑔𝑘 ∈ 𝐺, 𝑇𝑗 ∈ 𝑇, 𝑜𝑠𝑗 ,𝑘,𝑡 ∈ , 𝑠𝑢𝑗 ,𝑘,𝑡 ∈

[0,1]   

 𝑅𝑖,𝑗 ,𝑘,𝑡 =  𝑟𝑖 ,𝑗 ,𝑘,𝑡 |𝑖 = 1 …  𝐻𝑖𝑘                       (24)  

𝑌𝑖 ,𝑗 ,𝑘,𝑡 =  𝑦𝑖 ,𝑗 ,𝑘,𝑡 |𝑖 = 1 …  𝐻𝑖𝑘   , 𝑦𝑖 ,𝑗 ,𝑘,𝑡  ∈ [0,1]       (25) 

  𝑂𝑀𝑖 ,𝑗 ,𝑘,𝑡 =   𝑜𝑢𝑖,𝑗 ,𝑘,𝑡 , 𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡 |𝑖 = 1 …  𝐻𝑖𝑘            (26)  

  𝑇𝑄𝐴𝑗 ,𝑘,𝑡 =  𝑡𝑞𝑎𝑚,𝑗 ,𝑘,𝑡 |𝑚 = 1 …  𝑡𝑠𝑗            (27) 

 𝑃𝐶𝑁𝑗 ,𝑘,𝑡 =  𝑝𝑐𝑛𝑖 ,𝑚 ,𝑗 ,𝑘,𝑡 | 𝑖 = 1 …  𝐻𝑖 ,𝑘  , 𝑚 = 1 …  𝑡𝑠𝑗    (28) 

𝑇𝐶𝑁𝑗 ,𝑘,𝑡 =  𝑡𝑐𝑛𝑖 ,𝑚,𝑗 ,𝑘,𝑡 | 𝑖 = 1 …  𝐻𝑖 ,𝑘  , 𝑚 = 1 …  𝑡𝑠𝑗     (29) 

Here, 

 𝑜𝑠𝑗 ,𝑘,𝑡  is the amount of resources spent by the system 

agent to form coalition 𝐶𝑘,𝑡  to solve task 𝑇𝑗  at time 𝑡 

measured from the perspective of the system agent.  Ex-

amples of this cost could be communication bandwidth, 

computational time, deliberation time, etc. 

 𝑠𝑢𝑗 ,𝑘,𝑡  is the expected utility that can be gained by 𝑆 by 

forming coalition 𝐶𝑘,𝑡  to solve task 𝑇𝑗  at time 𝑡 

 𝑟𝑖 ,𝑗 ,𝑘,𝑡  denotes the expected reward the human user 𝑕𝑖  can 

earn by working in the coalition 𝐶𝑘,𝑡   calculated from the 

perspective of the user agent 𝑢𝑖   

 𝑦𝑖 ,𝑗 ,𝑘,𝑡  denotes the expected utility the human user 𝑕𝑖  can 

gain by joining the coalition 𝐶𝑘,𝑡  and solving task 𝑇𝑗  coo-

peratively at time 𝑡 with the members of 𝐶𝑘,𝑡  calculated 

from the perspective of the user agent 𝑢𝑖  assigned to 𝑕𝑖 .  

Although, 𝑟𝑖 ,𝑗 ,𝑘,𝑡 , and 𝑦𝑖 ,𝑗 ,𝑘,𝑡  are estimates, when the as-

signed tasks are completed at time 𝑡 = 𝑡𝑎𝑗 ,𝑘 + 𝑡𝑙𝑗 ,𝑘 , these 

estimated values become actual values. 

 𝑡𝑞𝑎𝑗 ,𝑘,𝑡  denotes the quality of the completed subtasks in 

𝑡𝑠𝑗 ,𝑘 ∈ 𝑇𝑗  achieved by the coalition 𝐶𝑘,𝑡  at time 𝑡. We al-

so assume that 𝑡𝑞𝑎𝑚,𝑗 ,𝑘,𝑡 ≤ 𝑡𝑞𝑚,𝑗 ,𝑘  ∀ 𝑚 = 1 …  𝑡𝑠𝑗 ,𝑘  , 𝑡. 

 𝑝𝑐𝑛𝑖 ,𝑚 ,𝑗 ,𝑘,𝑡  denotes human user 𝑕𝑖’s estimated potential 

contribution for completing the mth subtask in 𝑡𝑠𝑗 ,𝑘 ∈

𝑇𝑗 ,𝑘  in coalition 𝐶𝑘,𝑡  at time 𝑡 measured from the perspec-

tive of 𝑢𝑖,𝑘 . 

 𝑡𝑐𝑛𝑖,𝑚 ,𝑗 ,𝑘,𝑡  denotes human user 𝑕𝑖’s actual contribution 

for completing the mth subtask in 𝑡𝑠𝑗 ∈ 𝑇𝑗  that was 

achieved by the coalition 𝐶𝑘,𝑡  at time 𝑡  measured from 

the perspective of 𝑔𝑘 .  
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 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡  and  𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡  are the costs of forming coalition 

𝐶𝑘,𝑡  incurred by the user agent and the human user re-

spectively.  Examples of the cost incurred by the user 

agent while forming the coalition can be communication 

bandwidth, deliberation time, etc.  Examples of costs in-

curred by the human user can be time, misconceptions, 

misunderstanding of their human counterparts, commu-

nication with the assigned user agent, and communica-

tion with other human users, etc.   

Representational Assumption 10.  The formed coalitions 

are non-overlapping.  So, at any time 𝑡,  

∀ 𝑕𝑖 ∈ 𝐻, 𝐶𝑘,𝑡 , 𝐶𝑘 ′ 𝑡 ∈ 𝐶 

 𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝑕𝑖 , 𝐶𝑘,𝑡 → ~𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝑕𝑖 , 𝐶𝑘 ′ ,𝑡  if 𝑘 ≠

𝑘′ (30) 

Representational Assumption 11.  Each group agent 

𝑔𝑘 ∈ 𝐺  is assigned to a coalition 𝐶𝑘,𝑡 .  This assignment is 

one-to-one and 𝑛𝑔 =  𝐶𝑡  . 

Representational Assumption 12.  The effectiveness of a 

coalition 𝐶𝑘,𝑡  (as defined in Eq. (23)) working on task 𝑇𝑗  (as 

defined in Eq. (1)) is defined as,  

𝜉𝐶𝑘,𝑡
=  𝜉𝑚,𝑗 ,𝑘,𝑡                             (31) 

where 𝑚 = 1 …  𝑇𝑄𝐴𝑗 ,𝑘,𝑡   and  

𝜉𝑚,𝑗 ,𝑘,𝑡 =  1 −  𝑡𝑞𝑚,𝑗 ,𝑘 − 𝑡𝑞𝑎𝑚,𝑗 ,𝑘,𝑡            (32) 

 

Representational Assumption 13. A coalition is said to be 

efficient from the perspective of a user agent if it generates 

more reward for the participating human users by solving the 

assigned tasks than the total cost incurred by those human 

users and their assigned user agents while forming and work-

ing in the coalition.  So, the efficiency of coalition 𝐶𝑘,𝑡  (as 

defined in Eq. (23)) measured from the perspective of the 

user agent 𝑢𝑖  is denoted by 

𝜂𝐶𝑘,𝑡

𝑢 = 𝑟𝑖,𝑗 ,𝑘,𝑡 −   𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡 + 𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡              (33) 

Here, the efficiency of the coalition from the user agent’s 

point of view is determined by the reward it can earn by solv-

ing task 𝑇𝑗  and the cost of forming and maintaining coalition 

𝐶𝑘,𝑡 .  Furthermore, 𝑡 = 𝑡𝑎𝑗 + 𝑡𝑙𝑗 , 𝑡𝑎𝑗  and 𝑡𝑙𝑗 are defined in Eq. 

(1).  Further, 𝑜𝑢𝑖,𝑗 ,𝑘,𝑡  and 𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡  are defined in Eq. (23).  So, 

according to our definition, the coalition 𝐶𝑘,𝑡  is efficient 

when (assuming 𝜂𝐶𝑘,𝑡

𝑢 > 0) 

𝑟𝑖 ,𝑗 ,𝑘,𝑡 >   𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡 + 𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡                  (34) 

Similarly, a coalition is said to be efficient from the pers-

pective of a system agent if it generates more reward for the 

system agent by solving the assigned tasks than the total cost 

incurred by the system agent while forming and maintaining 

the coalition.  So, the efficiency of coalition 𝐶𝑘,𝑡  (Eq. (23)) 

measured from the perspective of the system agent is 

𝜂𝐶𝑘,𝑡

𝑠 =  𝑡𝑤𝑚,𝑗 −
 𝑡𝑠𝑗  

𝑖=1
  𝑟𝑖 ,𝑗 ,𝑘,𝑡

 𝐻𝑖,𝑘  

𝑖=1
+ 𝑜𝑠𝑗 ,𝑘,𝑡          (35) 

Here, the efficiency of the coalition from the system agent’s 

point of view is determined by the reward it can earn by solv-

ing task 𝑇𝑗  and the cost of forming and maintaining coalition 

𝐶𝑘,𝑡  and the rewards it has to distribute to the user agents.  

Furthermore,  𝑡 = 𝑡𝑎𝑗 + 𝑡𝑙𝑗 , 𝑡𝑎𝑗  and 𝑡𝑙𝑗 are defined in Eq. (1).  

Further, 𝑟𝑖 ,𝑗 ,𝑘,𝑡  and 𝑜𝑠𝑗 ,𝑘,𝑡  are defined in Eq. (23).  So, accord-

ing to our definition, the coalition 𝐶𝑘,𝑡  is efficient from the 

perspective of the system agent when  

 𝑡𝑤𝑚,𝑗 >
 𝑡𝑠𝑗  

𝑖=1
    𝑟𝑖 ,𝑗 ,𝑘,𝑡

 𝐻𝑖,𝑘  

𝑖=1
+ 𝑜𝑠𝑗 ,𝑘,𝑡         (36) 

i.e., 𝜂𝐶𝑘,𝑡

𝑠 > 0 . 

Representational Assumption 14. To capture the change 

in a human user’s behavior due to the Derivative and Com-

municative learning, we define  

𝐿 =  𝐷𝐿, 𝐶𝐿                                   (37)   

Here, the tuple 𝐿 represents the learning of the human user 

and it contains 𝐷𝐿  and 𝐶𝐿  which represent derivative and 

communicative learning respectively.  We also define,  

𝐷𝐿 =  𝑑𝑘, 𝑑𝑏                               (38) 

where 𝑑𝑘 is a function that updates the knowledge base of 

the human user as:  

𝑑𝑘 𝐾𝑖 ,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡  =  
𝐾𝑖 ,𝑡 ′ , 𝑖𝑓 𝑑𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 = 1

𝐾𝑖,𝑡 , 𝑖𝑓 𝑑𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 = 0
          (39) 

Here 𝐾𝑖,𝑡 ′  and 𝑑𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡  are defined in Eq. (9) and Eq. (15) 

respectively.  Similarly, 𝑑𝑏 is a function that updates the be-

havior base of the human user as:  

 𝑑𝑏 𝐵𝑖 ,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡  =  
𝐵𝑖 ,𝑡 ′ , 𝑖𝑓 𝑑𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 = 1

𝐵𝑖 ,𝑡 , 𝑖𝑓 𝑑𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 = 0
            (40) 

where 𝐵𝑖 ,𝑡 ′  and 𝑑𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡  are defined in Eq. (14) and Eq. (15) 

respectively.  Furthermore, communicative learning 𝐶𝐿  is 

defined as:  

𝐶𝐿 =  𝑐𝑘, 𝑐𝑏                               (41) 

where 𝑐𝑘 is function that updates the knowledge base of a 

human user as:  

𝑐𝑘 𝐾𝑖 ,𝑡 , 𝑐𝑡𝑡𝑦   =  
𝐾𝑖 ,𝑡 ′ , 𝑖𝑓 𝑐𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 = 1

𝐾𝑖 ,𝑡 , 𝑖𝑓 𝑐𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡 = 0
          (42) 

 Here, 𝐾𝑖 ,𝑡 ′  and  𝑐𝑙𝑘𝑖 ,𝑡𝑦 ,𝑡  are defined in Eq. (9) and Eq. (16) 

respectively.  Further, 𝑐𝑏 is a function that updates the beha-

vior base of the human user as: 

𝑐𝑏 𝐵𝑖 ,𝑡 ,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡     =  
𝐵𝑖 ,𝑡 ′ , 𝑖𝑓 𝑐𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 = 1

𝐵𝑖 ,𝑡 , 𝑖𝑓 𝑐𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡 = 0
       (43) 

 Here, 𝐵𝑖 ,𝑡 ′  and 𝑐𝑙𝑏𝑖 ,𝑡𝑦 ,𝑡  and defined in Eq. (14) and Eq. (16) 

respectively. 

Representational Assumption 15.  Due to the different 

types of learning described in Eq. (38) and Eq. (41), the 

knowledge base and the behavior base of the human user 

changes.  As a result, the performance of a human user as an 

individual and as a coalition member would change.  For 

example, due to learning new capabilities, a human user be-

comes able to solve the tasks encountered in future coalitions 

more efficiently (lower cost 𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡  (Eq. (26)).  To capture 

this change, we define the performance change of a human 

user 𝑕𝑖  while working in a coalition 𝐶𝑘,𝑡  solving task 𝑇𝑗  at 

time 𝑡 as  

𝑃𝐶𝑖 ,𝑗 ,𝑘,𝑡 =   𝑒𝑥𝑡𝑦 ,𝑡 − 𝑒𝑥𝑡𝑦 ,𝑡 ′  𝐾𝑖,𝑡⊩𝑘 𝑐𝑡𝑡𝑦 ,𝑒𝑥𝑡𝑦 ,𝑡 
+

 𝑒𝑥𝑡𝑦 ,𝑡 ′
𝐾𝑖,𝑡′ −𝐾𝑖,𝑡⊩𝑘 𝑐𝑡𝑡𝑦 ,𝑒𝑥𝑡𝑦 ,𝑡′  

+

  𝑢𝑡𝑖,𝑡𝑦 ,𝑡 − 𝑢𝑡𝑖,𝑡𝑦 ,𝑡 ′  𝐵𝑖,𝑡⊩𝑏 𝑒𝑠𝑡𝑦 ,𝑡 ,𝑎𝑐𝑡𝑦 ,𝑡 ,𝑢𝑡 𝑖,𝑡𝑦 ,𝑡 
+

 𝑢𝑡𝑖,𝑡𝑦 ,𝑡 ′
𝐵𝑖,𝑡′ −𝐵𝑖,𝑡⊩𝑏 𝑒𝑠𝑡𝑦 ,𝑡 ,𝑎𝑐𝑡𝑦 ,𝑡 ,𝑢𝑡 𝑖,𝑡𝑦 ,𝑡′  

                                (44) 

where 𝐾𝑖 ,𝑡 , 𝐵𝑖 ,𝑡 , 𝐾𝑖,𝑡 ′ , and 𝐵𝑖 ,𝑡 ′  are defined in Eq. (8), Eq. 

(10), Eq. (9), and Eq. (14) respectively. 

Representational Assumption 16.  The utility 𝑦𝑖 ,𝑗 ,𝑘,𝑡  

gained by the human user 𝑕𝑖 ,𝑘  while working in a coalition 

𝐶𝑘,𝑡  (Eq. (23)) is defined by 

𝑦𝑖 ,𝑗 ,𝑘,𝑡 = 𝑦𝑖 ,𝑗 ,𝑘,𝑡
𝑐𝑡 + 𝑦𝑖 ,𝑗 ,𝑘,𝑡

𝑓𝑡
                   (45)  
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where 𝑦𝑖 ,𝑗 ,𝑘,𝑡
𝑐𝑡  is the utility gained for executing the current 

task 𝑇𝑗  assigned to 𝐶𝑘,𝑡  and 𝑦𝑖 ,𝑗 ,𝑘,𝑡
𝑓𝑡

 is the estimated increase of 

utility gains for the future tasks at 𝑡 ′ = 𝑡 + ∆𝑡.   

The utility gained from the current task is rewarded to the 

human user due to his or her contribution in solving the sub-

tasks of 𝑇𝑗 .  So,  

𝑦𝑖 ,𝑗 ,𝑘,𝑡
𝑐𝑡 ∝ 𝑟𝑖 ,𝑗 ,𝑘,𝑡 −   𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡 + 𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡             (46) 

 

where 𝑟𝑖 ,𝑗 ,𝑘,𝑡 , 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡  , and  𝑜𝑕𝑖 ,𝑗 ,𝑘,𝑡  are defined in Eq. (24) 

and Eq. (26) respectively.   

The estimated increase of utility for the future tasks arises 

from the fact that the human users learn from working in the 

coalitions.  While working in a coalition, a human user inte-

racts with the environment and executes tasks.  Due his or her 

interaction with the environment, especially with other coali-

tion members, a human user may be able to learn new capa-

bilities and behaviors.  These interactions may also allow a 

human user to improve his or her knowledge and expertise on 

the capabilities he or she already knows. This improved be-

havior and knowledge would increase the utility a human 

user earns by solving tasks in future coalitions.  So, the ex-

pected increase of the future utility gained by working in 

future coalitions for a human user is proportional to his or her 

improvement in performance that resulted from working in 

that coalition.  That means, 

𝑦𝑖,𝑗 ,𝑘,𝑡
𝑓𝑡

∝ 𝑃𝐶𝑖 ,𝑗 ,𝑘,𝑡                              (47) 

where 𝑃𝐶𝑖 ,𝑗 ,𝑘,𝑡  is defined in Eq. (44). 

Representational Assumption 17.  The utility 𝑠𝑢𝑗 ,𝑘,𝑡  

gained by the system agent 𝑆 by forming and maintaining a 

coalition 𝐶𝑘,𝑡  (Eq. (23)) is defined by 

𝑠𝑢𝑗 ,𝑘,𝑡 = 𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡 + 𝑠𝑢𝑗 ,𝑘,𝑡

𝑓𝑡
                   (48)  

where 𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡  is the utility gained for executing the current 

task 𝑇𝑗  assigned to 𝐶𝑘,𝑡  and 𝑠𝑢𝑗 ,𝑘,𝑡
𝑓𝑡

 is the estimated increase of 

utility gains for the future tasks at 𝑡 ′ = 𝑡 + ∆𝑡.   

The utility gained from the current task is gained by the 

system user for solving the subtasks of 𝑇𝑗 .  So,  

𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡 ∝  𝑡𝑤𝑚,𝑗 −

 𝑡𝑠𝑗  

𝑖=1
  𝑟𝑖 ,𝑗 ,𝑘,𝑡

 𝐻𝑖,𝑘  

𝑖=1
+  𝑜𝑠𝑗 ,𝑘,𝑡          (49) 

where 𝑡𝑤𝑚 ,𝑗 , is the total reward earned by the 𝑆 for solving 

task 𝑇𝑗  by forming coalition 𝐶𝑘 , 𝑟𝑖 ,𝑗 ,𝑘,𝑡  is the reward the sys-

tem agent provides the human user 𝑕𝑖by 𝑆, and  𝑜𝑠𝑗 ,𝑘,𝑡  is the 

cost incurred by 𝑆 for forming the coalition 𝐶𝑘,𝑡 .   

The estimated increase of utility for the future tasks arises 

from the fact that the human users learn from working in the 

coalitions and their performance changes over time (Eq. (44).  

This improvement in human user’s behavior may then im-

prove the utility 𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡  for 𝑡 = 𝑡 + Δ𝑡.  If the human users’ 

performances improve, the better performing human users 

will be able execute the assigned task more efficiently (less 

cost 𝑜𝑠𝑗 ,𝑘,𝑡).  As a result, the system agent’s utility for solving 

the future tasks (𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡 ) would improve too.  So, the expected 

increase of the system agent’s utility for future tasks generat-

ed by forming and maintaining coalition 𝐶𝑘,𝑡   is proportional 

to the sum of the potential improvements of performance of 

all the members of 𝐶𝑘,𝑡 .  That means,  

𝑠𝑢𝑗 ,𝑘,𝑡
𝑓𝑡

∝  𝑃𝐶𝑖 ,𝑗 ,𝑘,𝑡𝑖∈𝐻𝑖,𝑘
                           (50) 

Here, 𝑃𝐶𝑖 ,𝑗 ,𝑘,𝑡  is defined in Eq. (44). 

Representational Assumption 18.  We define the model-

ing accuracy of the human user model 𝑕𝑚𝑖 ,𝑡  as: 

𝑀𝐴𝑖,𝑡 =  𝑚𝑎𝑖,𝑗 ,𝑘,𝑡 | 𝑘 ∈ ℤ                         (51) 

Here,  

 𝑚𝑎𝑖 ,𝑘,𝑡 =  𝑒𝑢𝑖 ,𝑗 ,𝑘,𝑡 − 𝑦𝑖 ,𝑗 ,𝑘,𝑡                        (52) 

where 𝑦𝑖 ,𝑗 ,𝑘,𝑡  is the actual utility achieved by the human user 

𝑕𝑖  by working in a coalition 𝐶𝑘,𝑡  and 𝑒𝑢𝑖 ,𝑗 ,𝑘,𝑡  and is the utility 

that can be gained by the human user 𝑕𝑖  by joining the coali-

tion 𝐶𝑘,𝑡  as estimated by the human user model 𝑕𝑚𝑖 ,𝑡 .  

Characteristic Assumption 1: Coalition Scaffolding.  
According to socio-cultural theory [28], learning involves 

social interaction and dialogue, negotiation and collaboration 

and that 'scaffolded' or assisted learning can increase cogni-

tive growth and understanding.  In educational research, 

Scaffolding is referred to as a form of assistance provided to 

a learner by a more capable teacher or peer that helps the 

learners perform a task that would normally not be possible 

to accomplish by working independently.   

Similar to the idea of scaffolding in a classroom, Scaffold-

ing a human coalition is to support a group of humans to help 

them work together when solving a problem.  In other words, 

the system agent and the user agents try to guide the human 

users to change their behaviors to improve their performance 

as individuals and as coalition members.  This improved be-

havior is then observed by the user agents assigned to the 

human users when they are interacting with the environment 

𝐸.  As a result, the human users’ models constructed by the 

user agents get updated.  In other words, in iHUCOFS, the 

system agent 𝑆 and the user agents 𝑢𝑖 s scaffold the human 

user 𝑕𝑖s to see improvements in 𝑕𝑚𝑖 ,𝑡 .  

The change in a human user’s behavior due to the scaf-

folding improves his or her performance for current and fu-

ture tasks.  In other words, scaffolding enables the human 

user learn new capabilities and behaviors which increase the 

utility that human user can earn from and contribute to the 

current and future coalitions he or she works in.   

Scaffolding can be of two types: I. A human user is guided 

by the assigned user agent explicitly to help him learn how to 

change his or her behavior for the current task in the current 

coalition; and II. The system agent or the assigned user agent 

constructs environment states (implicit help) that allow the 

human user learn how to improve his or her behavior in the 

future coalitions.   

Say, a human user 𝑕𝑖  is working in a coalition 𝐶𝑘,𝑡  to ex-

ecute a task 𝑇𝑗  of type 𝑡𝑦.  Then, an example of Type I scaf-

folding could be hints or guidance related to tasks of type 𝑡𝑦 

provided to 𝑕𝑖  by the assigned user agent 𝑢𝑖 .  On the other 

hand, say a human user 𝑕𝑖  is deciding which coalition 

𝐶𝑘,𝑡 ∈ 𝐶𝑡  to join to earn rewards by executing a task 𝑇𝑗  of 

type 𝑡𝑦 which the human user does not know much about.  In 

that case, an example of Type II scaffolding provided by the 

user agent 𝑢𝑖  could be the advice to join the coalition that 

contains a set of users 𝐻𝑠 ∈ 𝐻  whose models 𝑕𝑚𝑠  indicate 

that they are able to execute the tasks of type 𝑡𝑦.  Notice that 

𝑢𝑖  is able to find out the most suitable coalition for 𝑕𝑖  by 

communicating with the other user agents assigned in the 

system.  Furthermore, say a system agent wants to get re-

wards by solving a set of tasks 𝑇 =  𝑇𝑗 |𝑗 = 1 … 𝑛  of type 
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𝑡𝑦𝑗 ∈ 𝑇𝑗   by forming various coalitions of human users 𝐻 and 

𝐻𝑠 ∈ 𝐻.  Also, the system agent knows from the models of 

𝑕𝑚𝑠,𝑡s that the human users 𝐻𝑠  are not able to solve a subset 

of tasks  𝑇𝑗
′ ⊆ 𝑇 of types 𝑡𝑦𝑗

′ .  The system agent also knows 

that, user models 𝑕𝑚𝑠′ ,𝑡  indicate the human users 𝐻𝑠′ ∈ 𝐻 −

𝐻𝑠  are able to solve the tasks tasks  𝑇𝑗
′ ⊆ 𝑇 are of types 𝑡𝑦𝑗

′ .  

Then, the system agent 𝑆 may provide some initiative (e.g., 

reward) to motivate the human users 𝐻𝑠′  to form coalitions 

with human users 𝐻𝑠 .  Such a coalition may enable the hu-

man users 𝐻𝑠  to learn the necessary capabilities and beha-

viors from 𝐻𝑠′  and improve their performances.  As a result, 

all the human users in set 𝐻𝑠  and 𝐻𝑠′  will be able to solve 

tasks of type 𝑡𝑦𝑗
′  in future.   

While using Type I scaffolding, the user agent provides 

the information about capabilities (e.g., 𝑐𝑡𝑖,𝑡𝑦  related to a type 

of task 𝑡𝑦) and information about the environment states and 

the optimal actions (e.g.,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡  related to tasks of 

type 𝑡𝑦) to the human user in the hope that these information 

may invoke explicit human learning 𝐸𝐿.  If the human user is 

able to use his or her explicit learning, the information or 

guidance provided by the assigned user agent will improve 

the performance of the human user.  In other words, Type I 

scaffolding can be defined as: 

𝑠𝑐1 𝑕𝑚𝑖 ,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡 =  𝑕𝑚𝑖,𝑡 ′ ,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡         (53)  

where 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡  is the user agent’s action on the environment 

state 𝑒𝑠𝑡𝑦 ,𝑡  and 𝑕𝑚𝑖 ,𝑡 ′ is an improved model of the human 

user 𝑕𝑖  at 𝑡 = 𝑡 + ∆𝑡.  An example of the improvement of the 

human user model could be if the human user is able to in-

crease his or her expertise level for some capability in his or 

her knowledge base (Eq. (9)) or if the user could increase his 

or her utility for some state-action pair in the behavior base 

(Eq. (14)), etc.   

On the other hand, while using Type II scaffolding tech-

niques, the user agent generates a set of environment states 

𝑒𝑠𝑡𝑦 ,𝑡  related to tasks 𝑡𝑦  and those generated environment 

states improve the human user’s model.  So, Type II scaffold-

ing can be defined as:  

𝑠𝑐2 𝑕𝑚𝑖 ,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡 =  𝑕𝑚𝑖,𝑡 ′ ,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡        (54) 

Where 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡  is the user agent’s action on environment 

state 𝑒𝑠𝑡𝑦 ,𝑡  to generate a set of states to improve 𝑕𝑚𝑖 ,𝑡 ′ at 

some time 𝑡 = 𝑡 + ∆𝑡. 

Finally, while using Type II scaffolding techniques, the 

system agent generates a set of environment state 𝑒𝑠𝑡𝑦 ,𝑡  re-

lated to tasks 𝑡𝑦 and those generated environment states im-

prove the model of a set of human users.  So, Type II scaf-

folding can be defined as:  

𝑠𝑐2 𝑕𝑚𝑠,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡 =  𝑕𝑚𝑠,𝑡 ′ ,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡   ∀𝑕𝑠 ⊆ 𝐻 

(55) 

where 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡  is 𝑕𝑖’s action on state 𝑒𝑠𝑡𝑦 ,𝑡  to generate a set of 

states to improve 𝑕𝑚𝑠,𝑡  at some time 𝑡 = 𝑡 + ∆𝑡. 

The reason behind using scaffolding is to invoke human 

learning.  Human learning in a collaborative setting can come 

in various shapes and forms [11].  Next, we discuss the dif-

ferent types of learning and explain how they are related to 

the scaffolding in iHUCOFS.   

For the following discussions, we assume that there is a 

coalition 𝐶𝑘,𝑡  (as defined in Eq. (22)) in the environment 𝐸.  

We also assume, 𝐻𝑠,𝑘 ⊆ 𝐻𝑖 ,𝑘  where  

𝐻𝑠,𝑘 =   𝑕𝑠𝑝 ,𝑘 |𝑝 = 1 …  𝐻𝑖 ,𝑘 − 1                   (56) 

To describe the learning, we assume the following:  

a. 𝐻𝑠,𝑘 ⊆ 𝐻𝑖 ,𝑘  where 𝐻𝑠,𝑘 =   𝑕𝑠𝑝 ,𝑘 |𝑝 = 1 …  𝐻𝑖 ,𝑘 − 1   

b. The human user 𝑕𝑖  is trying to learn capability 𝑐𝑡𝑖 ,𝑡𝑦  and 

state, action pair  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑖 ,𝑡𝑦 ,𝑡  through various learn-

ing processes 

c. Human user 𝑕𝑖  and 𝑕𝑠𝑝
 have models 𝑕𝑚𝑖,𝑡  and 𝑕𝑚𝑠𝑝 ,𝑡  

respectively.  The human user model is defined in Eq. 

(5) 

d. 𝑡 ′ = 𝑡 + ∆𝑡 and 𝑡 ′′ = 𝑡 + ∆𝑡 ′  

e. 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑥, 𝑦, 𝑡  states that human user 𝑥  is 

observing a process 𝑦 at time 𝑡.  Notice that, observing 

process 𝑧  could mean observing a sequence of state-

action pairs for the human user 𝑥. 

f. 𝑇𝑒𝑎𝑐𝑕 𝑥, 𝑦, 𝑧, 𝑡  states that human user 𝑥  teaches human 

user 𝑦 how to execute tasks of type 𝑧 at time 𝑡 

g. 𝑅𝑒𝑓𝑙𝑒𝑐𝑡 𝑥, 𝑦, 𝑧, 𝑡  states that human user 𝑥 explains his 

or her execution of a task of type 𝑧 to human user 𝑦 at 

time 𝑡 

h. 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐵𝑒𝑕𝑎𝑣𝑖𝑜𝑟 𝑥, 𝑦,  𝑧, 𝑤   states that human user 𝑥 

observes the action 𝑤 executed by the user agent 𝑦 at an 

environment state 𝑧  

i. 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑥,  𝑦, 𝑧   states that human user 𝑥  takes the 

action 𝑧 while in an environment state 𝑦  

j. 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒 𝑥, 𝑦, 𝑧, 𝑡  states that human user 𝑥 com-

municates with human user 𝑦 about a task of type 𝑧 at 

time 𝑡 

a. Learning by Observation – The users learn indi-

rectly by observing other learners’ learning process.  

This type of learning can be facilitated by the user agent 

by putting the human user in a group that contains users 

with similar deficiency of knowledge about a certain 

task.  When such a group is working together to execute 

a task they do not know much about, the user agent can 

provide interactive targeted learning materials so that at 

least some of the users can learn from it. Then the other 

users will be able to observe their learning process and 

will learn from it.  This learning can be described from 

the perspective of the user agents in iHUCOFS as:  

∀𝑝 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠  𝑕𝑖,𝑘 , 𝑑𝑘  𝐾𝑠𝑝 ,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡  , 𝑡   ∧

 𝐾𝑠𝑝 ,𝑡 ⊮𝑘 𝑐𝑡𝑡𝑦  ∧  𝐾𝑖 ,𝑡 ⊮𝑘 𝑐𝑡𝑡𝑦  
𝑑𝑘
  𝐾𝑖 ,𝑡 ′              (57) 

where user 𝑕𝑖 ,𝑘  observes the derivative learning process 

of user 𝑕𝑠𝑝 ,𝑘  while working together to execute task of 

type 𝑡𝑦.  Further,  𝑕𝑖,𝑘  and 𝑕𝑠𝑝 ,𝑘   do not have capability 

𝑐𝑡𝑡𝑦  in their knowledge bases 𝐾𝑠𝑝 ,𝑡  and 𝐾𝑖 ,𝑡  respectively.  

Furthermore, 𝐾𝑖 ,𝑡 ′  is defined in Eq. (8) and ⊮𝑘  operator 

is defined in Eq. (7). 

   ∀𝑝 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠  𝑕𝑖,𝑘 , 𝑑𝑏  𝐵𝑠𝑝 ,𝑡 , 𝑒𝑠𝑡𝑦 ,𝑡  , 𝑡 ∧

 𝐵𝑠𝑝 ,𝑡 ⊮𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    ∧  𝐵𝑖 ,𝑡 ⊮𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    

𝑑𝑏
  𝐵𝑖 ,𝑡 ′  (58) 
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where user 𝑕𝑖 ,𝑘  observes the derivative learning process 

of user 𝑕𝑠𝑝 ,𝑘  while working together to execute task of 

type 𝑡𝑦 .  As a result, the behavior base of 𝑕𝑖,𝑘  changes.  

Further,  𝑕𝑖,𝑘  and 𝑕𝑠𝑝 ,𝑘   do not have state-action pair 

 𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    in their behavior bases 𝐵𝑠𝑝 ,𝑡  and 𝐵𝑖 ,𝑡  re-

spectively.  Finally, 𝐵𝑖 ,𝑡 ′  is defined in Eq. (8). 

b. Learning by Teaching/Guiding – Learning by 

teaching occurs when a human user learns or refines his 

or her own knowledge by teaching other group members.  

This type of learning is particularly useful in CSCL set-

tings where the students learn by teaching each other.  

Again a human coalition formation framework can pro-

vide an environment for this type of learning by putting a 

human user in a group that would allow him or her to 

learn by teaching others.  However, this type of learning 

requires that the user teaching others is knowledgeable 

about the assigned problem and is able to express his or 

her ideas and is comfortable about teaching others.  

∀𝑝 𝑇𝑒𝑎𝑐𝑕  𝑕𝑠𝑝 ,𝑘 , 𝑕𝑖,𝑘 , 𝑡𝑦, 𝑡   ∧  𝐾𝑠𝑝 ,𝑡 ⊩𝑘 𝑐𝑡𝑡𝑦  ∧

 𝐾𝑖 ,𝑡 ⊮𝑘 𝑐𝑡𝑡𝑦  
𝑑𝑘
  𝐾𝑠𝑝 ,𝑡 ′                                         (59)                                      

where user 𝑕𝑠𝑝 ,𝑘  teaches user 𝑕𝑖 ,𝑘 . and the knowledge 

base 𝐾𝑠𝑝 ,𝑡  changes to 𝐾𝑠𝑝 ,𝑡 ′  (𝑖 = 𝑠𝑝 in Eq. (8)).  Also,  

 ∀𝑝 𝑇𝑒𝑎𝑐𝑕  𝑕𝑠𝑝 ,𝑘 , 𝑕𝑖 ,𝑘 , 𝑡𝑦, 𝑡  ∧

 𝐵𝑠𝑝 ,𝑡 ⊩𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    ∧  𝐵𝑖 ,𝑡 ⊮𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    

𝑑𝑏
  𝐵𝑠𝑝 ,𝑡 ′  (60) 

where user 𝑕𝑠𝑝 ,𝑘  teaches user 𝑕𝑖 ,𝑘  at time 𝑡.  and the be-

havior base 𝐵𝑠𝑝 ,𝑡  of user 𝑕𝑠𝑝 ,𝑘  is changed.  Furthermore, 

𝐵𝑠𝑝 ,𝑡 ′  can be found by substituting 𝑖 = 𝑠𝑝 in Eq. (14). 

c. Learning by being Taught – This is the simplest 

type of learning where a human user learns when he or 

she is being taught by someone else.  Therefore, we see 

that learning by teaching and learning by being taught 

may complement each other.  When a human user is 

learning by teaching other group members, those group 

members could learn by being taught. 

∀𝑝 𝑇𝑒𝑎𝑐𝑕  𝑕𝑠𝑝 ,𝑘 , 𝑕𝑖,𝑘 , 𝑡𝑦, 𝑡   ∧  𝐾𝑠𝑝 ,𝑡 ⊩𝑘 𝑐𝑡𝑡𝑦  ∧

 𝐾𝑖 ,𝑡 ⊮𝑘 𝑐𝑡𝑡𝑦  
𝑐𝑘
→ 𝐾𝑖,𝑡 ′                                      (61)                                       

where user 𝑕𝑠𝑝 ,𝑘  teaches user 𝑕𝑖 ,𝑘 .  As a result, the know-

ledge base 𝐾𝑖 ,𝑡  of user 𝑕𝑖,𝑘  is changed.  Furthermore, 

𝐾𝑖 ,𝑡 ′  can be found in Eq. (8).  Also,  

  

 ∀𝑝 𝑇𝑒𝑎𝑐𝑕  𝑕𝑠𝑝 ,𝑘 , 𝑕𝑖 ,𝑘 , 𝑡𝑦, 𝑡  ∧

 𝐵𝑠𝑝 ,𝑡 ⊩𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    ∧  𝐵𝑖 ,𝑡 ⊮𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    

𝑐𝑏
→ 𝐵𝑖 ,𝑡 ′  (62) 

where user 𝑕𝑠𝑝 ,𝑘  teaches user 𝑕𝑖 ,𝑘  at time 𝑡.  As a result, 

the behavior base 𝐵𝑖 ,𝑡  of user 𝑕𝑖,𝑘  is changed.  Further-

more, 𝐵𝑖 ,𝑡 ′  can be found in Eq. (14). 

d. Learning by Reflection/Self-Expression – This 

type of learning occurs when a human user rethinks his 

or her own solution and analyses his or her self-thinking 

process.  Schön p. 28 [21] describes the reflection 

process as: ―We think critically about the thinking that 

got us into this fix or this opportunity; and we may, in 

the process, restructure strategies of action, understand-

ing of phenomena, or ways of framing problems.‖ Learn-

ing by reflection could occur when a group of users have 

completed a problem and are analyzing their solution 

process.  This type of learning can also be achieved by 

using Type I scaffolding in combination of a structured 

collaborative process.  For example, after each problem 

is solved by the human users, the collaborative process 

could involve a stage where each human user would dis-

cuss why his or her solution worked or did not work.  If 

a human user is reluctant to discuss his or her solution 

process, the user agent may prompt him or her and en-

gage that user to reflect on his or her own solution or 

thinking process.  Notice that learning by reflection  

∀𝑝 𝐸𝑥𝑝𝑙𝑎𝑖𝑛  𝑕𝑖 ,𝑘 , 𝑕𝑠𝑝 ,𝑘 , 𝑡𝑦, 𝑡 ∧  𝐾𝑖 ,𝑡 ⊩𝑘 𝑐𝑡𝑡𝑦  

                                                                        
𝑑𝑘
  𝐾𝑖 ,𝑡 ′ (63) 

where user 𝑕𝑖 ,𝑘  explains his or her execution of a task of 

type 𝑡𝑦  to user 𝑕𝑠𝑝 ,𝑘 . and the knowledge base 𝐾𝑖 ,𝑡  

changes to 𝐾𝑖 ,𝑡 ′  can be found in (Eq. (8)).  Also,  

 ∀𝑝 𝐸𝑥𝑝𝑙𝑎𝑖𝑛  𝑕𝑖,𝑘 , 𝑕𝑠𝑝 ,𝑘 , 𝑡𝑦, 𝑡  ∧

 𝐵𝑖 ,𝑡 ⊩𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    
𝑑𝑏
  𝐵𝑖 ,𝑡 ′  (64) 

where user 𝑕𝑖 ,𝑘  explains his or her execution of a task of 

type 𝑡𝑦  to user 𝑕𝑠𝑝 ,𝑘 .  and the behavior base 𝐵𝑖 ,𝑡  is 

changed to 𝐵𝑖 ,𝑡 ′  (Eq. (14)). 

e. Learning by Apprenticeship – In traditional ap-

prenticeship, the expert shows the apprentice how to do a 

task, watches as the apprentice practices portions of the 

task, and then turns over more and more responsibility 

until the apprentice is proficient enough to accomplish 

the task independently [5].  This type of learning can be 

implemented by Type I scaffolding.  When a group of 

users are working together, the user agent may guide the 

group members so that when the most knowledgeable 

member explains or teaches something to the other group 

members, it can prompt some other group member to re-

explain and re-do the example or problem.  This way, 

when that human user solves the problem again, he or 

she will learn by apprenticeship.  Note that learning by 

being taught improves the knowledge or skill of the hu-

man user who is being taught by someone else.  On the 

contrary, learning by apprenticeship improves the know-

ledge of the human user who is observing and mimicking 

someone else’s behavior. 

∀𝑝  

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝐵𝑒𝑕𝑎𝑣𝑖𝑜𝑟  𝑕𝑖,𝑘 , 𝑕𝑠𝑝 ,𝑘 ,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    ∧ 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚  𝑕𝑖,𝑘 ,  𝑒𝑠𝑡𝑦 ,𝑡 ′ , 𝑎𝑐𝑡𝑦 ,𝑡 ′     ∧

 𝐵𝑠𝑝 ,𝑡 ⊩𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    ∧  𝐾𝑠𝑝 ,𝑡 ⊩𝑘 𝑐𝑡𝑡𝑦  ∧

 𝐾𝑖 ,𝑡 ⊮𝑘 𝑐𝑡𝑡𝑦  ∧  𝐵𝑖 ,𝑡 ⊮𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    
𝑑𝑏
  𝐾𝑖 ,𝑡 ′′ ∧

𝐵𝑖 ,𝑡 ′′           (65) 

where user 𝑕𝑖 ,𝑘  observes some behavior of user 𝑕𝑠𝑝 ,𝑘  at 

time 𝑡 and then mimicks that same behavior at time 𝑡 ′ .  

As a result, the knowledge and behavior bases 𝐾𝑖 ,𝑡  and 
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𝐵𝑖 ,𝑡  of user 𝑕𝑖 ,𝑘  is changed to 𝐵𝑖 ,𝑡 ′′   and  𝐾𝑖,𝑡 ′′  can be (for 

𝑡 ′ = 𝑡 ′′   in Eq. (8) and Eq. (14) respectively). 

f. Learning by Practice – This type of learning oc-

curs when a human user applies his or her existing 

knowledge to solve an assigned problem.  This type of 

learning is very common in situations where each human 

user contributes to the solution of the assigned problem 

by working on it.  However, there may be human users 

who are free-riding i.e., depending on the competent and 

the knowledgeable users to solve the assigned problem.  

As a result, these users do not learn by practice.  The us-

er agent can provide reinforce the human users to learn 

by practice using Type II scaffolding.  If the user agent 

detects that one of the human user is free-riding and is 

not contributing to the solution of the problem, it may 

put that human user in a group which contains human 

users who are not so proficient or knowledgeable about 

that assigned problem.  Then, the free-riding human user 

would be forced to step up his or her effort and work on 

the assigned problem to avoid failing and getting pena-

lized as a group.  Notice that while learning by practice, 

the human user improves his or her expertise of a capa-

bility which he or she already knows.   However, while 

learning by apprenticeship, the human user learns some-

thing he or she does not know. 

∀𝑝 𝑃𝑒𝑟𝑓𝑜𝑟𝑚  𝑕𝑖,𝑘 ,  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡     ∧

 𝐵𝑖 ,𝑡 ⊩𝑏  𝑒𝑠𝑡𝑦 ,𝑡 , 𝑎𝑐𝑡𝑦 ,𝑡    ∧  𝐾𝑖 ,𝑡 ⊩𝑘 𝑐𝑡𝑡𝑦  
𝑑𝑏
  𝐵𝑖 ,𝑡 ′ ∧ 𝐾𝑖 ,𝑡 ′             

(66) 

where user 𝑕𝑖 ,𝑘  executes some action on the environment 

that is required for execution for a task of type 𝑡𝑦.  As a 

result, the knowledge base 𝐾𝑖 ,𝑡  and the behavior base 𝐵𝑖 ,𝑡  

of user 𝑕𝑖 ,𝑘  is changed.  Furthermore, 𝐾𝑖,𝑡 ′  and 𝐵𝑖 ,𝑡 ′  can 

be found in Eq. (8)  and in Eq. (14) respectively. 

g. Learning by Discussion – This type of learning 

occurs when the human users discuss a topic with each 

other.  The human users can be made involved in this 

type of learning by using both Type I and Type II scaf-

folding. Using Type II scaffolding, a human user can be 

put into a group which contains users who he or she is 

comfortable with.  This higher level of comfort would 

increase the probability that they would discuss the as-

signed problem or the approach to solution.  On the other 

hand, if the users in a group are not discussing the as-

signed problem with his or her group members, the user 

agent can ask him or her to join the ongoing class discus-

sion or ask leading questions that would engage that re-

luctant user.  Notice that this type of learning is basically 

a sequence of Learning by Observation, Learning by 

Teaching, Learning by being Taught, Learning by Ref-

lection/Self-Expression, Learning by Practice with ex-

cept that the roles of the human users are dynamic in 

Learning by Discussion.  Furthermore, Learning by Dis-

cussion is different from Learning by Apprenticeship 

since there are actions that are observed or mimicked by 

the human users. 

Characteristic Assumption 2: Tradeoff between For-

mation and Scaffolding .  Say the system agent 𝑆 is forming 

a coalition 𝐶𝑘,𝑡  (Eq. (23)) to solve a task 𝑇𝑗 .  When 𝑇𝑗  is com-

pleted, the system agent is able to collect the rewards and as a 

result, its utility 𝑠𝑢𝑗 ,𝑘,𝑡  increases.  However, 𝑠𝑢𝑗 ,𝑘,𝑡  consists 

of: 𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡  and 𝑠𝑢𝑗 ,𝑘,𝑡

𝑓𝑡
 (Eq. (48)).  𝑠𝑢𝑗 ,𝑘,𝑡

𝑐𝑡  comes from the re-

wards earned by executing task 𝑇𝑗 , and 𝑠𝑢𝑗 ,𝑘,𝑡
𝑓𝑡

 comes from the 

improvement of the behavior of the human users in the coali-

tion, i.e.,  𝑃𝐶𝑖 ,𝑗 ,𝑘,𝑡𝑖∈𝐻𝑖,𝑘
 (Eq. (44)).  Also, to get the task 𝑇𝑗  

solved, the system agent incurs cost 𝑜𝑠𝑗 ,𝑘,𝑡 .  This cost can be 

broken down as,  

𝑜𝑠𝑗 ,𝑘,𝑡 = 𝑜𝑠𝑗 ,𝑘,𝑡
𝑐𝑓

+ 𝑜𝑠𝑗 ,𝑘,𝑡
𝑠𝑐                      (67) 

Here,𝑜𝑠𝑗 ,𝑘,𝑡
𝑐𝑓

 is the cost associated with forming the coalition, 

𝑜𝑠𝑗 ,𝑘,𝑡
𝑠𝑐  is the cost associated with scaffolding the coalition.  If 

the system agent is able to earn a reward 𝑡𝑤𝑗  by solving a 

task 𝑇𝑗 , then, its utility gain is inversely proportional to the 

cost of forming and scaffolding the coalition 𝐶𝑘,𝑡  and propor-

tional to the reward 𝑡𝑤𝑗  and the improvement in the coalition 

members’ performance.  So, 

𝑠𝑢𝑗 ,𝑘,𝑡 ∝
𝑡𝑤 𝑗 ∙ 𝑃𝐶𝑖,𝑗 ,𝑘,𝑡𝑖∈𝐻𝑖,𝑘

𝑜𝑠𝑗 ,𝑘,𝑡
                    (68) 

To maximize its utility, the system agent could decide to 

spend more for forming the coalition (higher 𝑜𝑠𝑗 ,𝑘,𝑡
𝑐𝑓

), i.e., try 

to find the best possible set of people who can execute the 

assigned tasks without any further cost for maintaining the 

coalition.  This would increase its utility for the current task, 

i.e., 𝑠𝑢𝑗 ,𝑘,𝑡
𝑐𝑡 .  However, this choice requires that the system 

agent’s knowledge about the human users (i.e., their models) 

is accurate and noise free.  On the other hand, the system 

agent may choose to spend more for scaffolding the formed 

coalition in hope that the human performances are improved.  

As a result of this improvement, the system agent’s utility for 

the future tasks (i.e., 𝑠𝑢𝑗 ,𝑘,𝑡
𝑓𝑡

) would increase. 

We also assume that the set of human users 𝐻  in iHU-

COFS changes over time. When new users join the system, 

their assigned user agents do not have accurate knowledge 

about them.  As a result, the 𝑀𝐴𝑖,𝑡𝑦 ,𝑡  values are low.  Over 

time, after the user agents have observed the behaviors of 

their assigned human users for some time, the accuracy val-

ues 𝑀𝐴𝑖,𝑡𝑦 ,𝑡  increase.  At some time 𝑡 = 𝑡 ′ , these models 

would be accurate enough to: (1) the system agent can form 

efficient and effective coalitions (2) the system agent is able 

to provide scaffolding to the human users to improve their 

behavior.  So, when the system has a lot of new users, the 

system agent needs to emphasize the scaffolding process 

more.  This is because the user agents’ models of their human 

users are not accurate enough to form effective and efficient 

coalitions anyway.  Therefore, spending resources to form the 

best possible coalition may not necessarily yield the maxi-

mum utility 𝑠𝑢𝑗 ,𝑘,𝑡 .  Over time, when the human users have 

been trained by the scaffolding process and the user modeling 

has become more accurate, it will be rational for the system 

agent to emphasize the coalition formation process more and 

spend more resources for forming the coalitions.  In this situ-

ation, finding the right mix of people to work together is 

more important than scaffolding them after forming the coali-

tion.  So, over time, the system agent’s emphasis crosses over 

to coalition formation from scaffolding.   

Characteristic Assumption 3: Dual Roles.  In iHU-

COFS, the user agents assume two different roles: advisor 

and representative.  When a user agent is acting as an advi-
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sor, it takes decisions on behalf of the human user and has 

more autonomy than the human user, i.e., 𝑢𝑎𝑖,𝑘,𝑡 > 𝑕𝑎𝑖 ,𝑘,𝑡  in 

the environment 𝐸.  As an advisor, the user agent also tries to 

improve the behavior of the human user for the current tasks 

and future tasks by providing Type I and Type II scaffolding 

respectively.   For example, a user agent may act as an advi-

sor for a human user who is new to the system environment 

or who does not possess the necessary capabilities to execute 

tasks 𝑇𝑗 ,𝑘  while working in a coalition 𝐶𝑘,𝑡 .  For such a user, 

the user agent may decide the coalition that would yield him 

or her the highest utility 𝑦𝑖 ,𝑗 ,𝑘,𝑡 .  Furthermore, the user agent 

may also provide scaffolding to the human user while work-

ing in a coalition to improve his or her behavior in the future 

coalition.  As a representative, the user agent follows the hu-

man user’s advice and does not provide much scaffolding.  

The user agent may act as a representative for a human user 

who possesses the necessary capabilities to execute tasks 𝑇𝑗 ,𝑘  

while working in a coalition 𝐶𝑘,𝑡 .   

A human user’s potential for contribution in a coalition 

𝐶𝑘,𝑡  is denoted by 𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡 .  The value of 𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡  tells 

the user agent 𝑢𝑖  how much the human user 𝑕𝑖  may be able to 

contribute while working in 𝐶𝑘,𝑡 .  Since the utility gained by 

that human user is proportional to 𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡 , a low 

𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡  value would mean smaller amount of earned utili-

ty for the human user.  So, based on the potential contribution 

of a human user, the user agent can detect whether the human 

user is capable enough to work on his or her own in a coali-

tion to execute the assigned tasks.  Upon detecting such defi-

ciency in the human user’s capability, the user agent can as-

sume the role of an advisor to guide the human user while he 

or she is working in the coalition.  In that case, the user agent 

will have more autonomy than the human user in the envi-

ronment 𝐸.  On the other hand, if the user agent detects that 

the human user is able to work in the coalition on his or her 

own, it can assume a passive role as a representative.  In that 

case, the human user will have more autonomy than the user 

agent in the environment 𝐸.  Therefore, the user agent 𝑢𝑖 ’s 

autonomy 𝑢𝑎𝑖 ,𝑡𝑦 ,𝑡  is a function of the human user’s potential 

contribution 𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡 , i.e., 

𝑢𝑎𝑖 ,𝑡𝑦 ,𝑡 = 𝑓𝑛𝑐 𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡                      (69) 

Characteristic Assumption 4:  Tradeoff between Advi-

sor and Representative.  Say, the human user 𝑕𝑖 ,𝑘  is work-

ing in the coalition 𝐶𝑘,𝑡  (as defined in Eq. (23)) and the user 

agent incurs cost 𝑜𝑢𝑖,𝑗 ,𝑘,𝑡 .  This can be written as, 

𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡 = 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑚𝑎 + 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡

𝑐𝑓
+ 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡

𝑠𝑐           (70) 

where 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑚𝑎  is the cost of modeling the human user, 

𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑐𝑓

 is the cost for forming the coalition, and 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑠𝑐  is 

the cost of scaffolding the human user.  However, the value 

of 𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑠𝑐 is a function of the user agent’s autonomy 

𝑢𝑎𝑖 ,𝑘,𝑡𝑦 ,𝑡  .  If 𝑢𝑎𝑖,𝑘,𝑡𝑦 ,𝑡 = 0 , the user agent is working as a 

representative of the human user following his or her every 

command without providing any scaffolding.  On the other 

hand, if 𝑢𝑎𝑖 ,𝑘,𝑡𝑦 ,𝑡 = 1 , the user agent is working as an advisor 

of the human user and taking all the decisions for him or her 

and providing scaffolding.  So, as a mere representative, a 

user agent does not have any autonomy; as a mere advisor, a 

user agent has full autonomy.  In brief, the value  𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑠𝑐  is a 

function of 𝑢𝑎𝑖,𝑘,𝑡  where  

𝑢𝑎𝑖 ,𝑘,𝑡 =  𝑢𝑎𝑖 ,𝑘,𝑡𝑦 𝑗 ,𝑡𝑡𝑦 𝑗∈𝑇𝑗
                   (71) 

So, we can write 

𝑜𝑢𝑖 ,𝑗 ,𝑘,𝑡
𝑠𝑐 = 𝑓𝑛𝑐 𝑢𝑎𝑖 ,𝑘,𝑡𝑦 ,𝑡                     (72)  

Therefore, the optimum value of the user agent’s autonomy 

that yields the lowest cost of scaffolding for a given task 𝑡𝑦 

can be found by solving the equation  
𝒅𝑜𝑢 𝑖,𝑗 ,𝑘,𝑡

𝑠𝑐

𝒅𝑢𝑎 𝑖,𝑘,𝑡
= 0                                   (73) 

Furthermore, the role of the user agent depends on what a 

user agent knows about the human user.  Based on its model 

of the human user, the user agent may decide to be a repre-

sentative or an advisor.  As an advisor, the user agent has 

more autonomy than the human user and takes decisions on 

behalf of its assigned human user and provides scaffolding to 

its human user.  Examples of advisory decisions can be which 

coalition to join, how to execute a task, etc.  On the other 

hand, as a representative, the user agent becomes an assistant 

of the human user following his or her directions.  In this 

case, the human user takes all the decisions and does not re-

quire any scaffolding from the user agent.   

Since a human user’s behavior changes over time, the user 

agent’s role (advisor or representative) is dynamic.  If the 

human user does not have the capabilities to solve the as-

signed task or if the human user not familiar with the existing 

human users, the user agent can assume the role of an advi-

sor.  As an advisor, the user agent can help the human user 

execute the assigned task or help him join the coalition that 

will yield the highest utility.  Over time, that human user be-

comes familiar with other human users in the system due to 

his or her participation in the collaborative activities.  Fur-

thermore, due to the scaffolding provided by the user agent, 

the human user also learns how to solve tasks of type 𝑡𝑦.  At 

this point, the human user is able to form coalitions and is not 

in need of any scaffolding from the user agent.  That means 

𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡  – the value of the potential contribution for a hu-

man user for tasks of type 𝑡𝑦 has become high.  This high 

value then increases the potential reward achieved by the 

human user.  Detecting this high value of potential contribu-

tion, a user agent may switch its role from being an advisor to 

being a representative and save resources (computation, deli-

beration time, etc.).  However, in future, the user agent may 

detect that the human user is facing a task that he is not capa-

ble of executing or needs to form coalition with a set of hu-

man users who he or she is not familiar with (e.g., joins a 

new coalition formation environment).  That means the user 

agent detects a low potential contribution (𝑝𝑐𝑛𝑖 ,𝑡𝑦 ,𝑗 ,𝑘,𝑡) value 

for that human user.  Then, the user agent will again assume 

the role of an advisor.  So, depending on the human user’s 

potential contribution, the user agent’s autonomy will change 

and the user agent will switch its role from advisor and repre-

sentative. 

 

2.2 Problem Characteristics 

 

In this section, we identify characteristics of human coali-

tions and describe design principles that address those cha-

racteristics.   
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Characteristic 1: Diversity. Human users have different 

motivations, utility functions, and valuation of rewards.   

Characteristic 2: Inconsistency/Irrationality. Human 

users can behave inconsistently and/or irrationally.  Also, 

human users may learn and change their behaviors over time.  

This underlies the scaffolding component of the iHUCOFS 

framework. 

Characteristic 3: Incomplete Information/Noise. It is 

close to impossible to completely model human reasoning 

and actions as there are always external factors (or noise) 

influencing how they behave in a coalition. 

Characteristic 4: Uncertain Outcomes. Even with per-

fect information and accurate modeling, given the same prob-

lem, it is possible that the same coalition may not yield the 

same outcome. 

Characteristic 5: Characteristic Assumptions 3-5.  Hu-

man users can benefit from a well-formed coalition in the 

first place and good scaffolding after the coalition is formed.   

Characteristic 6: Characteristic Assumptions 3, 7. A 

human user can co-exist in a symbiotic relationship with its 

user agents.  A human user can instruct how its user agent 

should behave and can also rely on its user agent providing 

timely and useful advice. 

 

2.3 Design Principles 

 

Design Principle 1:  System and User Perspectives.  There 

should be a system agent and a set of user agents.  A system 

agent is needed to evaluate and take decisions regarding a 

coalition, while a user agent is needed to be a representative 

of and an advisor to its human user.  Also, the goal of a sys-

tem agent and the goal of the user agent can also be different.  

However, the system agent does not impose any specific 

rules on the user agent.  Instead, it wants the emergent beha-

vior that results from the user agents’ own goal: forming a 

beneficial group for its human user and scaffolding the coali-

tion of its human user to complete the assigned task.  This 

design principle addresses Characteristics 5 and 6.   

Design Principle 2:  User Modeling.  The user agents 

must be able to model different user motivations, behaviors, 

and utilities and should be able to consider inconsistency or 

irrationality in their human users’ actions or reasoning.  This 

design principle addresses Characteristics 1 and 2.   

In brief, there are two ways to model the behavior and per-

formance of a human user.  First, information about the hu-

man user can be collected from his or her interaction with the 

user agent, with the other human users and other group mem-

ber.  Since the user agent acts as a communication medium 

for the human users’, they can closely monitor every action 

of him or her.  The group agent can monitor the human user’s 

actions with the other group members.  With these three 

types of information, the entire interaction history of a human 

user with his or her group members can be constructed. 

Second, information about the human users can also be 

collected from the evaluation scores of the human user in 

various individual and group activities.  While a user model 

can be constructed by using the raw information about the 

interaction of human user with others, the evaluation scores 

collected by administering surveys can be used to crosscheck 

that model.  For example, if the user interaction history indi-

cates that a human user has been an active group member and 

that user’s group members’ evaluation of him or her is low, it 

may mean that the user is doing off topic discussions.  Then 

the system and or group agent may provide him or her guid-

ance and or hint to focus more on the assigned task. 

Design Principle 3:  Satisficing Solution.  The system 

agent and the user agents must be able to take decisions with 

incomplete information or noise.  Further, since outcomes are 

uncertain, it could be costly for the agents to devise an op-

timal solution only to find out that it does not lead to the ex-

pected outcome.  Thus, this motivates the agents to make do 

with what they know, and sub-optimal but satisficing solu-

tions may be preferable.  This design principle addresses 

Characteristics 3 and 4. 

Design Principle 4: Learning Mechanism.  To overcome 

the noisy environment and incompleteness of the available 

information, the user agents should use a learning mechanism 

to filter out the necessary information to achieve the required 

level of accuracy. The learning mechanism could include 

typical agent learning (e.g., reinforcement learning) and also 

the multiagent learning where the user agents learn from 

each other’s experience (e.g., learning by discussion and 

learning by observing).  This design principle addresses cha-

racteristics 3 and 4. 

Design Principle 5: Scaffolding.  The proposed iHU-

COFS environment is noisy and has incomplete information 

and uncertain outcomes.  These characteristics imply that the 

user agents may not be able to collect accurate data to form 

the most suitable coalition.  However, we know that human 

users may learn and improve their behavior when scaffolding 

is provided.  Therefore, the user agents should spend more 

time and computational resources for scaffolding.  Since the 

user agents’ beliefs about the environment may contain inac-

curacies, spending resources for forming the perfect coalition 

may not yield the best outcome in terms of utilities for the 

human users.  On the other hand, spending more resources 

for scaffolding would mean that the human users would be 

able to improve their behavior and in turn improve the out-

come for the current and future coalitions.  

 

3. Implementation of iHUCOFS  
 

With the assumptions, characteristics and design principles in 

hand, we have designed an iterative coalition formation algo-

rithm called VALCAM where each user agent bids for join-

ing the most compatible coalition with the virtual currency 

that it has earned from participating in previous coalitions.  

VALCAM environment consists of a system agent, a set of 

user agents assigned to the human users and a group agent 

assigned to each user group.  The system agent hosts an itera-

tive auction to form coalitions, where each user agent bids to 

join the most compatible coalition with the virtual currency 

that it has earned from participating in previous coalitions.  In 

VALCAM, virtual currency is used as a reward to the user 

agents for solving the assigned task and for collaborating 

with the group members.  A user agent’s reward for solving 

the task is given by the system agent for executing the as-

signed task.  Furthermore, the reward for collaboration is 

provided by the system agent as an incentive for the user 

agents for collaboration (Type II scaffolding).  This incentive 
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is provided because, by encouraging collaboration, the sys-

tem agent encourages the human users to learn and improve 

their performances over time.   

 

3.1 VALCAM Algorithm 

 

The details of VALCAM can be found in [24].  However, a 

brief description is as follows: suppose that A is the set of 

user agents, m is the number of non-overlapping coalitions 

that will be formed, and |A|>m, j is the current task assigned, 

p is the selected auction protocol e.g., Vickrey [20]. 

 

VALCAM-S (for system agent) 
 

1. Initialize (create a set of m groups G and assign a group 

agent to each group) 

2. Choose first members for each group g in G (select better-

performing users as first members) 

3. Start the auction according to p for users in A.  For each 

group g in G, do, 

a. Accept bids from the unassigned users 

b. Assign the highest bidder to g 

4. After completing j, assign individual and group payoffs to 

A based on the human user’s individual performance and 

group performance  

 

VALCAM-U (for user agent) 

 

1. Initialize (estimate and announce the human user’s com-

petence for the upcoming task)  

2. For each round of bidding for group g, bid with an 

amount proportional to the average of compatibility and 

performance of the users in g.  Compatibility measures 

the human users’ view of one another, and performance 

measures the average performance of a human user 

 

The performance measure denotes the performance of a 

human user measured from the perspective of the group agent 

and the user agent.  Each time a user group completes a task, 

the individual and group performance is evaluated by the 

student agent and the group agent and a certain amount of 

virtual currency is assigned to that user.  The amount of vir-

tual currency assigned is proportional to the performance of 

the human user as an individual and as a group member (i.e., 

helpfulness in achieving the common group goal).  Then, 

using the earned virtual currency, the user agents are able to 

form groups for the human users.  Although this use of vir-

tual currency rewards the user more who has performed well 

than the user who has not, the design of VALCAM prevents 

this assignment from becoming a rich- get-richer model by 

rewarding altruistic behavior during the group formation.  

Next, we discuss the details of designing VALCAM based on 

the design principles described in Section 3.  

 

3.2 System and User Perspectives in VALCAM 
 

Based on Design Principle 1, VALCAM has two parts: 

VALCAM-S for the system agent and VALCAM-U for the 

user agent.  The system agent and the user agents have differ-

ent goals.  The goal of the system agent is to form coalitions 

that can solve the assigned task at hand and also improve the 

quality of coalitions that will be formed in the future.  On the 

other hand, the user agent tries to form groups that will im-

prove the human user’s learning and group work experience 

(i.e., to increase the utility that will be earned by the human 

user in future Eq. (42)).  To achieve its goal, the system agent 

forms coalitions that are heterogeneous with respect to user 

performances by initiating the human user groups with users 

who are modeled as competent in solving the assigned task 

(step 2 of VALCAM-S).  In these groups, the better-

performing knowledgeable users are able to help the not-so-

knowledgeable users solve the assigned task and train the 

latter to solve similar tasks in future coalitions.  On the other 

hand, the user agent tries to join a group that contains users 

who are competent and are compatible with its assigned hu-

man users (step 2 of VALCAM-U).  Such groups may en-

courage the poor-performing students to learn from the bet-

ter-performing students.  As a result, the performance of the 

poor-performing users would increase.   

 

3.3 User Modeling in VALCAM   

 

Based on Design Principle 2, VALCAM relies on the model-

ing of user competence (i.e., the knowledge base Eq. (6)) and 

their compatibility (step 2 of VALCAM-U).  Accurate mod-

eling of the above two attributes allows the system to better 

form and scaffold coalitions. Competence defines a human 

user’s capability of solving a particular subtask of a problem.  

That means a competent user is able to execute the assigned 

task using his or her knowledge base and behavior base.  

Modeling the competence of the human users will allow the 

algorithm to create coalitions with members who are hetero-

geneous with respect to their performances for solving the 

task.  Mixing high- and low-caliber human users in a coali-

tion can help low-caliber human users learn to improve their 

performance over time due to Learning by Observation and 

Learning by being Taught ((Eq. (57) and Eq. (61)).   

On the other hand, compatibility refers to the behavior 

(i.e., an element in the behavior base Eq. (10)) of a human 

user that allows him or her to use his or her knowledge base 

to execute the task in a collaborative setting.  In terms of 

compatibility, if the coalition members do not get along with 

one another, they will work in a team instead of as a team [3].  

That means a group of human users who do not get along 

well or do not like each other’s working style, discussion, 

etc., would work towards achieving their individual goals 

instead of working with others to achieve the common goal 

of the group.  As a result, the outcome of the coalition would 

suffer even when the members are highly competent at what 

they do.  Compatibility between two human users denotes 

their working experience with each other.  Furthermore, if 

past behavior can predict the future, it can be expected that 

the human users who have worked well with each other in the 

past, will be able to work well with each other in future.  

Therefore, by recording the working experience of a human 

user in a coalition, the user agent will be able to estimate the 

expected compatibility of this user with the members of a 

future coalition.  Finally, using compatibility in the coalition 

formation process is an example of implicit scaffolding (Eq. 

(54)).  Putting a human user in his or her favorite group 
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would mean that he or she will be more involved in the colla-

borative activities.   

 

3.4 Satisficing Solution of VALCAM 
 

Based on Design Principle 3, we use a soon-enough, good-

enough strategy and use an iterative auction to create human 

user groups.  This iterative auction method does not involve 

any global decision making process to form user groups that 

yield optimum outcomes.  Instead, VALCAM creates an en-

vironment that encourages the participating agents to make 

local decisions that they think are best for their assigned hu-

man users.  Using those local decisions, VALCAM aims to 

form human user groups that can solve the assigned tasks and 

also train the human users to solve the future tasks better.   

 

3.5 Learning Mechanism of VALCAM   

 

Table 1 summarizes the learning mechanisms used in 

VALCAM.   

 

Table 1: Learning Mechanism in VALCAM. 

Learning Topic Mechanism 

User Compe-

tence 

Uses information retrieval with the 

evaluation history of a user to estimate 

the competence of a user on a topic 

User Compati-

bility of a group 

of users 

Uses reinforcement learning and user 

modeling to estimate the compatibility 

of a set of users for an upcoming task 

User Inconsis-

tency 

Uses the competence, compatibility 

and learning to calculate the expected 

outcome of a user’s participation and 

calculates the inconsistency factor by 

finding the difference between the 

expected performance and the actual 

performance 

   

3.6 Scaffolding in VALCAM 

 

We have only implemented Type II (implicit) scaffolding in 

VALCAM.  One way for the user agents to achieve Type II 

scaffolding is by assigning each student to a group where he 

or she is able to learn from others and improve his or her be-

havior.  The system agent can achieve Type II scaffolding by 

rewarding the better-performing students to form coalitions 

with the poor-performing students.  That way, the poor-

performing students will be able to improve their perfor-

mances for future tasks.  So, to provide Type II scaffolding, 

VALCAM tries to create the best possible group for each 

member where he or she is able to engage in various types of 

learning as described in Section 2.1 (Eq. (57)-(66)).  While 

forming a group that encourages learning, VALCAM’s sys-

tem agent encourages heterogeneity with respect to user per-

formance by rewarding the better-performing students to 

form groups with poor-performing students.  Creating a 

group with users of mixed performance level is important 

since not all types of learning occur in groups that are homo-

geneous in terms of user performance level.  For example, a 

user group that contains only better-performing users would 

not encourage Learning by Observation (Eq. (57), (58)), 

Learning by Teaching/Guiding (Eq. (59), (60)), Learning by 

being Taught (Eq. (61), Eq. (62)), and Learning by Appren-

ticeship (Eq. (65)).  VALCAM’s user agents also provide 

Type II scaffolding by joining a group that contains users 

who are compatible with each other.  Compatibility among 

the group members is important since not all human users 

work well with each other [3].    Therefore, to find a suitable 

group for a human user, VALCAM aims to find a balanced 

mix of better- and poor-performing human users who are 

compatible with each other. 

 

4. I-MINDS 
 

I-MINDS (Intelligent Multiagent Infrastructure for Distri-

buted Systems in Education) employs a number of interacting 

intelligent software agents, representing individual students 

and the instructor, to create a CSCL environment. The ratio-

nale behind using multiagent intelligence is the agent’s per-

sistence in tracking and monitoring its environment (student 

and instructor activities), autonomy in decision making, and 

responsiveness in providing services to both students and 

instructors.  The details of the I-MINDS system can be found 

in [12] [23] [24].  Briefly, in I-MINDS, each student has a 

personal agent (a student agent), each instructor has a person-

al agent (a teacher agent), and when students form a group, 

they are also assigned a group agent.  Figure 1 shows the 

main components of a typical I-MINDS classroom.   

   

 

 
Fig. 1. I-MINDS classroom structure. 

 

The agents in I-MINDS provide the four important services 

in a computer-supported learning environment [7]: (1) know-

ledge construction, (2) context for learning, (3) communica-

tion, and (4) collaboration.  The teacher agent and the student 

agent works together to deliver the learning material to the 

participants for knowledge construction.  The teacher agent 

in I-MINDS also provides the context for learning by struc-

tured learning scenarios (e.g., Jigsaw).  The student agents in 

I-MINDS allow the students to communicate with each other 

using various tools e.g., chat, collaborative whiteboard, etc.   

 

4.1 Teacher Agent 
 

In I-MINDS, the teacher agent is designed to help the instruc-

tor carry out the CSCL sessions.  The teacher agent allows 

the instructor to interact with students, send slides, manage 
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Q&A sessions, administer quizzes, post evaluations, and 

form structured collaborative learning groups, and monitor 

individual and group performances. The teacher agent also 

allows the instructor to manage Q&A sessions in a large 

classroom by ranking the incoming questions.  Furthermore, 

the teacher agent also helps the instructor by grouping similar 

questions together using the utterance classification approach 

like the AutoTutor [8] [15] [19].   

The teacher agent also contains the Jigsaw module to carry 

out structured Jigsaw collaborative work.  The Jigsaw proce-

dure works as follows.  First, the instructor divides the stu-

dents into groups.  Second, the instructor divides a problem 

into different parts (or sections).  Third, the instructor assigns 

a part/section for every student such that members of the 

same group will have different sections to solve.  The stu-

dents who are responsible for the same section then work 

together to come up with solutions to the section to which 

they have been assigned and develop a strategy for teaching 

the solutions to their respective group members.  Clarke [4] 

defined the Jigsaw structure into the following stages: 

1.  Introduction: the instructor introduces the topic to the 

whole classroom.  Depending on the type of instruction, 

this stage may involve Learning by being Taught (Eq. 

(61), Eq. (62)), Learning by Apprenticeship (Eq (65)), 

Learning by Reflection/Self-Expression, and Learning by 

Practice for the students. 

2. Focused Exploration: The focus groups explore issues 

pertinent to the section that they have been assigned.  In 

this stage, the students usually learn new topics by colla-

borating with each other.  This phase especially encou-

rages Learning by Observation (Eq. (57), (58)), and 

Learning  by Discussion. 

3. Reporting and Reshaping: The students return to their 

original groups and instruct their teammates based on 

their findings from the focus groups.  In this stage, the 

students actually assume the role of a teacher and teach 

their team members what they have learned during the 

Focused Exploration stage. This stage encourages Learn-

ing by Teaching/Guiding (Eq. (59), (60)), Learning by 

being Taught (Eq. (61), Eq. (62)), and Learning by Ap-

prenticeship (Eq. (65)). 

4. Integration and Evaluation: The team connects the vari-

ous pieces of the solution generated by the individual 

members, address new problems posed by the instructor, 

or evaluates the group product.  Due to the students’ dis-

cussion of the proposed solution, this stage especially en-

courage Learning by Reflection/Self-Expression (Eq. 

(63), (64)), and Learning by Discussion.   

 

4.2 Student Agent 
 

The student agent serves a unique student in I-MINDS.  It 

interacts with the student and exchanges information with the 

teacher agent and the group agents.  The capabilities of a 

student agent includes a forum to exchange online and offline 

messages, a quiz module for testing the students’ knowledge, 

a survey module to collect data from the students, a collabor-

ative whiteboard, and a collaborative flowchart module.  The 

student agent also maintains a dynamic profile of its student 

user and a dynamic profile of the peers that the student has 

interacted with through I-MINDS.  Furthermore, a student 

agent is able to form buddy groups designed around the mod-

el described in [10] for its student user.  Finally, the student 

agent also allows a student to form structured collaborative 

groups using the VALCAM algorithm. 

 

4.3 Group Agent 
 

In I-MINDS, a group agent is activated when there are struc-

tured cooperative learning activities.  Structured cooperative 

learning models explicitly specify how group activities are to 

be carried out in a sequence of steps to solve a joint task.  

Activities instrumented or tracked in during these steps in-

clude the number and type of messages sent among group 

members for each step, self-reported teamwork capabilities, 

peer-based evaluations of each team member, and evaluation 

of each team.  Note that a group agent works entirely behind-

the-scenes and thus does not have a GUI frontend. 

 

4.4 Group Formation Using VALCAM 

 

I-MINDS agents use the VALCAM algorithm (Section 3.6) 

to form groups for structured collaborative learning.  To im-

plement VALCAM, the teacher agent in I-MINDS acts as the 

system agent in VALCAM, the student agents in I-MINDS 

act as the user agents in VALCAM and the I-MINDS group 

agents act as the group agents in VALCAM.  Furthermore, 

the students in I-MINDS classroom become the human users 

who are forming coalitions using VALCAM and the instruc-

tor becomes the person who controls and coordinates the 

group formation activities using the teacher agent (system 

agent) interface.  In brief, I-MINDS agents use the following 

steps to implement VALCAM: 

1. The instructor starts up the I-MINDS teacher agent and 

loads up a classroom session. 

2. The students start their I-MINDS student agent clients 

and join the classroom session. 

3. Once the students have joined the classroom session, the 

instructor delivers the instruction on the session topic.  

During this instruction, the students can ask questions or 

communicate with the other students through I-MINDS 

student agent GUI. 

4. After delivering the instruction, the instructor starts the 

VALCAM group formation process using I-MINDS 

teacher agent GUI. 

5. Once all the groups are formed, teacher agent assigns a 

task (e.g., solving a problem) to the students, then the 

teacher agent assigns a group agent to each student group 

using I-MINDS teacher agent GUI. Finally, the students 

collaborate to solve the assigned task. 

6. At the end of the classroom session, the instructor con-

ducts a quiz to evaluate the students’ understanding of 

the assigned task after the collaborative work. 

7. Finally, the students evaluate the performance of their 

teams and the performances of their group members by 

responding to surveys posted in I-MINDS. 

Table 2 describes how the iHUCOFS design principles are 

implemented in VALCAM. 
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Table 2: Summary of the Implementation of the Design 

Principles of iHUCOFS in VALCAM. 

Design 

Principle 
Implementation in VALCAM 

System and 

User Pers-

pective 

Teacher agent’s goal is to form groups that 

would allow all the students learn the sub-

ject topic by hosting iterative auction.  The 

student agent’s goal is to join a group that 

holds maximum potential in terms of colla-

borative learning for its assigned student, 

i.e., a group with competent and compatible 

users. 

User Mod-

eling 

A student agent’s model of its assigned stu-

dent include: competence (Eq. 6) (ability to 

solve assigned tasks), and compatibility 

(i.e., his or her likeness/evaluation of others 

students) (Eq. 10). 

Satisficing 

Solution 

Teacher agent and student agents use an 

iterative auction algorithm that sacrifices 

optimality at present (Eq. 48) to improve 

quality of coalitions in future by improving 

the behavior of students through learning. 

Learning 

Mechanism 

Student agent learns the assigned student’s:  

competence (Eq. 6) from the evaluation 

score given by the instructor, and compati-

bility (Eq. 10) by recording his or her evalu-

ation of the other group members for each 

session to join groups that contain students 

who are competent and compatible with its 

assigned student.  Since, such a group holds 

high potential for the assigned student in 

terms of collaborative learning; the student 

agent’s learning improves the individual 

performance of the assigned student. 

Scaffolding 

Teacher agent and student agents provide 

Type II scaffolding (Eq. 54) by forming 

coalitions that balance the competence and 

compatibility of the students in hope that 

they will learn from each other and improve 

their behavior over time. 

 

4.5 Implementation of I-MINDS 

 

Fig. 2 and Fig. 3 show the current I-MINDS teacher agent 

and student agent interfaces respectively.  For our research 

prototype and evaluations, the I-MINDS system was imple-

mented in Java (SDK 1.4.2).  We have used Java’s socket 

functionalities to establish communication among agents, 

Java’s Swing classes to create interfaces, and Java’s JDBC 

technologies to connect to our MySQL database to store and 

retrieve all data.  For implementing our whiteboard server, 

we have used the Java Media Framework.  Finally, to imple-

ment the collaborative flowchart module (JFlowchart) of the 

student agents, we have used JHotDraw – an open source 

Java GUI framework for technical and structured graphics.  

Presently, we continue to develop our research prototype in 

Java.  In parallel, we have also ported most of the I-MINDS 

features to Microsoft’s ConferenceXP platform where the 

audio/video streaming, networking, archiving, tracking, and 

communication infrastructures are readily available.  This 

porting has allowed us to deploy our system in wired and 

wireless environments and with more robust communication 

modes and data storage.   

 

 
Fig. 2. I-MINDS teacher agent GUI. 

 

 
Fig. 3. I-MINDS student agent GUI. 

 

5. Experiments and Results 
 

We have evaluated I-MINDS in classrooms, previously re-

ported in [12] [23] [24].  In this paper, we discuss the feasi-

bility and the impact studies of VALCAM that show the va-

lidity of using iHUCOFS for human coalition formation. 

 

5.1 Experiment Setting 
 

To evaluate VALCAM in a real world scenario, we deployed 

I-MINDS in CSCE 155 for two semesters, the first core 

course of computer science and computer engineering majors 

(i.e., CS1).  The course has three 1-hour weekly lectures and 

one 2-hour weekly laboratory session.  In each lab session, 

students were given specific lab activities to experiment with 

Java and practice hands-on to solve programming problems.  

In our experiment, there were 2-3 lab sections where each 

section had about 15-25 students.  Our study utilized a con-

trol-treatment protocol.  In the control section, students 

worked in cooperative learning groups without using I-

MINDS.  Students were allowed to move around in the room 

to join their groups to carry out face-to-face discussions.  In 

the treatment section, students worked in cooperative learn-

ing groups using I-MINDS.  Students were told to stay at 
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their computers and were only allowed to communicate via I-

MINDS.  With this setup, we essentially simulated a distance 

classroom environment.  After the group activities, all the 

students filled out surveys and took a post-test.  This post-test 

score was graded by the instructor and used to measure stu-

dent performance in terms of understanding the topic. 

 

5.2 Results 
 

5.2.1 Feasibility Study 1 
 

In this analysis, our objective was to see whether and how 

VALCAM provided Type II scaffolding. Fig. 4 and Fig. 5 

show the average normalized post test scores for the control 

and treatment sections for Fall 2005 and Spring 2005.   

 

 
Fig. 4. Average normalized post-test scores of Spring 2005. 

 

As indicated in Fig. 4 and Fig. 5, the students in the treatment 

section were able to achieve post test scores that were compa-

rable to that of the students in the control section.  We also 

observe that the average normalized post test scores of the 

students in the treatment section improved over time for both 

Fall 2005 and Spring 2005 semesters.  This could be an indi-

cation that VALCAM, due to its learning mechanism, might 

have been effective in forming better and better coalitions 

over time, and achieving the goal of Type II scaffolding.  

However, more semesters of data is needed to obtain enough 

significance for our observations. 

To compare the performances of the students in the control 

and the treatment group, we have also calculated the slopes 

of the linear trend lines for the average normalized post-test 

scores (Fig. 4, Fig. 5) for the Fall 2005 and Spring 2005 ex-

periments.  The results show that in Fall 2005 and Spring 

2005 experiments, the slopes of the trend lines for the treat-

ment group were higher than those of the control group 

(Spring 2005: control group’s slope=0.021, treatment group’s 

slope=0.029, Fall 2005: control group’s slope=0.010, treat-

ment group’s slope=0.014).  Although the results are not 

conclusive, they hint that the students in the treatment group 

were able to improve their performances at a slightly higher 

rate than the students in the control group.  Although the re-

sults are not conclusive, they hint that the students in the 

treatment group were able to improve their performances at a 

slightly higher rate than the students in the control group. 

 

 
Fig. 5. Average normalized post-test scores for Fall 2005. 

 

5.2.2 Feasibility Study 2 

 

In this study, our objective was to measure how closely the 

payoff (in terms of virtual currency), a succinct representa-

tion of our user modeling, correlated with the actual perfor-

mance of the students.  We used the final lab (all 14 labs) and 

final exam scores as the actual performance indicators. In the 

beginning, every student started out with the same virtual 

currency since the agents assigned to the students had no 

prior background knowledge about them.  Then as they 

formed coalitions and worked on different tasks, their virtual 

currency account was updated.  As a result, the correlation 

improved (from ~0.10 to ~0.50 over four lab activities). 

Thus, as the students worked more with each other in the 

coalitions, our virtual currency model was able to capture 

their performance better.  This indicates that the VALCAM 

design using the iHUCOFS framework is viable to learn the 

student models with sufficient accuracy. 

 

5.2.3 Feasibility Study 3 

 

In our Spring and Fall 2005 experiments, the main mode of 

communication for the students was text messages.  In this 

study, our objective was to check whether it is possible for 

the students to communicate with their group members using 

the limited text chat capabilities of I-MINDS.  Fig. 6 and Fig. 

7 show the average count length of messages exchanged dur-

ing each session for Spring and Fall 2005 sessions.   

 

 
Fig. 6. Average message count and length in Spring 2005. 
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Fig. 7. Average message count and length for Fall 2005. 

 

Even though the number of sessions in our experiments is not 

enough to draw any conclusions, a common trend is observed 

in both semesters.  During both Spring and Fall 2005 seme-

sters, the count of messages decreased and the average length 

of messages increased.  This may indicate that as the students 

work in coalitions formed by VALCAM in I-MINDS, they 

sent fewer and lengthier (more explanatory) messages. This 

indicates that, as the students worked in their groups using I-

MINDS, their need to explain things in detail to each other 

grew.  Therefore, tools (e.g., whiteboard) that could aid the 

students to explain a concept in detail to each other could be 

helpful in this scenario. However, more data and experiments 

are needed to validate this claim. 

 

5.2.4 Impact Study 1 
 

In this study, our objective was to measure the impact of 

VALCAM, through I-MINDS, on student’s perception of 

their own competence, based on the results of the Self-

Efficacy Questionnaire (SEQ) survey.  The SEQ survey was 

conducted before the group activities started. Students en-

tered their competency of completing a particular task.  This 

contributes to step 2 of the VALCAM-U algorithm. We ob-

serve that for both semesters, students in the treatment sec-

tion were on average less confident than the students in the 

control section about their ability to solve the assigned task 

before the lab activities started (30.98 vs. 33.53 out of 40).  

This is interesting.  As discussed earlier in Feasibility Study 

1, the students in the treatment sections performed compara-

bly and eventually overtook those students in the control sec-

tions in terms of their post-test scores.  This indicates that 

even though, VALCAM seemed to be able to provide useful 

Type II scaffolding, it did not improve students’ perception 

of their own competence.  

 

5.2.5 Impact Study 2 

 

Similar to the previous study, here we wanted to measure the 

impact of VALCAM, through I-MINDS, on student’s percep-

tion of their peers.  The Peer Rating Questionnaire (PRQ) 

surveys were conducted in both control and treatment sec-

tions after each lab session was completed.  The PRQ is de-

signed to rate the helpfulness of the group members after they 

have gone through the group activities.  This constitutes the 

compatibility measure in step 2 of VALCAM-U.  We find 

that students in the control section rated their peers better 

(higher means (35.95 vs. 35.78)) and more consistently (low-

er standard deviation values (3.54 vs. 6.42)) than the students 

in the treatment section.  This is likely due to the students’ 

discomfort due to heterogeneous groups (students of different 

calibers and levels of familiarities).  On the other hand, we 

see indications that students in the treatment section seemed 

to rate their peers better over time (from 33.71 to 35.80 to 

36.37 and 37.25).  This might be due to the ability of 

VALCAM in forming more compatible groups over time—

trading off between forming and scaffolding, the key to the 

iHUCOFS framework.   

 

5.2.6 Study of User Agent’s Utility 
 

The goal of VALCAM is to form and scaffold the human 

coalitions.  However, an individual agent achieves that goal 

by trying to join a group that would provide the highest yield 

of virtual currency for the human users.  That means, for an 

individual agent, the virtual currency earned by joining a 

group is a measure of its utility.  Also, meaningful coalition 

formation and good scaffolding translates to high yield of 

virtual currency for the individual agents.  So, to measure the 

utility of the whole multiagent system, the average amount of 

virtual currency accumulated after each day by the individual 

user agents was calculated.  Fig. 8 shows that after each 

classroom the student agents (i.e., the user agents) were able 

to increase their virtual currency account balance on average.  

 

 
Fig. 8. Average Virtual Currency Accumulated. 

 

That means, after every session, the student agents were able 

to earn more virtual currency than it had spent during the 

coalition formation session.  According to our policy of re-

warding virtual currency, this also means that the human us-

ers were performing well on average in the groups and were 

allowing their user agents to accumulate virtual currency.  
On the whole, the results of our experiments are not signif-

icant enough to claim any conclusion about the effectiveness 

of VALCAM in forming or scaffolding human coalitions due 

to insufficient human subjects and short duration of our 

study.  However, our results hint: (1) the students in the con-

trol section were more confident about their own efficacy 

than those in the treatment section (Impact Study 1), (2) the 

students in the treatment section were able to learn better 

(higher learning rate and better individual scores) during their 
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collaborative work than the students in the control section 

(Feasibility Study 1), and (3) the peer rating posted by the 

students in the treatment section improved over time as op-

posed to the students in the students in the control section.  

Although not conclusive, these three observations hint at the 

fact that VALCAM may have been improving the individual 

performance of the students in the treatment section and help-

ing the users learn how to work as a team better over time. 

 

6. Related Work 

 

Here we discuss research work related to collaborative learn-

ing systems for human users and research efforts that are 

focused on forming and scaffolding human coalitions.  

Constantino-González [5] proposed a web-based environ-

ment called Collaborative Learning Environment for Entity-

Relationship Modeling (COLER) in which student can solve 

Entity-Relationship (ER) problems while working synchron-

ously in small groups at a distance.  The research evaluated 

the feasibility of generating advice based primarily on com-

paring students’ individual and group solutions and tracking 

student participation (contributions to the group diagram).  

Their approach monitors individual work in private and 

shared workspaces to identify conflicts. COLER was de-

signed for sessions in which students first solve problems 

individually and then join into small groups to develop group 

solutions.  When all of the students have indicated readiness 

to work in the group, the shared workspace is activated, and 

they can begin to place components of their solutions in the 

workspace.  COLER’s coach is a personal, pedagogical agent 

that facilitates collaboration by encouraging students to dis-

cuss and participate during collaborative problem solving.  

Given personal and teammates’ actions in the learning envi-

ronment as input, the coach detects learning and participation 

opportunities, and then gives a message to the student to en-

courage discussion, participation, self-reflection, ER review-

ing, or assign control to a teammate.  To monitor participa-

tion, COLER detects time-triggered events, such as inactivity 

in the group area or the coached student having control of the 

group area for a long time (pencil handling).  For our I-

MINDS framework, the student agents correspond to 

COLER’s coaches.  Currently, each student agent is only 

capable of monitoring a student’s activities and refining the 

buddy group of the student and reporting the student’s profile 

to the teacher agent, and each student agent is designed to 

work behind-the-scenes non-intrusively.   

Barros and Verdejo [1] defined a process-oriented qualita-

tive description of a mediated group activity on three pers-

pectives: (1) a group performance in reference to other 

groups, (2) each member in reference to other members of 

the group, and (3) the group by itself.  The collaboration ap-

plication is conversation-based, and thus the method to com-

pute these attributes automatically is based on semi-

structured messages.  The architecture of their proposed sys-

tem, Distance Environment for Group ExperiencEs 

(DEGREE) is organized into four levels: configuration, per-

formance, analysis and organization.  At the configuration 

level, once the teachers have planned an experience at the 

collaborative level, they configure and install automatically 

the environment needed to support the activities of groups of 

students working together.  At the performance level, a group 

of students can carry out collaborative activities with the 

support of the system.  All the events related to each group 

and experiences are recorded.  At the analysis level, the edu-

cator or instructor analyzes the user’s interaction with tools 

for quantitative and qualitative analysis and make interven-

tions in order to improve them.  At the organization level, the 

instructor gathers, selects, and stores the results of collabora-

tive learning experiences and the processes.  The information 

is structured and valued for searching and reusing purposes, 

and stored as cases forming an organizational learning mem-

ory.  I-MINDS’ monitoring and recording of peer-to-peer 

activities are very similar to DEGREE’s.  In addition, Barros 

and Verdejo [1] globally described the activities supported by 

each of the above levels by means of the Activity Theory.  

Basically, the DEGREE system uses cases to store the ex-

pected collaborative learning experience (outcome), which is 

configured by the instructors. This experience also includes 

the decomposition of the task at hand into sub-tasks, to be 

carried out by the students jointly.  DEGREE then provides 

graphical tools and interface methods for the instructor to 

monitor and observe the group activities.  I-MINDS, though 

not explicitly following the Activity Theory, is similar to 

DEGREE is several aspects.  I-MINDS has both structured 

and unstructured cooperative learning features.  When the 

structured cooperative learning mode is invoked, the I-

MINDS teacher agent outlines the task, subtasks, and the 

various activity phases as configured by the instructor.  When 

the students carry out the subtasks going through the various 

phases, the activities are recorded to be analyzed later.  In I-

MINDS, the experience and expected outcomes are not 

stored as cases; instead, group agents are invoked to reward 

or penalize the students based on several performance metrics 

that we see as intrinsic to collaborative activities.  Further, 

according to resultant virtual currencies that these students 

earn, I-MINDS assigns roles to the students in the next round 

of activities. 

Ogata and Yano [18] used knowledge awareness and in-

formation filtering in an open-ended collaborative learning 

environment. Basically, an individual user’s agent, called 

KA-Agent, autonomously informs the learner of the up-to-

the-minute activities of other learners by comparing the 

learner’s actions with the other learners’ actions.  The mes-

sages sent by the KA-Agent makes the learner aware of 

someone who has the same problem or knowledge as the 

learner, who has a different view about the problem or know-

ledge, and who has potential to assist solving the problem.  

The knowledge awareness filtering aims to sift out unaccept-

able KA messages that disturb learning, and give adequate 

priority and order KA messages according to individualized 

priority.  The KA-Agent is similar to I-MINDS student 

agents, especially in the process of selecting buddies suitable 

for a particular student.  The KA-Agent is also similar to I-

MINDS teacher agent in the process of forming focus groups 

during the Jigsaw learning procedure. 

Grave et al. [9] is another interesting research where a 

multiagent framework is used to build a multi-layer architec-

ture that is able to initiate and manage student training.  In 

this article, the authors present a multiagent architecture al-

lowing the implementation of a dynamic CBR for the evalua-
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tion for the potential evolution of an observed situation.  This 

architecture is designed on three layers of agents with a py-

ramidal relation.  The bottom layer is used to build a repre-

sentation of the target case (i.e., the current situation).  The 

second layer is used to implement a dynamic elaboration of 

the target case and the upper layer implements a dynamic 

process of source cases.  Although this multiagent layered 

approach can result in a flexible and adaptive learning or 

training environment, there are a few issues not addressed.  

The authors discuss that they are analyzing file tracks pro-

duced by a tool of self-training to build the ontology of the 

domain and specify the low layer by identifying the semantic 

features.  If such domain specific approach is used, the result-

ing multiagent system may not be generic enough to be used 

in a typical student learning scenario.  Therefore, a generic 

framework could be more helpful.  Furthermore, in their 

layered multiagent framework the issues relating to collabor-

ative work among learners have not been addressed. 

On the whole, these collaborative learning systems do not 

provide any mechanism for forming human user groups that 

addresses the unique characteristics (Section 2.3) of human 

coalitions.  However, using the iHUCOFS framework, I-

MINDS tries to address the unique characteristics of human 

behavior to build meaningful and helpful learner coalitions.  

Furthermore, these research approaches do not take into ac-

count the changes in the human user’s behavior that occurs 

due to learning.  However, I-MINDS’ user agents try to cap-

ture that change in the human user’s behavior through model-

ing and use it to form better groups over time.   

There have also been some approaches to form human us-

er groups in the form of 1-to-1 peer groups.  Li et al. [14] 

used agent technology with fuzzy set theory to find matching 

peers for human users based on similar preferences or exper-

tise.  Each agent, representing a user, communicates with 

others and exchanges information about specific knowledge 

questions.  The responses of these agents are then judged 

based on response time and the response quality.  Then using 

Zadeh’s fuzzy set theory, their framework finds the most 

suitable set of peers for their users.   

Another such peer help system is I-HELP [2].  I-HELP 

combines a 1-to-1 peer help network and a discussion forum 

to provide offline peer help to learners.  In I-HELP, each hu-

man user is assigned a user agent which builds a model for its 

owner and also builds partial models of all the other user 

agents (representing other human users) that it comes into 

contact.  This peer help system has some similarities with 

how I-MINDS’ coalition formation module works.  For ex-

ample, in both I-HELP and I-MINDS, the previous user ex-

periences are considered when forming groups.  However, in 

these systems, agents locate peer help for their human users, 

but a peer group is built based on 1-to-1 experience without 

taking account how a group would work together as a team.  

Furthermore, noise, uncertainty and incomplete information 

in the environment are also not addressed. 

The scaffolding of human coalitions has been researched 

in the application domain of the coalition formation after 

coalitions have been formed.  For example, in COLER [6], 

students work synchronously in small groups at a distance.  

COLER assigns an agent to coach each learner to support and 

facilitate collaborative learning.  The agent monitors the in-

dividual student’s activities, detects the differences between 

the student’s and his or her group’s solutions, and advise the 

students on their collaborative skills, e.g., encouraging the 

students to participate, encouraging them to compare solu-

tions with their other group members.  In another research,  

Vizcaíno [27] described a virtual student architecture that 

detected and avoided three situations that decrease the bene-

fits of learning in collaboration: off-topic (off-task) conversa-

tions, students with passive behaviors, and problems related 

to students’ learning.  I-MINDS has the potential to identify 

off-topic conversations through its message scoring and 

grouping, and has the ability to detect and discourage passive 

behavior through its constant monitoring.  Further, the I-

MINDS teacher agent groups students into compatible peer 

groups in order to encourage active participations.  An I-

MINDS group agent, on the other hand, rewards and penaliz-

es group activities and individual students’ participation, tak-

ing into account how a group has performed and how the 

students perceived each other’s contribution to the teamwork. 

These research approaches for realizing scaffolding use 

only short term approaches (solving the task at hand) for 

scaffolding human coalitions.  However, our notion of scaf-

folding in I-MINDS includes both short term (solving the 

task at hand) and long term improvement (improved perfor-

mance due to learning) of user behavior.  

 

7. Conclusion 
 

We have introduced iHUCOFS – a framework for forming 

and scaffolding human coalitions.  We have also described 

VALCAM – a preliminary implementation of the iHUCOFS 

framework for forming and scaffolding learner coalitions in 

I-MINDS-a CSCL environment.  Finally, have we discussed 

the feasibility and the impact studies to demonstrate the va-

lidity of using iHUCOFS as a framework for forming and 

scaffolding human coalitions.  Preliminary results hint that by 

using iHUCOFS framework, I-MINDS was able to form and 

impact the learner coalitions in the CSCL environment. 

Future work includes continued development of the iHU-

COFS framework to make it more precise and comprehen-

sive.  We are also working to improve the VALCAM algo-

rithm by developing better modeling and tracking capabilities 

and by incorporating Type I scaffolding.  We are also im-

proving the system agent’s reasoning capability in VALCAM 

so that it is able to take into account the various costs of 

forming and scaffolding the coalition and is able to choose 

the optimal seed selection policy while forming coalitions.  

Furthermore, we are also working to make the user agent’s 

role (advisor or representative) dynamic.  Finally, we are also 

improving the functionalities in I-MINDS (tracking, GUI) to 

perform longer experiments using VALCAM. 
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